Contents

1 Objects 6
 1.1 Structure with Carrier Set. 6
 1.2 Structure with Carrier and Equivalence Relation eq 6

2 Orders and Lattices 13
 2.1 Partial Orders 13
 2.1.1 The order relation 14
 2.1.2 Upper and lower bounds of a set 15
 2.1.3 Least and greatest, as predicate 19
 2.2 Lattices 22
 2.2.1 Supremum 22
 2.2.2 Infimum 27
 2.3 Total Orders 32
 2.4 Complete Lattices 33
 2.5 Orders and Lattices where eq is the Equality 35
 2.6 Examples 39
 2.6.1 The Powerset of a Set is a Complete Lattice 39

3 Monoids and Groups 40
 3.1 Definitions 40
 3.2 Groups 44
 3.3 Cancellation Laws and Basic Properties 46
 3.4 Subgroups 48
 3.5 Direct Products 50
 3.6 Homomorphisms and Isomorphisms 51
 3.7 Commutative Structures 53
 3.8 The Lattice of Subgroups of a Group 54
 3.9 Product Operator for Commutative Monoids 56
 3.9.1 Inductive Definition of a Relation for Products over Sets 56
10 Ideals

10.1 Definitions ... 212
 10.1.1 General definition 212
 10.1.2 Ideals Generated by a Subset of carrier R 213
 10.1.3 Principal Ideals 213
 10.1.4 Maximal Ideals 213
 10.1.5 Prime Ideals 214
10.2 Special Ideals .. 215
10.3 General Ideal Properties 215
10.4 Intersection of Ideals 216
10.5 Addition of Ideals 218
10.6 Ideals generated by a subset of carrier R 219
10.7 Union of Ideals .. 223
10.8 Properties of Principal Ideals 224
10.9 Prime Ideals .. 225
10.10Maximal Ideals .. 226
10.11Derived Theorems 229

11 Homomorphisms of Non-Commutative Rings 232
11.1 The Kernel of a Ring Homomorphism 234
11.2 Cosets .. 234

12 Quotient Rings .. 236
12.1 Multiplication on Cosets 236
12.2 Quotient Ring Definition 237
12.3 Factorization over General Ideals 237
12.4 Factorization over Prime Ideals 239
12.5 Factorization over Maximal Ideals 240

13 The Ring of Integers 242
13.1 Some properties of int 242
13.2 Z: The Set of Integers as Algebraic Structure 242
13.3 Interpretations .. 243
13.4 Generated Ideals of Z 247
13.5 Ideals and Divisibility 247
13.6 Ideals and the Modulus 248
13.7 Factorization .. 250

14 Modules over an Abelian Group 251
14.1 Definitions .. 251
14.2 Basic Properties of Algebras 253
15 Univariate Polynomials

15.1 The Constructor for Univariate Polynomials 254
15.2 Effect of Operations on Coefficients 257
15.3 Polynomials Form a Ring. 259
15.4 Polynomials Form a Commutative Ring. 262
15.5 Polynomials over a commutative ring for a commutative ring 263
15.6 Polynomials Form an Algebra 263
15.7 Further Lemmas Involving Monomials 264
15.8 The Degree Function . 269
15.9 Polynomials over Integral Domains 275
15.10 The Evaluation Homomorphism and Universal Property . . . 276
15.11 The long division algorithm: some previous facts. 284
15.12 The long division proof for commutative rings 286
15.13 Sample Application of Evaluation Homomorphism 292
6

theory Congruence
imports Main
begin

1
1.1

Objects
Structure with Carrier Set.

record ’a partial_object =
carrier :: "’a set"

1.2

Structure with Carrier and Equivalence Relation eq

record ’a eq_object = "’a partial_object" +
eq :: "’a ⇒ ’a ⇒ bool" (infixl ".=ı " 50)
definition
elem :: "_ ⇒ ’a ⇒ ’a set ⇒ bool" (infixl ".∈ı " 50)
where "x .∈S A ←→ (∃ y ∈ A. x .=S y)"
definition
set_eq :: "_ ⇒ ’a set ⇒ ’a set ⇒ bool" (infixl "{.=}ı " 50)
where "A {.=}S B ←→ ((∀ x ∈ A. x .∈S B) ∧ (∀ x ∈ B. x .∈S A))"
definition
eq_class_of :: "_ ⇒ ’a ⇒ ’a set" ("class’_ofı ")
where "class_ofS x = {y ∈ carrier S. x .=S y}"
definition
eq_closure_of :: "_ ⇒ ’a set ⇒ ’a set" ("closure’_ofı ")
where "closure_ofS A = {y ∈ carrier S. y .∈S A}"
definition
eq_is_closed :: "_ ⇒ ’a set ⇒ bool" ("is’_closedı ")
where "is_closedS A ←→ A ⊆ carrier S ∧ closure_ofS A = A"
abbreviation
not_eq :: "_ ⇒ ’a ⇒ ’a ⇒ bool" (infixl ".6=ı " 50)
where "x .6=S y == ~(x .=S y)"
abbreviation
not_elem :: "_ ⇒ ’a ⇒ ’a set ⇒ bool" (infixl ".∈ı
/ " 50)
where "x .∈
/ S A == ~(x .∈S A)"
abbreviation
set_not_eq :: "_ ⇒ ’a set ⇒ ’a set ⇒ bool" (infixl "{.6=}ı " 50)
where "A {.6=}S B == ~(A {.=}S B)"


locale equivalence =
 fixes S (structure)
 assumes refl [simp, intro]: "x ∈ carrier S \implies x .= x"
 and sym [sym]:
 "[x .= y; x ∈ carrier S; y ∈ carrier S] \implies y .= x"
 and trans [trans]:
 "[x .= y; y .= z; x ∈ carrier S; y ∈ carrier S; z ∈ carrier S]
 \implies x .= z"

lemma elemI:
 fixes R (structure)
 assumes "a' ∈ A" and "a .= a'"
 shows "a .∈ A"
unfolding elem_def
using assms
by fast

lemma (in equivalence) elem_exact:
 assumes "a ∈ carrier S" and "a ∈ A"
 shows "a .∈ A"
using assms
by (fast intro: elemI)

lemma elemE:
 fixes S (structure)
 assumes "a .∈ A"
 and \("\forall a'. [a' ∈ A; a .= a'] \implies P"
 shows \("P"
using assms
unfolding elem_def
by fast

lemma (in equivalence) elem_cong_l [trans]:
 assumes cong: "a' .= a"
 and a: "a .∈ A"
 and carr: "a ∈ carrier S" "a' ∈ carrier S"
 and Acarr: "A ⊆ carrier S"
 shows "a' .∈ A"
using a
apply (elim elemE, intro elemI)
proof assumption
fix b
assume bA: "b ∈ A"
note [simp] = carr bA[THEN subsetD[OF Acarr]]
note cong
also assume "a .= b"
finally show "a' . = b" by simp
qed

lemma (in equivalence) elem_subsetD:
 assumes "A ⊆ B"
 and aA: "a . ∈ A"
 shows "a . ∈ B"
using assms
by (fast intro: elemI elim: elemE dest: subsetD)

lemma (in equivalence) mem_imp_elem [simp, intro]:
 "[| x ∈ A; x ∈ carrier S |] ==> x . ∈ A"
unfolding elem_def by blast

lemma set_eqI:
 fixes R (structure)
 assumes ltr: "\a. a ∈ A ==> a . ∈ B"
 and rtl: "\b. b ∈ B ==> b . ∈ A"
 shows "A {.=} B"
unfolding set_eq_def
by (fast intro: ltr rtl)

lemma set_eqI2:
 fixes R (structure)
 assumes ltr: "\a b. a ∈ A ==> \exists b ∈ B. a .= b"
 and rtl: "\b. b ∈ B ==> \exists a ∈ A. b .= a"
 shows "A {.=} B"
by (intro set_eqI, unfold elem_def) (fast intro: ltr rtl)+

