Isar — A language for structured proofs
Apply scripts

- unreadable
Apply scripts

- unreadable
- hard to maintain
Apply scripts

- unreadable
- hard to maintain
- do not scale
Apply scripts

- unreadable
- hard to maintain
- do not scale

No structure!
Apply scripts versus Isar proofs

Apply script = assembly language program
Apply scripts versus Isar proofs

Apply script = assembly language program
Isar proof = structured program with comments
Apply scripts versus Isar proofs

Apply script = assembly language program
Isar proof = structured program with comments

But: apply still useful for proof exploration
A typical Isar proof

proof
 assume \(\text{formula}_0 \)
 have \(\text{formula}_1 \) by simp

 have \(\text{formula}_n \) by blast
 show \(\text{formula}_{n+1} \) by \ldots
qed
A typical Isar proof

proof

assume formula_0

have formula_1 by simp

:

have formula_n by blast

show formula_{n+1} by \ldots

qed

proves $\text{formula}_0 \implies \text{formula}_{n+1}$
Overview

- Basic Isar
- Isar by example
- Proof patterns
- Streamlining proofs
Isar core syntax

\[
\text{proof} \; = \; \text{proof \ [method]} \; \text{statement}^* \; \text{qed} \\
\quad | \quad \text{by method}
\]
Isar core syntax

\[
\text{proof} \ = \ \text{proof} \ [\text{method}] \ \text{statement}^* \ \text{qed} \\
\quad | \quad \text{by} \ \text{method} \\
\text{method} \ = \ (\text{simp} \ldots) \ | \ (\text{blast} \ldots) \ | \ (\text{rule} \ldots) \ | \ldots
\]
Isar core syntax

proof = proof [method] statement* qed
 | by method

method = (simp ...) | (blast ...) | (rule ...) | ...

statement = fix variables (∧)
 | assume prop (⇒)
 | [from fact+] (have | show) prop proof
Isar core syntax

proof = proof [method] statement* qed
 | by method

method = (simp ...) | (blast ...) | (rule ...) | ...

statement = fix variables (∧)
 | assume prop (⇒)
 | [from fact+] (have | show) prop proof
 | next (separates subgoals)
Isar core syntax

proof = proof [method] statement* qed
 | by method

method = (simp ...) | (blast ...) | (rule ...) | ...

statement = fix variables (\land)
 | assume prop (\Rightarrow)
 | [from fact^+] (have | show) prop proof
 | next (separates subgoals)

prop = [name:] "formula"
Isar core syntax

proof = proof [method] statement* qed
 | by method

method = (simp ...) | (blast ...) | (rule ...) | ...

statement = fix variables (∧)
 | assume prop (⇒)
 | [from fact+] (have | show) prop proof
 | next (separates subgoals)

prop = [name:] "formula"

fact = name | name[OF fact+] | ‘formula‘
Isar by example
Example: Cantor’s theorem

Lemma Cantor: \(\neg \text{surj}(f :: 'a \Rightarrow 'a \text{ set}) \)
Example: Cantor’s theorem

lemma Cantor: \(\neg \text{surj}(f :: 'a \Rightarrow 'a \text{ set}) \)

proof
Example: Cantor’s theorem

lemma Cantor: \(\neg \text{surj}(f :: 'a \Rightarrow 'a \text{ set}) \)
proof assume surj, show False
Example: Cantor’s theorem

lemma Cantor: \(\neg \text{surj}(f : \forall a \rightarrow a \rightarrow \text{set}) \)

proof
 assume surj, show False
 assume a: surj f
Example: Cantor’s theorem

lemma Cantor: \(\neg \text{surj}(f :: 'a \Rightarrow 'a \text{ set}) \)
proof
 assume surj, show False
 assume a: surj f
 from a have b: \(\forall A. \exists a. A = f a \)
Example: Cantor’s theorem

lemma Cantor: \(\neg \text{surj}(f :: 'a \Rightarrow 'a \text{ set}) \)

proof
 assume surj, show False
 assume a: surj f
 from a have b: \(\forall A. \exists a. A = f a \)
 by (simp add: surj_def)
Example: Cantor’s theorem