lemma set_eqE1:
 fixes R (structure)
 assumes AA': "A {.=} A'"
 and "a ∈ A"
 shows "\exists a' ∈ A'. a .= a'"
using assms
unfolding set_eq_def elem_def
by fast

lemma set_eqE2:
 fixes R (structure)
 assumes AA': "A {.=} A'"
 and "a' ∈ A'"
 shows "\exists a ∈ A. a' .= a"
using assms
unfolding set_eq_def elem_def
by fast

lemma set_eqE:
 fixes R (structure)
assumes AB: "A {.=} B"
and r: "[∀a∈A. a .∈ B; ∀b∈B. b .∈ A] ⇒ P"
shows "P"
using AB
unfolding set_eq_def
by (blast dest: r)

lemma set_eqE2:
fixes R (structure)
assumes AB: "A {.=} B"
and r: "[∀a∈A. (∃b∈B. a .= b); ∀b∈B. (∃a∈A. b .= a)] ⇒ P"
shows "P"
using AB
unfolding set_eq_def elem_def
by (blast dest: r)

lemma set_eqE':
fixes R (structure)
assumes AB: "A {.=} B"
and aA: "a ∈ A" and bB: "b ∈ B"
and r: "[∀a' b'. [a' ∈ A; b .= a'; b' ∈ B; a .= b']] ⇒ P"
shows "P"
proof -
from AB aA
 have "∃b'∈B. a .= b'" by (rule set_eqD1)
from this obtain b'
 where b': "b' ∈ B" "a .= b'" by auto

from AB bB
 have "∃a'∈A. b .= a'" by (rule set_eqD2)
from this obtain a'
 where a': "a' ∈ A" "b .= a'" by auto

from a' b'
 show "P" by (rule r)
qed

lemma (in equivalence) eq_elem_cong_r [trans]:
assumes a: "a .∈ A"
and cong: "A {.=} A'"
and carr: "a ∈ carrier S"
and Carr: "A ⊆ carrier S" "A' ⊆ carrier S"
shows "a .∈ A'"
using cong
proof (elim elemE set_eqE)
 fix b
 assume bA: "b ∈ A"
 and inA': "∀b∈A. b .∈ A'"
 note [simp] = carr Carr[THEN subsetD] bA
assume "a .= b"
also from bA inA'
 have "b ∈ A'" by fast
finally
 show "a ∈ A'" by simp
qed

lemma (in equivalence) set_eq_sym [sym]:
 assumes "A {.=} B"
 and "A ⊆ carrier S" "B ⊆ carrier S"
 shows "B {.=} A"
using assms
unfolding set_eq_def elem_def
by fast

lemma (in equivalence) equal_set_eq_trans [trans]:
 assumes AB: "A = B" and BC: "B {.=} C"
 shows "A {.=} C"
using AB BC by simp

lemma (in equivalence) set_eq_equal_trans [trans]:
 assumes AB: "A {.=} B" and BC: "B = C"
 shows "A {.=} C"
using AB BC by simp

lemma (in equivalence) set_eq_trans [trans]:
 assumes AB: "A {.=} B" and BC: "B {.=} C"
 and carr: "A ⊆ carrier S" "B ⊆ carrier S" "C ⊆ carrier S"
 shows "A {.=} C"
proof (intro set_eqI)
 fix a
 assume aA: "a ∈ A"
 with carr have "a ∈ carrier S" by fast
 note [simp] = carr this

 from aA
 have "a ∈ A" by (simp add: elem_exact)
 also note AB
 also note BC
 finally
 show "a ∈ C" by simp
next
 fix c
 assume cC: "c ∈ C"
 with carr have "c ∈ carrier S" by fast
note [simp] = carr this

from C
 have "c .∈ C" by (simp add: elem_exact)
also note BC[symmetric]
also note AB[symmetric]
finally
 show "c .∈ A" by simp
qed

lemma (in equivalence) set_eq_pairI:
 assumes xx': "x .= x'"
 and carr: "x ∈ carrier S" "x' ∈ carrier S" "y ∈ carrier S"
 shows "{x, y} {.=} {x', y}"
unfolding set_eq_def elem_def
proof safe
 have "x' ∈ {x', y}" by fast
 with xx' show "∃ b ∈ {x', y}. x .= b" by fast
 next
 have "y ∈ {x', y}" by fast
 with carr show "∃ b ∈ {x', y}. y .= b" by fast
next
 have "x ∈ {x, y}" by fast
 with xx'[symmetric] carr
 show "∃ a ∈ {x, y}. x' .= a" by fast
next
 have "y ∈ {x, y}" by fast
 with carr show "∃ a ∈ {x, y}. y .= a" by fast
qed

lemma (in equivalence) is_closedI:
 assumes closed: "!!x y. [| x .= y; x .∈ A; y .∈ carrier S |] ==> y .∈ A"
 and S: "A ⊆ carrier S"
 shows "is_closed A"
unfolding eq_is_closed_def eq_closure_of_def elem_def
using S
by (blast dest: closed sym)

lemma (in equivalence) closure_of_eq:
 "[| x .= x'; A ⊆ carrier S; x ∈ closure_of A; x ∈ carrier S; x' ∈ carrier S |] ==> x' ∈ closure_of A"
unfolding eq_closure_of_def elem_def
by (blast intro: trans sym)
lemma (in equivalence) is_closed_eq [dest]:

"[| x .= x'; x ∈ A; is_closed A; x ∈ carrier S; x' ∈ carrier S |] ==>
x' ∈ A"

unfolding eq_is_closed_def
using closure_of_eq [where A = A]
by simp

lemma (in equivalence) is_closed_eq_rev [dest]:

"[| x .= x'; x' ∈ A; is_closed A; x ∈ carrier S; x' ∈ carrier S |]
=> x ∈ A"

by (drule sym) (simp_all add: is_closed_eq)

lemma closure_of_closed [simp, intro]:
fixes S (structure)
shows "closure_of A ⊆ carrier S"

unfolding eq_closure_of_def
by fast

lemma closure_of_memI:
fixes S (structure)
assumes "a .∈ A"
and "a ∈ carrier S"
shows "a ∈ closure_of A"

unfolding eq_closure_of_def
using assms
by fast

lemma closure_ofI2:
fixes S (structure)
assumes "a .= a'"
and "a' ∈ A"
and "a ∈ carrier S"
shows "a ∈ closure_of A"

unfolding eq_closure_of_def elem_def
using assms
by fast

lemma closure_of_memE:
fixes S (structure)
assumes p: "a ∈ closure_of A"
and r: "[a ∈ carrier S; a .∈ A] ==> P"
shows "P"
proof -
 from p
 have acarr: "a ∈ carrier S"
and "a .∈ A"
 by (simp add: eq_closure_of_def)+
 thus "P" by (rule r)
qed
lemma closure_ofE2:
 fixes S (structure)
 assumes p: "a ∈ closure_of A"
 and r: "∀a'. [a ∈ carrier S; a' ∈ A; a .= a'] ⇒ P"
 shows "P"
proof -
 from p have acarr: "a ∈ carrier S" by (simp add: eq_closure_of_def)
 from p have "∃a'∈A. a .= a'" by (simp add: eq_closure_of_def elem_def)
 from this obtain a' where "a' ∈ A" and "a .= a'" by auto
 from acarr and this
 show "P" by (rule r)
qed

end

theory Lattice
imports Congruence
begin

2 Orders and Lattices

2.1 Partial Orders

record 'a gorder = "'a eq_object" +
 le :: "['a, 'a] => bool" (infixl "⊑")

locale weak_partial_order = equivalence L for L (structure) +
 assumes le_refl [intro, simp]:
 "x ∈ carrier L ==> x ⊑ x"
 and weak_le_antisym [intro]:
 "[| x ⊑ y; y ⊑ x; x ∈ carrier L; y ∈ carrier L |] ==> x .= y"
 and le_trans [trans]:
 "[| x ⊑ y; y ⊑ z; x ∈ carrier L; y ∈ carrier L; z ∈ carrier L |] ==> x ⊑ z"
 and le_cong:
 "[| x .= y; z .= w; x ∈ carrier L; y ∈ carrier L; z ∈ carrier L; w ∈ carrier L |] ==> x ⊑ z ←→ y ⊑ w"

definition lless :: "['a, 'a] => bool" (infixl "⊏")
where "x ⊑ L y ↔ x ⊑ L y & x ≠ L y"

2.1.1 The order relation

context weak_partial_order

begin

lemma le_cong_l [intro, trans]:
 "[\ x .= y; y ⊑ z; x ∈ carrier L; y ∈ carrier L; z ∈ carrier L] ⇒
 x ⊑ z"
 by (auto intro: le_cong [THEN iffD2])

lemma le_cong_r [intro, trans]:
 "[\ x ⊑ y; y .= z; x ∈ carrier L; y ∈ carrier L; z ∈ carrier L] ⇒
 x ⊑ z"
 by (auto intro: le_cong [THEN iffD1])

lemma weak_refl [intro, simp]: "[\ x .= y; x ∈ carrier L; y ∈ carrier L] ⇒
 x ⊑ y"
 by (simp add: le_cong_l)

end

lemma weak_llessI:
 fixes R (structure)
 assumes "x ⊑ y" and "¬(x .= y)"
 shows "x ⊏ y"
 using assms unfolding lless_def by simp

lemma lless_imp_le:
 fixes R (structure_le)
 assumes "x ⊏ y"
 shows "x ⊑ y"
 using assms unfolding lless_def by simp

lemma weak_lless_imp_not_eq:
 fixes R (structure)
 assumes "x ⊏ y"
 shows "¬(x .= y)"
 using assms unfolding lless_def by simp

lemma weak_llessE:
 fixes R (structure)
 assumes p: "x ⊏ y" and e: "[x ⊑ y; ¬ (x .= y)] ⇒ P"
 shows "P"
 using p by (blast dest: lless_imp_le weak_lless_imp_not_eq e)

lemma (in weak_partial_order) lless_cong_l [trans]:
 assumes xx': "x .= x'"
and xy: "x' ⊑ y"
and carr: "x ∈ carrier L" "x' ∈ carrier L" "y ∈ carrier L"
shows "x ⊑ y"
using assms unfolding lless_def by (auto intro: trans sym)

lemma (in weak_partial_order) lless_cong_r [trans]:
assumes xy: "x ⊑ y"
and yy': "y .= y'"
and carr: "x ∈ carrier L" "y ∈ carrier L" "y' ∈ carrier L"
shows "x ⊑ y'"
using assms unfolding lless_def by (auto intro: trans sym)

lemma (in weak_partial_order) lless_antisym:
assumes "a ∈ carrier L" "b ∈ carrier L"
and "a ⊑ b" "b ⊑ a"
shows "P"
using assms
by (elim weak_llessE) auto

lemma (in weak_partial_order) lless_trans [trans]:
assumes "a ⊑ b" "b ⊑ c"
and carr[simp]: "a ∈ carrier L" "b ∈ carrier L" "c ∈ carrier L"
shows "a ⊑ c"
using assms unfolding lless_def by (blast dest: le_trans intro: sym)

2.1.2 Upper and lower bounds of a set

definition
Upper :: "[_, 'a set] => 'a set"
where "Upper L A = {u. (ALL x. x ∈ A ∩ carrier L --> x ⊑ L u)} ∩ carrier L"

definition
Lower :: "[_, 'a set] => 'a set"
where "Lower L A = {l. (ALL x. x ∈ A ∩ carrier L --> l ⊑ L x)} ∩ carrier L"

lemma Upper_closed [intro!, simp]:
"Upper L A ⊆ carrier L"
by (unfold Upper_def) clarify

lemma Upper_memD [dest]:
fixes L (structure)
shows "[| u ∈ Upper L A; x ∈ A; A ⊆ carrier L |] ==> x ⊑ u ∧ u ∈ carrier L"
by (unfold Upper_def) blast

lemma (in weak_partial_order) Upper_elemD [dest]:
"[| u ∈ Upper L A; u ∈ carrier L; x ∈ A; A ⊆ carrier L |] ==⇒ x ⊑ u"

unfolding Upper_def elem_def
by (blast dest: sym)

lemma Upper_memI:
fixes L (structure)
shows "[| !! y. y ∈ A ==⇒ y ⊑ x; x ∈ carrier L |] ==⇒ x ∈ Upper L A"
by (unfold Upper_def) blast

lemma (in weak_partial_order) Upper_elemI:
"[| !! y. y ∈ A ==⇒ y ⊑ x; x ∈ carrier L |] ==⇒ x ∈ Upper L A"
unfolding Upper_def by blast

lemma Upper_antimono:
"A ⊆ B ==⇒ Upper L B ⊆ Upper L A"
by (unfold Upper_def) blast

lemma (in weak_partial_order) Upper_is_closed [simp]:
"A ⊆ carrier L ==⇒ is_closed (Upper L A)"
by (rule is_closedI) (blast intro: Upper_memI)+

lemma (in weak_partial_order) Upper_mem_cong:
assumes a'carr: "a' ∈ carrier L" and Acarr: "A ⊆ carrier L"
and aa': "a .= a'"
and aelem: "a ∈ Upper L A"
shows "a' ∈ Upper L A"
proof (rule Upper_memI[OF _ a'carr])
 fix y
 assume yA: "y ∈ A"
 hence "y ⊑ a" by (intro Upper_memD[OF aelem, THEN conjunct1] Acarr)
 also note aa'
 finally show "y ⊑ a'"
 by (simp add: a'carr subsetD[OF Acarr yA] subsetD[OF Upper_closed aelem])
qed

lemma (in weak_partial_order) Upper_cong:
assumes Acarr: "A ⊆ carrier L" and A'carr: "A' ⊆ carrier L"
and AA': "A .= A'"
shows "Upper L A = Upper L A'"
unfolding Upper_def
apply rule
apply (rule, clarsimp) defer 1
apply (rule, clarsimp) defer 1
proof -
 fix x a'
assume carr: "x ∈ carrier L" "a' ∈ carrier L"
 and a'A': "a' ∈ A'"
assume aLxCond[rule_format]: "∀a. a ∈ A ∧ a ∈ carrier L → a ⊑ x"

from AA' and a'A' have "∃a∈A. a' .= a" by (rule set_eqD2)
from this obtain a
 where aA: "a ∈ A"
 and a'a: "a' .= a"
 by auto
note [simp] = subsetD[OF Acarr aA] carr

note a'a
also have "a ⊆ x" by (simp add: aLxCond aA)
finally show "a' ⊆ x" by simp

next
fix x a
assume carr: "x ∈ carrier L" "a ∈ carrier L"
 and aA: "a ∈ A"
assume a'LxCond[rule_format]: "∀a'. a' ∈ A' ∧ a' ∈ carrier L → a'
 ⊑ x"

from AA' and aA have "∃a'∈A'. a .= a'" by (rule set_eqD1)
from this obtain a'
 where a'A': "a' ∈ A'"
 and aa': "a .= a'"
 by auto
note [simp] = subsetD[OF A'carr a'A'] carr

note aa'
also have "a' ⊆ x" by (simp add: a'LxCond a'a')
finally show "a ⊆ x" by simp

qed

lemma Lower_closed [intro!, simp]:
"Lower L A ⊆ carrier L"
by (unfold Lower_def) clarify

lemma Lower_memD [dest]:
fixes L (structure)
shows "[| l ∈ Lower L A; x ∈ A; A ⊆ carrier L |] ==> l ⊑ x ∧ l ∈
carrier L"
by (unfold Lower_def) blast

lemma Lower_memI:
fixes L (structure)
shows "[| !! y. y ∈ A ==> x ⊆ y; x ∈ carrier L |] ==> x ∈ Lower L
A"
by (unfold Lower_def) blast
lemma Lower_antimono:
"A ⊆ B ==> Lower L B ⊆ Lower L A"
by (unfold Lower_def) blast