lemma Cantor: \(\neg \text{surj}(f :: \text{'}a \Rightarrow \text{'}a \text{ set}) \)

proof assume \(\text{surj} \), show False
 assume \(a: \text{surj } f \)
 from \(a \) have \(b: \forall A. \exists a. A = f a \)
 by (simp add: surj_def)
 from \(b \) have \(c: \exists a. \{x. x \notin f x\} = f a \)
Example: Cantor’s theorem

lemma Cantor: \(\neg \text{surj}(f :: 'a \Rightarrow 'a \text{ set}) \)
proof assume surj, show False
 assume a: surj f
 from a have b: \(\forall A. \exists a. A = f a \)
 by (simp add: surj_def)
 from b have c: \(\exists a. \{x. x \notin f x\} = f a \)
 by blast
Example: Cantor’s theorem

lemma Cantor: ¬ \text{surj}(f :: 'a ⇒ 'a set)
proof assume \text{surj}, show False
 assume a: \text{surj} f
 from a have b: \forall A. \exists a. A = f a
 by (simp add: \text{surj_def})
 from b have c: \exists a. \{x. x \notin f x\} = f a
 by blast
 from c show False
Example: Cantor’s theorem

lemma Cantor: \(\neg \text{surj}(f :: 'a \Rightarrow 'a \text{ set}) \)

proof assume \(\text{surj} \), show False

 assume \(a: \text{surj} \ f \)
 from \(a \) have \(b: \forall A. \exists a. A = f a \)
 by (simp add: surj_def)
 from \(b \) have \(c: \exists a. \{x. x \notin f x\} = f a \)
 by blast
 from \(c \) show False
 by blast
Example: Cantor’s theorem

lemma Cantor: \(\neg \text{surj}(f :: \text{'a} \Rightarrow \text{'a set}) \)
proof
 assume \(\text{surj} \), show \(\text{False} \)
 assume \(a: \text{surj} f \)
 from \(a \) have \(b: \forall A. \exists a. A = f a \)
 by (simp add: surj_def)
 from \(b \) have \(c: \exists a. \{x. x \notin f x\} = f a \)
 by blast
 from \(c \) show \(\text{False} \)
 by blast
qed
Demo: this, then etc
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>this</td>
<td>the previous proposition proved or assumed</td>
</tr>
<tr>
<td>then</td>
<td>from this</td>
</tr>
<tr>
<td>thus</td>
<td>then show</td>
</tr>
<tr>
<td>hence</td>
<td>then have</td>
</tr>
</tbody>
</table>
First the what, then the how:

(have|show) prop using facts
First the what, then the how:

\[(\text{have}|\text{show}) \text{ prop using facts} = \text{from facts (have}|\text{show}) \text{ prop}\]
Example: Structured lemma statement

lemma \textit{Cantor'}:
\begin{itemize}
\item fixes $f :: 'a \Rightarrow 'a \text{ set}$
\item assumes $s :: \text{ surj } f$
\item shows False
\end{itemize}
Example: Structured lemma statement

lemma Cantor':
 \(\text{fixes } f :: \ 'a \Rightarrow \ 'a \text{ set} \)
 \(\text{assumes } s: \text{surj } f \)
 \(\text{shows } \text{False} \)
proof -
Example: Structured lemma statement

lemma \textit{Cantor'}:
 \begin{itemize}
 \item \textbf{fixes} \(f :: 'a \Rightarrow 'a \text{ set} \)
 \item \textbf{assumes} \(s : \text{surj } f \)
 \item \textbf{shows} \(\text{False} \)
 \end{itemize}
proof - no automatic proof step
Example: Structured lemma statement

lemma Cantor':
 fixes f :: 'a ⇒ 'a set
 assumes s: surj f
 shows False
proof - no automatic proof step
 have ∃ a. {x. x ∉ f x} = f a using s
 by(auto simp: surj_def)
Example: Structured lemma statement

lemma \textit{Cantor'}:

 \textbf{fixes} \(f \colon 'a \Rightarrow 'a \text{ set} \)