lemma (in weak_partial_order) Lower_is_closed [simp]:
"A ⊆ carrier L ==> is_closed (Lower L A)"
by (rule is_closedI) (blast intro: Lower_memI dest: sym)+

lemma (in weak_partial_order) Lower_mem_cong:
assumes a'carr: "a' ∈ carrier L" and Acarr: "A ⊆ carrier L"
and aa': "a .= a'"
and aelem: "a ∈ Lower L A"
shows "a' ∈ Lower L A"
using assms Lower_closed[of L A]
by (intro Lower_memI) (blast intro: le_cong_l[OF aa'[symmetric]])

lemma (in weak_partial_order) Lower_cong:
assumes Acarr: "A ⊆ carrier L" and A'carr: "A' ⊆ carrier L"
and AA': "A .= A'"
shows "Lower L A = Lower L A'"
unfolding Lower_def
apply rule
apply clarsimp defer 1
apply clarsimp defer 1
proof -
 fix x a'
 assume carr: "x ∈ carrier L" "a' ∈ carrier L"
 and aA': "a' ∈ A'"
 assume "∀ a. a ∈ A ∧ a ∈ carrier L → x ⊑ a"
 hence aLxCond: "∀ a ∈ A; a ∈ carrier L. x ⊑ a" by fast
 from AA' and aA' have "∃ a ∈ A. a = a'" by (rule set_eqD2)
 from this obtain a
 where aA: "a ∈ A"
 and a'a: "a' .= a"
 by auto
 from aA and subsetD[OF Acarr aA]
 have "x ⊑ a" by (rule aLxCond)
 also note a'a[symmetric]
 finally
 show "x ⊑ a'" by (simp add: carr subsetD[OF Acarr aA])
next
 fix x a
 assume carr: "x ∈ carrier L" "a ∈ carrier L"
 and aA: "a ∈ A"
 assume "∀ a'. a' ∈ A' ∧ a' ∈ carrier L → x ⊑ a'"
 hence a'LxCond: "∀ a'. a ∈ A'; a' ∈ carrier L. x ⊑ a'" by fast+
from AA' and aA have \(" \exists a' \in A'. \ a = a'"\) by (rule set_eqD1)
from this obtain a'
where a'A': "a' \in A'"
and aa': "a = a'"
by auto
from a'A' and subsetD[OF A'carr a'A']
have "x \subseteq a'" by (rule a'LxCond)
also note aa'[symmetric]
finally show "x \subseteq a" by (simp add: carr subsetD[OF A'carr a'A'])
qed

2.1.3 Least and greatest, as predicate

definition least :: "[_, 'a, 'a set] => bool"
where "least L l A ---\(\iff\) A \subseteq carrier L & l \in A & (ALL x : A. l \sqsubseteq_L x)"
definition greatest :: "[_, 'a, 'a set] => bool"
where "greatest L g A ---\(\iff\) A \subseteq carrier L & g \in A & (ALL x : A. x \sqsubseteq_L g)"

Could weaken these to \(l \in carrier L \land l \in A\) and \(g \in carrier L \land g \in A\).

lemma least_closed [intro, simp]:
"least L l A ==> l \in carrier L"
by (unfold least_def) fast

lemma least_mem:
"least L l A ==> l \in A"
by (unfold least_def) fast

lemma (in weak_partial_order) weak_least_unique:
"[| least L x A; least L y A |] ==> x = y"
by (unfold least_def) blast

lemma least_le:
fixes L (structure)
shows "[| least L x A; a \in A |] ==> x \sqsubseteq a"
by (unfold least_def) fast

lemma (in weak_partial_order) least_cong:
"[| x = x'; x \in carrier L; x' \in carrier L; is_closed A |] ==> least L x A = least L x' A"
by (unfold least_def) (auto dest: sym)

least is not congruent in the second parameter for A {.=} A'

lemma (in weak_partial_order) least_Upper_cong_l:
assumes "x = x'"

and "x ∈ carrier L" "x’ ∈ carrier L"
and "A ⊆ carrier L"
shows "least L x (Upper L A) = least L x’ (Upper L A)"
apply (rule least_cong) using assms by auto

lemma (in weak_partial_order) least_Upper_cong_r:
 assumes Acarrs: "A ⊆ carrier L" "A’ ⊆ carrier L"
 and AA’: "A {.=} A’"
 shows "least L x (Upper L A) = least L x (Upper L A’)"
apply (subgoal_tac "Upper L A = Upper L A’", simp)
by (rule Upper_cong) fact+

lemma least_UpperI:
fixes L (structure)
assumes above: "!! x. x ∈ A ==> x ⊑ s"
and below: "!! y. y ∈ Upper L A ==> s ⊑ y"
and L: "A ⊆ carrier L" "s ∈ carrier L"
shows "least L s (Upper L A)"
proof -
 have "Upper L A ⊆ carrier L" by simp
 moreover from above L have "s ∈ Upper L A" by (simp add: Upper_def)
 moreover from below have "ALL x : Upper L A. s ⊑ x" by fast
 ultimately show ?thesis by (simp add: least_def)
qed

lemma least_Upper_above:
fixes L (structure)
shows "[| least L s (Upper L A); x ∈ A; A ⊆ carrier L |] ==> x ⊑ s"
by (unfold least_def) blast

lemma greatest_closed [intro, simp]:
"greatest L l A ==> l ∈ carrier L"
by (unfold greatest_def) fast

lemma greatest_mem:
"greatest L l A ==> l ∈ A"
by (unfold greatest_def) fast

lemma (in weak_partial_order) weak_greatest_unique:
"[| greatest L x A; greatest L y A |] ==> x {.=} y"
by (unfold greatest_def) blast

lemma greatest_le:
fixes L (structure)
shows "[| greatest L x A; a ∈ A |] ==> a ⊑ x"
by (unfold greatest_def) fast

lemma (in weak_partial_order) greatest_cong:
"[| x {.=} x’; x ∈ carrier L; x’ ∈ carrier L; is_closed A |] ==>
greatest \(L \times A = \text{greatest} \ L \times' A' \)
by (unfold greatest_def) (auto dest: sym)
greatest is not congruent in the second parameter for \(A \{.=\} A' \)

Lemma (in weak_partial_order) greatest_Lower_cong_l:
assumes "\(x \ .= \ x' \)"
and "\(x \in \text{carrier} \ L \) "\(x' \in \text{carrier} \ L \)"
and "\(A \subseteq \text{carrier} \ L \)"
shows "\(\text{greatest} \ L \times \ (\text{Lower} \ L \ A) = \text{greatest} \ L \times' \ (\text{Lower} \ L \ A) \)"
apply (rule greatest_cong) using assms by auto

Lemma (in weak_partial_order) greatest_Lower_cong_r:
assumes Acarrs: "\(A \subseteq \text{carrier} \ L \) "\(A' \subseteq \text{carrier} \ L \)"
and AA': "\(A \{.=\} A' \)"
shows "\(\text{greatest} \ L \times \ (\text{Lower} \ L \ A) = \text{greatest} \ L \times \ (\text{Lower} \ L \ A') \)"
apply (subgoal_tac "\(\text{Lower} \ L \ A = \text{Lower} \ L \ A' \)", simp)
by (rule Lower_cong) fact+

Lemma greatest_LowerI:
fixes \(L \) (structure)
assumes below: "!! x. x \in A \Longrightarrow i \subseteq x"
and above: "!! y. y \in \text{Lower} \ L \ A \Longrightarrow y \subseteq i"
and \(L \): "\(A \subseteq \text{carrier} \ L \) "\(i \in \text{carrier} \ L \)"
shows "\(\text{greatest} \ L \ i \ (\text{Lower} \ L \ A) \)"
proof -
have "\(\text{Lower} \ L \ A \subseteq \text{carrier} \ L \)" by simp
moreover from below \(L \) have "\(i \in \text{Lower} \ L \ A \)" by (simp add: Lower_def)
moreover from above have "\(\text{ALL} \ x: \text{Lower} \ L \ A. \ x \subseteq i \)" by fast
ultimately show ?thesis by (simp add: greatest_def) qed