 \textbf{assumes} \(s \colon \text{surj } f \)

 \textbf{shows} False

\textbf{proof} - no automatic proof step

\textbf{have} \(\exists a. \{x. x \notin f x\} = f a \) \text{ using } \(s \)

\textbf{by} (auto simp: surj_def)

\textbf{thus} False \textbf{by} blast

qed
Example: Structured lemma statement

lemma Cantor':
 fixes f :: 'a ⇒ 'a set
 assumes s: surj f
 shows False
proof - no automatic proof step
 have ∃ a. {x. x /∈ f x} = f a using s
 by (auto simp: surj_def)
 thus False by blast
qed

 Proves surj f ⇒ False
Example: Structured lemma statement

lemma \textit{Cantor'}:
- \textbf{fixes} \(f :: 'a \Rightarrow 'a \text{ set} \)
- \textbf{assumes} \(s: \text{surj} f \)
- \textbf{shows} \(\text{False} \)

proof - no automatic proof step
- \textbf{have} \(\exists a. \{x. x \notin f x\} = f a \) using \(s \)
 - \textbf{by} (auto simp: surj_def)
- \textbf{thus} \(\text{False} \) \textbf{by blast}

qed

Proves \(\text{surj} f \implies \text{False} \)
but \(\text{surj} f \) becomes local fact \(s \) in proof.
Assumptions and intermediate facts can be named and referred to explicitly and selectively
Structured lemma statements

fixes \(x :: \tau_1 \) and \(y :: \tau_2 \) ...
assumes a: \(P \) and b: \(Q \) ...
shows \(R \)
Structured lemma statements

fixes $x :: \tau_1$ and $y :: \tau_2$. . .
assumes a: P and b: Q . . .
shows R

• fixes and assumes sections optional
Structured lemma statements

fixes \(x :: \tau_1 \) and \(y :: \tau_2 \) . . .
assumes a: \(P \) and b: \(Q \) . . .
shows \(R \)

• fixes and assumes sections optional
• shows optional if no fixes and assumes
Proof patterns
show $P \iff Q$

proof
 assume P

 \[\vdots \]
 show Q . . .

next
 assume Q

 \[\vdots \]
 show P . . .

qed
Propositional proof patterns

show $P \leftrightarrow Q$
proof
 assume P
 :
 show Q . . .
next
 assume Q
 :
 show P . . .
qed

show $A = B$
proof
 show $A \subseteq B$. . .
next
 show $B \subseteq A$. . .
qed
Propositional proof patterns

show $P \iff Q$
proof
 assume P
 :
 show Q ...
next
 assume Q
 :
 show P ...
qed

show $A = B$
proof
 show $A \subseteq B$...
next
 show $B \subseteq A$...
qed

show $A \subseteq B$
proof
 fix x
 assume $x \in A$
 :
 show $x \in B$...
qed
Propositional proof patterns

show R
proof cases
 assume P
 ...
 show R ...
next
 assume $\neg P$
 ...
 show R ...
qed

Case distinction
Propositional proof patterns

- show R
 - proof cases
 - assume P
 - show R ...
 - next
 - assume $\neg P$
 - show R ...
- qed

- have $P \lor Q$...
 - then show R
 - proof
 - assume P
 - show R ...
 - next
 - assume Q
 - show R ...
- qed

Case distinction Case distinction
Propositional proof patterns

show R
proof cases
 assume P
 :
 show R ...
next
 assume $\neg P$
 :
 show R ...
qed

have $P \lor Q$...
then show R
proof
 assume P
 :
 show R ...
next
 assume Q
 :
 show R ...
qed

show P
proof (rule ccontr)
 assume $\neg P$
 :
 show False ...
qed

Case distinction Case distinction Contradiction
Quantifier introduction proof patterns

show $\forall x. \ P(x)$
proof
 fix x {local fixed variable}
 show $P(x)$
qed
Quantifier introduction proof patterns

show $\forall x. P(x)$
proof
 fix x \textit{local fixed variable}
 show $P(x)$ \ldots
qed