Lemma greatest_Lower_below:
fixes \(L \) (structure)
shows "\([\{ \text{greatest} \ L \ i \ (\text{Lower} \ L \ A); \ x \in A; \ A \subseteq \text{carrier} \ L \} \] \Longrightarrow i \subseteq x \)"
by (unfold greatest_def) blast

Supremum and infimum

Definition
\(\text{sup} :: [_, 'a set] \Rightarrow 'a \) ("\(\bigcup _ \)" [90] 90)
where "\(\bigcup_L A = (\text{SOME} \ x. \text{least} \ L \ x \ (\text{Upper} \ L \ A)) \)"

Definition
\(\text{inf} :: [_, 'a set] \Rightarrow 'a \) ("\(\bigcap _ \)" [90] 90)
where "\(\bigcap_L A = (\text{SOME} \ x. \text{greatest} \ L \ x \ (\text{Lower} \ L \ A)) \)"

Definition
\(\text{join} :: [_, 'a, 'a] \Rightarrow 'a \) (infixl "\(\sqcup \)" 65)
where "\(x \sqcup_L y = \bigcup_L \{x, y\} \)"
definition
 \texttt{meet} :: \(\text{"[_, \'a, \'a] \Rightarrow \'a" (infixl \"\cap\" 70)}\)
 where \(x \cap_L y = \prod_L\{x, y\}\)

2.2 Lattices
locale weak_upper_semilattice = weak_partial_order +
 assumes sup_of_two_exists:
 \(\\text{"[| x \in carrier L; y \in carrier L |] \Rightarrow EX s. least L s (Upper L \{x, y\})"}\)
locale weak_lower_semilattice = weak_partial_order +
 assumes inf_of_two_exists:
 \(\text{"[| x \in carrier L; y \in carrier L |] \Rightarrow EX s. greatest L s (Lower L \{x, y\})"}\)
locale weak_lattice = weak_upper_semilattice + weak_lower_semilattice

2.2.1 Supremum
lemma (in weak_upper_semilattice) joinI:
 \(\text{"[| \forall l. least L l (Upper L \{x, y\}) \Rightarrow P l; x \in carrier L; y \in carrier L |] \Rightarrow P (x \sqcup y)"}\)
proof (unfold join_def sup_def)
 assume L: \"x \in carrier L" \"y \in carrier L"
 and P: \"\\text{"[| x \in carrier L; y \in carrier L |] \Rightarrow P l"}\)
 with sup_of_two_exists obtain s where \"least L s (Upper L \{x, y\})\"
 by fast
 with L show \"P (SOME l. least L l (Upper L \{x, y\}))\"
 by (fast intro: someI2 P)
qed

lemma (in weak_upper_semilattice) join_closed [simp]:
 \(\text{"[| x \in carrier L; y \in carrier L |] \Rightarrow x \sqcup y \in carrier L"}\)
by (rule joinI) (rule least_closed)

lemma (in weak_upper_semilattice) join_cong_l:
 assumes carr: \"x \in carrier L" \"x' \in carrier L" \"y \in carrier L"
 and xx': \"x .= x'\"
 shows \"x \sqcup y .= x' \sqcup y"\)
proof (rule joinI, rule joinI)
 fix a b
 from xx' carr
 have seq: \"\{x, y\} \{.=\} \{x', y\}\" by (rule set_eq_pairI)
 assume leasta: \"least L a (Upper L \{x, y\})\"
 assume "least L b (Upper L \{x', y\})"
 with carr

have leastb: "least L b (Upper L \{x, y\})"
 by (simp add: least_Upper_cong_r[OF _ _ seq])

from leasta leastb
 show "a .= b" by (rule weak_least_unique)
qed (rule carr)+

lemma (in weak_upper_semilattice) join_cong_r:
assumes carr: "x \in carrier L" "y \in carrier L" "y' \in carrier L"
 and yy': "y .|= y'
shows "x \sqcup y .= x \sqcup y'"
proof (rule joinI, rule joinI)
 fix a b
 have "\{x, y\} = \{y, x\}" by fast
 also from carr yy'
 have "\{y, x\} = \{y', x\}" by (intro set_eq_pairI)
 also have "\{y', x\} = \{x, y'\}" by fast
 finally
 have seq: "\{x, y\} = \{x, y'\}".
 assume leasta: "least L a (Upper L \{x, y\})"
 assume "least L b (Upper L \{x, y'\})"
 with carr
 have leastb: "least L b (Upper L \{x, y\})"
 by (simp add: least_Upper_cong_r[OF _ _ seq])
 from leasta leastb
 show "a .= b" by (rule weak_least_unique)
qed (rule carr)+

lemma (in weak_partial_order) sup_of_singletonI:
"x \in carrier L ==> least L x (Upper L \{x\})"
by (rule least_UpperI) auto

lemma (in weak_partial_order) weak_sup_of_singleton [simp]:
"x \in carrier L ==> \bigsqcup \{x\} .= x"
unfolding sup_def
by (rule someI2) (auto intro: weak_least_unique sup_of_singletonI)

lemma (in weak_partial_order) sup_of_singleton_closed [simp]:
"x \in carrier L ==\bigsqcup \{x\} \in carrier L"
unfolding sup_def
by (rule someI2) (auto intro: sup_of_singletonI)

Condition on A: supremum exists.

lemma (in weak_upper_semilattice) sup_insertI:
"[| !!s. least L s (Upper L \{insert x A\}) ==> P s; least L a (Upper L A); x \in carrier L; A \subseteq carrier L |]
==> P (\bigsqcup (insert x A))"
proof (unfold sup_def)
assume L: "x ∈ carrier L" "A ⊆ carrier L"
 and P: "!!l. least L l (Upper L (insert x A)) ==> P l"
 and least_a: "least L a (Upper L A)"
from L least_a have La: "a ∈ carrier L" by simp
from L sup_of_two_exists least_a
obtain s where least_s: "least L s (Upper L {a, x})" by blast
show "P (SOME l. least L l (Upper L (insert x A)))"
 proof (rule someI2)
 show "least L s (Upper L (insert x A))"
 proof (rule least_UpperI)
 fix z
 assume "z ∈ insert x A"
 then show "z ⊑ s"
 proof
 assume "z = x" then show ?thesis
 by (simp add: least_Upper_above [OF least_s] L La)
 next
 assume "z ∈ A"
 with L least_s least_a show ?thesis
 by (rule_tac le_trans [where y = a]) (auto dest: least_Upper_above)
 qed
 qed (rule Upper_closed [THEN subsetD, OF y])
 next
 fix y
 assume y: "y ∈ Upper L (insert x A)"
 show "s ⊑ y"
 proof (rule least_le [OF least_s], rule Upper_memI)
 fix z
 assume z: "z ∈ {a, x}"
 then show "z ⊑ y"
 proof (rule_tac y')
 have y': "y ∈ Upper L A"
 apply (rule subsetD [where A = "Upper L (insert x A)"])
 apply (rule Upper_antimono)
 apply blast
 done
 assume "z = a"
 with y' least_a show ?thesis by (fast dest: least_le)
 next
 assume "z ∈ {x}"
 with y L show ?thesis by blast
 qed (rule Upper_closed [THEN subsetD, OF y])
 qed
 qed (rule P)
qed

lemma (in weak_upper_semilattice) finite_sup_least:
 "[
 finite A; A ⊆ carrier L; A ≠ {} |
] ==> least L (⨆ A) (Upper L A)"
proof (induct set: finite)
 case empty
 then show ?case by simp
next
case (insert x A)
 show ?case
 proof (cases "A = {}")
 case True
 with insert show ?thesis
 by simp (simp add: least_cong [OF weak_sup_of_singleton] sup_of_singletonI)
 next
 case False
 with insert have "least L (⨆ A) (Upper L A)" by simp
 with _ show ?thesis
 by (rule sup_insertI) (simp_all add: insert [simplified])
 qed
next
case False
 with insert have "least L (⨆ A) (Upper L A)" by simp
 with _ show ?thesis
 by (rule sup_insertI) (simp_all add: insert [simplified])
qed