show $\exists x. P(x)$
proof
 :
 :
 show $P(\text{witness})$ \ldots
qed
∃ elimination: obtain
\exists \textit{elimination: obtain}

have $\exists x. P(x)$
then \textit{obtain} x where $p: P(x)$ by blast

\vdash x \text{ local fixed variable}
∃ elimination: obtain

have ∃x. P(x)
then obtain x where p: P(x) by blast

∵ x local fixed variable

Works for one or more x
obtain example

lemma *Cantor”*: \(\neg \text{surj}(f :: 'a \Rightarrow 'a \text{ set}) \)
proof
 assume \(\text{surj } f \)
 hence \(\exists a. \{x. x \notin f x\} = f a \) by (auto simp: surj_def)
lemma *Cantor’’*: \(\neg \text{surj}(f :: 'a \Rightarrow 'a \text{ set}) \)

proof
 assume \(\text{surj} \ f \)
 hence \(\exists \ a. \{x. \ x \notin f \ x\} = f \ a \) \ by (auto simp: surj_def)
 then obtain \(a \) where \(\{x. \ x \notin f \ x\} = f \ a \) \ by blast
lemma *Cantor”*: \(\neg \text{surj}(f :: 'a \Rightarrow 'a \text{ set}) \)

proof
 assume *surj* \(f \)
 hence \(\exists \ a. \{x. \ x \notin f \ x\} = f \ a \) by(auto simp: surj_def)
 then obtain \(a \) where \(\{x. \ x \notin f \ x\} = f \ a \) by blast
 hence \(a \notin f \ a \leftrightarrow a \in f \ a \) by blast
lemma \(\text{Cantor}''\): \(\neg \text{surj}(f :: 'a \Rightarrow 'a \text{ set})\)

proof

assume \(\text{surj } f\)

hence \(\exists a. \{x. x \notin f x\} = f a\) by (auto simp: surj_def)

then obtain \(a\) where \(\{x. x \notin f x\} = f a\) by blast

hence \(a \notin f a \iff a \in f a\) by blast

thus \(\text{False}\) by blast

qed
proof method
Applies method and generates subgoal(s):

1. $\forall x_1 \ldots x_n \left[A_1; \ldots ; A_m \right] \implies A$
Applies method and generates subgoal(s):

1. $\bigwedge x_1 \ldots x_n \left[A_1; \ldots ; A_m \right] \Rightarrow A$

How to prove each subgoal:
Applies method and generates subgoal(s):

1. $\bigwedge x_1 \ldots x_n \left[A_1; \ldots ; A_m \right] \implies A$

How to prove each subgoal:

- **fix** $x_1 \ldots x_n$
- **assume** $A_1 \ldots A_m$
- :
- **show** A
proof method

Applies method and generates subgoal(s):

1. \(\bigwedge x_1 \ldots x_n [A_1; \ldots ; A_m] \Rightarrow A \)

How to prove each subgoal:

fix \(x_1 \ldots x_n \)
assume \(A_1 \ldots A_m \)
::
show A

Separated by next
Demo: proof
Streamlining proofs: Pattern matching and Quotations
Example: pattern matching

\[\text{show } formula_1 \leftrightarrow formula_2 \quad (\text{is } ?L \leftrightarrow ?R) \]
Example: pattern matching

show $formula_1 \leftrightarrow formula_2$ (is $?L \leftrightarrow ?R$)

proof
 assume $?L$
 :
 show $?R$. . .

next
 assume $?R$
 :
 show $?L$. . .

qed
show $formula$
proof -

:\

show $?thesis \ldots$
qed
show \textit{formula} (is \textit{thesis})
proof -
:
 show \textit{thesis} ...
qed
show $formula$ (is $thesis$)
proof -
 :
 show $thesis$. . .
qed

Every show implicitly defines $thesis$
Quoting facts by value

By name:

```
have x0: "x > 0" . . .
```
```
from x0 . . .
```
Quoting facts by value

By name:

\[
\text{have } x_0: "x > 0" \ldots \\
\vdots \\
\text{from } x_0 \ldots
\]