lemma (in weak_upper_semilattice) finite_sup_insertI:
 assumes P: "!!l. least L l (Upper L (insert x A)) ==> P l"
 and xA: "finite A" "x ∈ carrier L" "A ⊆ carrier L"
 shows "P (⨆ (insert x A))"
proof (cases "A = {}")
 case True with P and xA show ?thesis
 by (simp add: finite_sup_least)
next
case False with P and xA show ?thesis
 by (simp add: finite_sup_insertI finite_sup_least)
qed

lemma (in weak_upper_semilattice) finite_sup_closed [simp]:
 "[
 finite A; A ⊆ carrier L; A ≠ {} |
] ==＞ ⨆ A ∈ carrier L"
proof (induct set: finite)
 case empty then show ?case by simp
next
case insert then show ?case
 by - (rule finite_sup_insertI, simp_all)
qed

lemma (in weak_upper_semilattice) join_left:
 "[| x ∈ carrier L; y ∈ carrier L |
] ==＞ x ⊑ x ⊔ y"
by (rule joinI [folded join_def]) (blast dest: least_mem)

lemma (in weak_upper_semilattice) join_right:
lemma (in weak_upper_semilattice) sup_of_two_least:
"[| x ∈ carrier L; y ∈ carrier L |] ==> least L (⊔{x, y}) (Upper L {x, y})"
proof (unfold sup_def)
 assume L: "x ∈ carrier L" "y ∈ carrier L"
 with sup_of_two_exists obtain s where "least L s (Upper L {x, y})"
 by fast
 with L show "least L (SOME z. least L z (Upper L {x, y})) (Upper L {x, y})"
 by (fast intro: someI2 weak_least_unique)
qed

lemma (in weak_upper_semilattice) join_le:
 assumes sub: "x ⊑ z" "y ⊑ z"
 and x: "x ∈ carrier L" and y: "y ∈ carrier L" and z: "z ∈ carrier L"
 shows "x ⊔ y ⊑ z"
proof (rule joinI [OF _ x y])
 fix s
 assume "least L s (Upper L {x, y})"
 with sub z show "s ⊑ z" by (fast elim: least_le intro: Upper_memI)
qed

lemma (in weak_upper_semilattice) weak_join_assoc_lemma:
 assumes L: "x ∈ carrier L" "y ∈ carrier L" "z ∈ carrier L"
 shows "x ⊔ (y ⊔ z) .= ⨆{x, y, z}"
proof (rule finite_sup_insertI)
 — The textbook argument in Jacobson I, p 457
 fix s
 assume sup: "least L s (Upper L {x, y, z})"
 show "x ⊔ (y ⊔ z) .= s"
 proof (rule weak_le_antisym)
 from sup L show "x ⊔ (y ⊔ z) ⊑ s"
 by (fastforce intro!: join_le elim: least_Upper_above)
 next
 from sup L show "s ⊑ x ⊔ (y ⊔ z)"
 by (erule_tac least_le)
 (blast intro!: Upper_memI intro: le_trans join_left join_right join_closed)
 qed
 qed (simp_all add: L least_closed [OF sup])
qed (simp_all add: L)

Commutativity holds for =.

lemma join_comm:
 fixes L (structure)
 shows "x ⊔ y = y ⊔ x"
 by (unfold join_def) (simp add: insert_commute)
lemma (in weak_upper_semilattice) weak_join_assoc:
assumes L: "x ∈ carrier L" "y ∈ carrier L" "z ∈ carrier L"
shows "(x ⊔ y) ⊔ z .= x ⊔ (y ⊔ z)"
proof -

have "(x ⊔ y) ⊔ z = z ⊔ (x ⊔ y)" by (simp only: join_comm)
also from L have "... .= {z, x, y}" by (simp add: weak_join_assoc_lemma)
also from L have "... = x ⊔ (y ⊔ z)" by (simp add: weak_join_assoc_lemma [symmetric])
finally show ?thesis by (simp add: L)
qed

2.2.2 Infimum

lemma (in weak_lower_semilattice) meetI:
"[| !!i. greatest L i (Lower L {x, y}) ==> P i;
x ∈ carrier L; y ∈ carrier L |] ==> P (x ⊓ y)"
proof (unfold meet_def inf_def)
assume L: "x ∈ carrier L" "y ∈ carrier L"
and P: "!!g. greatest L g (Lower L {x, y}) ==> P g"
with inf_of_two_exists obtain i where "greatest L i (Lower L {x, y})"
by fast
with L show "P (SOME g. greatest L g (Lower L {x, y}))"
by (fast intro: someI2 weak_greatest_unique P)
qed

lemma (in weak_lower_semilattice) meet_closed [simp]:
"[| x ∈ carrier L; y ∈ carrier L |] ==> x ⊓ y ∈ carrier L"
by (rule meetI) (rule greatest_closed)

lemma (in weak_lower_semilattice) meet_cong_l:
assumes carr: "x ∈ carrier L" "x' ∈ carrier L" "y ∈ carrier L"
and xx': "x .= x'"
shows "x ⊓ y .= x' ⊓ y"
proof (rule meetI, rule meetI)
fix a b
from xx' carr have seq: "{x, y} {.=} {x', y}" by (rule set_eq_pairI)
assume greatesta: "greatest L a (Lower L {x, y})"
assume "greatest L b (Lower L {x', y})"
with carr have greatestb: "greatest L b (Lower L {x, y})"
by (simp add: greatest_Lower_cong_r[OF _ _ seq])
from greatesta greatestb
show "a .= b" by (rule weak_greatest_unique)
qed (rule carr)+

lemma (in weak_lower_semilattice) meet_cong_r:
 assumes carr: "x ∈ carrier L" "y ∈ carrier L" "y' ∈ carrier L" and yy': "y .= y'"
 shows "x ∩ y .= x ∩ y'"
proof (rule meetI, rule meetI)
 fix a b
 have "\{x, y\} = \{y, x\}" by fast
 also from carr yy'
 have "\{y, x\} \{.=\} \{y', x\}" by (intro set_eq_pairI)
 also have "\{y', x\} = \{x, y'\}" by fast
 finally
 have seq: "\{x, y\} \{.=\} \{x, y'\}".
 assume greatesta: "greatest L a (Lower L \{x, y\})"
 assume "greatest L b (Lower L \{x, y\})" with carr
 have greatestb: "greatest L b (Lower L \{x, y\})" by (simp add: greatest_Lower_cong_r[OF _ _ seq])
 from greatesta greatestb
 show "a .= b" by (rule weak_greatest_unique)
qed (rule carr)+

lemma (in weak_partial_order) inf_of_singletonI:
 "x ∈ carrier L ==> greatest L x (Lower L \{x\})"
by (rule greatest_LowerI) auto

lemma (in weak_partial_order) weak_inf_of_singleton [simp]:
 "x ∈ carrier L ==⇒ ∩\{x\} .= x"
unfolding inf_def
by (rule someI2) (auto intro: weak_greatest_unique inf_of_singletonI)

lemma (in weak_partial_order) inf_of_singleton_closed:
 "x ∈ carrier L ==⇒ ∩\{x\} ∈ carrier L"
unfolding inf_def
by (rule someI2) (auto intro: inf_of_singletonI)

Condition on A: infimum exists.