By value:

\[
\text{have } "x > 0" \ldots \\
\vdots \\
\text{from } x > 0 \ldots
\]
Quoting facts by value

By name:

```plaintext
have x0: "x > 0" . . .
:
from x0 . . .
```

By value:

```plaintext
have "x > 0" . . .
:
from 'x>0' . . .
back quotes
```
Demo: pattern matching and quotations
Advanced Isar
Overview

- Case distinction
- Induction
- Chains of (in)equations
Case distinction
Demo: case distinction
Datatype case distinction

datatype $t = C_1 \bar{\tau} \mid \ldots$
Datatype case distinction

datatype \(t = C_1 \vec{x} \mid \ldots \)

proof (cases \textit{term})

\textbf{case} (\textit{C}_1 \vec{x})

\ldots \\vec{x} \ldots

next

: :

qed
Datatype case distinction

datatype \(t = C_1 \vec{x} | \ldots \)

proof (cases term)
 case \((C_1 \vec{x})\)
 \[\ldots \vec{x} \ldots\]
 next
 ::
 qed

where case \((C_i \vec{x})\) \(\equiv\)

fix \(\vec{x}\)

assume \(\begin{cases}
 \text{label} & C_i : \\
 \text{formula} & \text{term} = (C_i \vec{x})
\end{cases}\)
Induction
Overview

• Structural induction
• Rule induction
• Induction with fun
Structural induction for type nat

show \(P(n) \)
proof (induct \(n \))
 case 0
 ...
 show ?case
next
 case (Suc \(n \))
 ...
 ... \(n \) ...
 show ?case
qed
Structural induction for type nat

show $P(n)$
proof (induct n)
 case 0
 let ?case = $P(0)$
 ...
 show ?case
next
 case (Suc n)
 ...
 ... n ...
 show ?case
qed
Structural induction for type nat

show $P(n)$

proof (induct n)

case 0

\[\equiv \text{let } ?\text{case} = P(0) \]

\[\ldots \]

show ?case

next

case (Suc n)

\[\equiv \text{fix } n \text{ assume Suc: } P(n) \]

let ?case = $P(Suc \ n)$

\[\ldots \]

\[\ldots n \ldots \]

show ?case

qed
Demo: structural induction
show $A(n) \implies P(n)$

proof (induct n)
 case 0
 \ldots
 \ldots
 show ?case

next
 case $(\text{Suc } n)$
 \ldots
 \ldots n \ldots
 \ldots
 \ldots
 show ?case

qed
Structural induction with \implies

show $A(n) \implies P(n)$

proof $(induct \ n)$
 case 0
 ...
 show $?case$

next
 case $(Suc \ n)$
 ...
 ... n ...
 ...
 show $?case$

qed
Structural induction with

show $A(n) \Rightarrow P(n)$

proof (*induct* n)

 case 0

 \[
 \begin{align*}
 \text{fix } x \\
 \text{assume } 0: A(0) \\
 \text{let } ?\text{case} = P(0)
 \end{align*}
 \]

 show ?case

next

 case $(\text{Suc } n)$

 \[
 \begin{align*}
 \text{fix } n \\
 \text{assume } \text{Suc}: A(n) \Rightarrow P(n) \\
 A(\text{Suc } n) \\
 \text{let } ?\text{case} = P(\text{Suc } n)
 \end{align*}
 \]

 show ?case

qed
A remark on style

• \texttt{case \ (Suc\ n) \ldots show \ ?case}
 is easy to write and maintain
A remark on style

- **case** \((Suc \ n) \ldots \ show \ ?case\)** is easy to write and maintain
- **fix \ n \ assume \ formula \ldots \ show \ formula'\)** is easier to read:
 - all information is shown locally
 - no contextual references (e.g. \(?case\))
Demo: structural induction with
Rule induction
Inductive definition

inductive_set S

intros

$rule_1: \left[s \in S; A \right] \implies s' \in S$

\vdots

$rule_n: \ldots$
Rule induction

show \(x \in S \implies P(x) \)

proof \((\text{induct rule: } S.\text{induct})\)

\[
\begin{align*}
\text{case } & \text{rule}_1 \\
\ldots & \\
\text{show } & ?\text{case} \\
\text{next} & \\
\vdots & \\
\text{next} & \\
\text{case } & \text{rule}_n \\
\ldots & \\
\text{show } & ?\text{case} \\
\text{qed}
\end{align*}
\]
assume $A: x \in S$