lemma (in weak_lower_semilattice) inf_insertI:
 "[| !!i. greatest L i (Lower L (insert x A)) ==> P i; greatest L a (Lower L A); x ∈ carrier L; A ⊆ carrier L |] ==⇒ P (∩\{insert x A\})"
proof (unfold inf_def)
 assume L: "x ∈ carrier L" "A ⊆ carrier L"
 and P: "!!g. greatest L g (Lower L (insert x A)) ==> P g"
 and greatest_a: "greatest L a (Lower L A)"
from L greatest_a have La: "a ∈ carrier L" by simp
from L inf_of_two_exists greatest_a
obtain i where greatest_i: "greatest L i (Lower L {a, x})" by blast
show "P (SOME g. greatest L g (Lower L (insert x A)))"
proof (rule someI2)
 show "greatest L i (Lower L (insert x A))"
 proof (rule greatest_LowerI)
 fix z
 assume "z ∈ insert x A"
 then show "i ⊑ z"
 proof
 assume "z = x" then show ?thesis
 by (simp add: greatest_Lower_below [OF greatest_i] L La)
 next
 assume "z ∈ A"
 with L greatest_i greatest_a show ?thesis
 by (rule_tac le_trans [where y = a]) (auto dest: greatest_Lower_below)
 qed
next
 fix y
 assume y: "y ∈ Lower L (insert x A)"
 show "y ⊑ i"
 proof (rule greatest_le [OF greatest_i], rule Lower_memI)
 fix z
 assume z: "z ∈ {a, x}"
 then show "y ⊑ z"
 proof
 have y': "y ∈ Lower L A"
 apply (rule subsetD [where A = "Lower L (insert x A)"])
 apply (rule Lower_antimono)
 apply blast
 done
 assume "z = a"
 with y' greatest_a show ?thesis by (fast dest: greatest_le)
 next
 assume "z ∈ {x}"
 with y L show ?thesis by blast
 qed
 qed (rule Lower_closed [THEN subsetD, OF y])
next
 from L show "insert x A ⊆ carrier L" by simp
 from greatest_i show "i ∈ carrier L" by simp
 qed
 qed (rule P)
qed

lemma (in weak_lower_semilattice) finite_inf_greatest:
 "[| finite A; A ⊆ carrier L; A ≠ {} |] ==> greatest L (⨅A) (Lower
proof (induct set: finite)

case empty then show ?case by simp

next

case (insert x A)

show ?case

proof (cases "A = {}"")

case True

with insert show ?thesis

by simp (simp add: greatest_cong [OF weak_inf_of_singleton]
inf_of_singleton_closed inf_of_singletonI)

next

case False

from insert show ?thesis

proof (rule_tac inf_insertI)

from False insert show "greatest L (∩) (Lower L A)" by simp

qed simp_all

qed

lemma (in weak_lower_semilattice) finite_inf_insertI:

assumes P: "!!i. greatest L i (Lower L (insert x A)) ==> P i"

and xA: "finite A" "x ∈ carrier L" "A ⊆ carrier L"

shows "P (∩) (insert x A)"

proof (cases "A = {}")

case True with P and xA show ?thesis

by (simp add: finite_inf_greatest)

next

case False with P and xA show ?thesis

by (simp add: inf_insertI finite_inf_greatest)

qed

lemma (in weak_lower_semilattice) finite_inf_closed [simp]:

"[| finite A; A ⊆ carrier L; A ≠ {} |] ==> (∩)A ∈ carrier L"

proof (induct set: finite)

case empty then show ?case by simp

next

case insert then show ?case

by (rule_tac finite_inf_insertI) (simp_all)

qed

lemma (in weak_lower_semilattice) meet_left:

"[| x ∈ carrier L; y ∈ carrier L |] ==> x ∩ y ⊆ x"

by (rule meetI [folded meet_def]) (blast dest: greatest_mem)

lemma (in weak_lower_semilattice) meet_right:

"[| x ∈ carrier L; y ∈ carrier L |] ==> x ∩ y ⊆ y"

by (rule meetI [folded meet_def]) (blast dest: greatest_mem)
lemma (in weak_lower_semilattice) inf_of_two_greatest:
"[| x ∈ carrier L; y ∈ carrier L |] ==>
greatest L (⨅ {x, y}) (Lower L {x, y})"
proof (unfold inf_def)
 assume L: "x ∈ carrier L" "y ∈ carrier L"
 with inf_of_two_exists obtain s where "greatest L s (Lower L {x, y})"
 by fast
 with L
 show "greatest L (SOME z. greatest L z (Lower L {x, y})) (Lower L {x, y})"
 by (fast intro: someI2 weak_greatest_unique)
qed

lemma (in weak_lower_semilattice) meet_le:
 assumes sub: "z ⊑ x" "z ⊑ y"
 and x: "x ∈ carrier L"
 and y: "y ∈ carrier L"
 and z: "z ∈ carrier L"
 shows "z ⊑ x ∩ y"
proof (rule meetI [OF _ x y])
 fix i
 assume "greatest L i (Lower L {x, y})"
 with sub z show "z ⊑ i" by (fast elim: greatest_le intro: Lower_memI)
qed

lemma (in weak_lower_semilattice) weak_meet_assoc_lemma:
 assumes L: "x ∈ carrier L" "y ∈ carrier L" "z ∈ carrier L"
 shows "x ∩ (y ∩ z) .= d{x, y, z}"
proof (rule finite_inf_insertI)
 fix i
 assume inf: "greatest L i (Lower L {x, y, z})"
 show "x ∩ (y ∩ z) .= i"
 proof (rule weak_le_antisym)
 from inf L
 show "i ⊑ x ∩ (y ∩ z)" by (fastforce intro!: meet_le elim: greatest_Lower_below)
 next
 from inf L
 show "x ∩ (y ∩ z) ⊑ i" by (erule_tac greatest_le)
 (blast intro!: Lower_memI intro: le_trans meet_left meet_right meet_closed)
 qed (simp_all add: L greatest_closed [OF inf])
 qed (simp_all add: L)

lemma meet_comm:
 fixes L (structure)
 shows "x ∩ y = y ∩ x"
 by (unfold meet_def) (simp add: insert_commute)

lemma (in weak_lower_semilattice) weak_meet_assoc:
assumes L: "x ∈ carrier L" "y ∈ carrier L" "z ∈ carrier L"
shows "(x ∩ y) ∩ z = x ∩ (y ∩ z)"
proof -
 have "(x ∩ y) ∩ z = z ∩ (x ∩ y)" by (simp only: meet_comm)
 also from L have "... = ∩ {z, x, y}" by (simp add: weak_meet_assoc_lemma)
 also from L have "... = x ∩ (y ∩ z)" by (simp add: weak_meet_assoc_lemma [symmetric])
 finally show ?thesis by (simp add: L)
qed

2.3 Total Orders
locale weak_total_order = weak_partial_order +
 assumes total: "[| x ∈ carrier L; y ∈ carrier L |] ==> x ⊑ y | y ⊑ x"
Introduction rule: the usual definition of total order
lemma (in weak_partial_order) weak_total_orderI:
 assumes total: "!!x y. [| x ∈ carrier L; y ∈ carrier L |] ==> x ⊑ y | y ⊑ x"
 shows "weak_total_order L"
 by default (rule total)
Total orders are lattices.
locale weak_total_order < weak: weak_lattice
proof
 fix x y
 assume L: "x ∈ carrier L" "y ∈ carrier L"
 show "EX s. least L s (Upper L {x, y})"
 proof -
 note total L
 moreover
 { assume "x ⊆ y"
 with L have "least L y (Upper L {x, y})"
 by (rule_tac least_UpperI) auto }
 moreover
 { assume "y ⊆ x"
 with L have "least L x (Upper L {x, y})"
 by (rule_tac least_UpperI) auto }
 ultimately show ?thesis by blast
 qed
next
 fix x y
assume \(L \): \(x \in \text{carrier } L \) \(y \in \text{carrier } L \)
show \(\exists i. \text{greatest } L i (\text{Lower } L \{x, y\}) \)
proof
- note total \(L \)
moreover
{ assume \(y \subseteq x \)
with \(L \) have \(\text{greatest } L y (\text{Lower } L \{x, y\}) \)
 by (rule_tac greatest_LowerI) auto
}
moreover
{ assume \(x \subseteq y \)
with \(L \) have \(\text{greatest } L x (\text{Lower } L \{x, y\}) \)
 by (rule_tac greatest_LowerI) auto
}
ultimately show ?thesis by blast
qed