::

show $P(x)$

using A proof induct

::

qed
Implicit selection of induction rule

assume $A: x \in S$

::

show $P(x)$

using A proof $induct$

::

qed

lemma assumes $A: x \in S$ shows $P(x)$

using A proof $induct$

::

qed
case \((\text{rule}_i \ x_1 \ldots \ x_k) \)

Renames the (alphabetically!) first \(k \) variables in \(\text{rule}_i \) to \(x_1 \ldots x_k \).
Demo: rule induction
Definition:

fun f

::
Induction with fun

Definition:
fun f
 :

Proof:
show ... f(...) ...
proof (induct x₁ ... xₖ rule: f.induct)
Induction with fun

Definition:

```
fun f 
:
```

Proof:

```
show ... f(...) ...
proof (induct x₁ ... xₖ rule: f.induct)
  case 1
  :
```
\textbf{Induction with fun}

Definition:
\begin{verbatim}
fun f
:

Proof:
show \ldots f(\ldots) \ldots
proof (induct x_1 \ldots x_k \text{ rule: } f.induct)
 \text{ case } 1
 :

Case \(i\) refers to equation \(i\) in the definition of \(f\)
Induction with fun

Definition:

```haskell
fun f
```

Proof:

```haskell
show ... f(...) ...
proof (induct x₁ ... xₖ, rule: f.induct)
    case 1
      ...
```

Case i refers to equation i in the definition of f
More precisely: to equation i in $f.simps$
Demo: induction with fun
Chains of (in)equations
also

have "\(t_0 = t_1 \)" ...
also

have "\(t_0 = t_1 \)" . . .
also
have " . . . = t_2" . . .
also

have "\(t_0 = t_1 \)" . . .
also
have "\(\ldots = t_2 \)" . . . \(\ldots \equiv t_1 \)
also

have
 \[t_0 = t_1 \]

also

have
 \[\ldots = t_2 \]

also

\[\vdots \]

also

have
 \[\ldots = t_n \]

\[=t_1\]
also

have \(t_0 = t_1 \) \ldots
also
have \(\ldots = t_2 \) \ldots \quad \ldots \equiv t_1
also
\vdots
also
have \(\ldots = t_n \) \ldots \quad \ldots \equiv t_{n-1}
also

have \(t_0 = t_1 \) \ldots

also

have \(\ldots = t_2 \) \ldots \quad \ldots \equiv t_1

also

\vdots

also

have \(\ldots = t_n \) \ldots \quad \ldots \equiv t_{n-1}

finally show \ldots
also

have "\(t_0 = t_1 \)" \ldots
also

have "\(\ldots = t_2 \)" \ldots \ldots \equiv t_1
also

\vdots
also

have "\(\ldots = t_n \)" \ldots \ldots \equiv t_{n-1}
finally show \ldots

— like from \(t_0 = t_n \) show
also

- “…” is merely an abbreviation
• “…” is merely an abbreviation
• also works for other transitive relations ($<$, \le, …)
Demo: also
Accumulating facts
moreover

have $\mathit{formula}_1 \ldots$
moreover

have $\text{formula}_1 \ldots$
moreover
have $\text{formula}_2 \ldots$
moreover

have $formula_1 \ldots$
moreover
have $formula_2 \ldots$
moreover
::
moreover
have $formula_n \ldots$
moreover

have $formula_1$. . .
moreover
have $formula_2$. . .
moreover

::
moreover
have $formula_n$. . .
ultimately show . . .
moreover

have \(\text{formula}_1 \ldots \)
moreover
have \(\text{formula}_2 \ldots \)
moreover

\vdots

moreover
have \(\text{formula}_n \ldots \)
ultimately show \ldots

— like from \(f_1 \ldots f_n \) show but needs no labels
Demo: moreover