2.4 Complete Lattices
locale weak_complete_lattice = weak_lattice +
assumes sup_exists: \(\{\mid A \subseteq \text{carrier } L \}\Rightarrow \exists s. \text{least } L s (\text{Upper } L A) \)
and inf_exists: \(\{\mid A \subseteq \text{carrier } L \}\Rightarrow \exists i. \text{greatest } L i (\text{Lower } L A) \)

Introduction rule: the usual definition of complete lattice
lemma (in weak_partial_order) weak_complete_latticeI:
assumes sup_exists: \(\{\mid A \subseteq \text{carrier } L \}\Rightarrow \exists s. \text{least } L s (\text{Upper } L A) \)
and inf_exists: \(\{\mid A \subseteq \text{carrier } L \}\Rightarrow \exists i. \text{greatest } L i (\text{Lower } L A) \)
shows \(\text{weak_complete_lattice } L \)
by default (auto intro: sup_exists inf_exists)

definition
top ::
where "\L = \sup L (\text{carrier } L)"

definition
bottom ::
where "\L = \inf L (\text{carrier } L)"

lemma (in weak_complete_lattice) supI:
\(\{\mid \text{all } L l (\text{Upper } L A) \Rightarrow P l; A \subseteq \text{carrier } L \}\Rightarrow P (\bigcup A) \)
proof (unfold sup_def)
assume L: "A ⊆ carrier L"
and P: "!!l. least L l (Upper L A) ==> P l"
with sup_exists obtain s where "least L s (Upper L A)" by blast
with L show "P (SOME l. least L l (Upper L A))"
by (fast intro: someI2 weak_least_unique P)
qed

lemma (in weak_complete_lattice) sup_closed [simp]:
"A ⊆ carrier L ==> ⨆A ∈ carrier L"
by (rule supI) simp_all

lemma (in weak_complete_lattice) top_closed [simp, intro]:
"⊤ ∈ carrier L"
by (unfold top_def) simp

lemma (in weak_complete_lattice) infI:
"[| !!i. greatest L i (Lower L A) ==> P i; A ⊆ carrier L |
===> P (⨄A)]"
proof (unfold inf_def)
assume L: "A ⊆ carrier L"
and P: "!!i. greatest L i (Lower L A) ==> P i"
with inf_exists obtain s where "greatest L s (Lower L A)" by blast
with L show "P (SOME l. greatest L l (Lower L A))"
by (fast intro: someI2 weak_greatest_unique P)
qed

lemma (in weak_complete_lattice) inf_closed [simp]:
"A ⊆ carrier L ==> ⨅A ∈ carrier L"
by (rule infI) simp_all

lemma (in weak_complete_lattice) bottom_closed [simp, intro]:
"⊥ ∈ carrier L"
by (unfold bottom_def) simp

Jacobson: Theorem 8.1

lemma Lower_empty [simp]:
"Lower L {} = carrier L"
by (unfold Lower_def) simp

lemma Upper_empty [simp]:
"Upper L {} = carrier L"
by (unfold Upper_def) simp

theorem (in weak_partial_order) weak_complete_lattice_criterion1:
assumes top_exists: "EX g. greatest L g (carrier L)"
and inf_exists:
"!!A. [| A ⊆ carrier L; A ~= {} |] ==> EX i. greatest L i (Lower L A)"

shows "weak_complete_lattice L"
proof (rule weak_complete_latticeI)
 from top_exists obtain top where top: "greatest L top (carrier L)"
 ..
 fix A
 assume L: "A ⊆ carrier L"
 let ?B = "Upper L A"
 from L top have "top ∈ ?B" by (fast intro!: Upper_memI intro: greatest_le)
 then have B_non_empty: "?B ≠ {}" by fast
 have B_L: "?B ⊆ carrier L" by simp
 from inf_exists [OF B_L B_non_empty]
 obtain b where b_inf_B: "greatest L b (Lower L ?B)" ..
 have "least L b (Upper L A)"
 apply (rule least_UpperI)
 apply (rule greatest_le [where A = "Lower L ?B"])
 apply (rule b_inf_B)
 apply (rule Lower_memI)
 apply (erule Upper_memD [THEN conjunct1])
 apply assumption
 apply (rule L)
 apply (fast intro: L [THEN subsetD])
 apply (erule greatest_Lower_below [OF b_inf_B])
 apply simp
 apply (rule L)
 done
 then show "EX s. least L s (Upper L A)" ..
next
 fix A
 assume L: "A ⊆ carrier L"
 show "EX i. greatest L i (Lower L A)"
 proof (cases "A = {}")
 case True then show ?thesis
 by (simp add: top_exists)
 next
 case False with L show ?thesis
 by (rule inf_exists)
 qed
 qed

2.5 Orders and Lattices where eq is the Equality

locale partial_order = weak_partial_order +
 assumes eq_is_equal: "op .= = op ="
begin

declare weak_le_antisym [rule del]

lemma le_antisym [intro]:
"[x ⊑ y; y ⊑ x; x ∈ carrier L; y ∈ carrier L] ==> x = y"
using weak_le_antisym unfolding eq_is_equal .

lemma lless_eq:
"x ⊑ y <-> x ⊑ y & x ≠ y"
unfolding lless_def by (simp add: eq_is_equal)

lemma lless_asym:
assumes "a ∈ carrier L" "b ∈ carrier L"
and "a ⊑ b" "b ⊑ a"
shows "P"
using assms unfolding lless_eq by auto
end

Least and greatest, as predicate

lemma (in partial_order) least_unique:
"[least L x A; least L y A] ==> x = y"
using weak_least_unique unfolding eq_is_equal .

lemma (in partial_order) greatest_unique:
"[greatest L x A; greatest L y A] ==> x = y"
using weak_greatest_unique unfolding eq_is_equal .

Lattices

locale upper_semilattice = partial_order +
assumes sup_of_two_exists:
"[x ∈ carrier L; y ∈ carrier L] ==> EX s. least L s (Upper L {x, y})"

sublocale upper_semilattice < weak: weak_upper_semilattice
by default (rule sup_of_two_exists)

locale lower_semilattice = partial_order +
assumes inf_of_two_exists:
"[x ∈ carrier L; y ∈ carrier L] ==> EX s. greatest L s (Lower L {x, y})"

sublocale lower_semilattice < weak: weak_lower_semilattice
by default (rule inf_of_two_exists)

locale lattice = upper_semilattice + lower_semilattice

Supremum

declare (in partial_order) weak_sup_of_singleton [simp del]

lemma (in partial_order) sup_of_singleton [simp]:
x ∈ carrier L ==> ⊔{x} = x
using weak_sup_of_singleton unfolding eq_is_equal .
lemma (in upper_semilattice) join_assoc_lemma:
 assumes L: "x ∈ carrier L" "y ∈ carrier L" "z ∈ carrier L"
 shows "x ∪ (y ∪ z) = ∪\{x, y, z\}"
 using weak_join_assoc_lemma L unfolding eq_is_equal.

lemma (in upper_semilattice) join_assoc:
 assumes L: "x ∈ carrier L" "y ∈ carrier L" "z ∈ carrier L"
 shows "(x ∪ y) ∪ z = x ∪ (y ∪ z)"
 using weak_join_assoc L unfolding eq_is_equal.

Infimum

declare (in partial_order) weak_inf_of_singleton [simp del]

lemma (in partial_order) inf_of_singleton [simp]:
 "x ∈ carrier L ==> \{x\} = x"
 using weak_inf_of_singleton unfolding eq_is_equal.

Condition on A: infimum exists.

lemma (in lower_semilattice) meet_assoc_lemma:
 assumes L: "x ∈ carrier L" "y ∈ carrier L" "z ∈ carrier L"
 shows "x ∩ (y ∩ z) = \{x, y, z\}"
 using weak_meet_assoc_lemma L unfolding eq_is_equal.

lemma (in lower_semilattice) meet_assoc:
 assumes L: "x ∈ carrier L" "y ∈ carrier L" "z ∈ carrier L"
 shows "(x ∩ y) ∩ z = x ∩ (y ∩ z)"
 using weak_meet_assoc L unfolding eq_is_equal.

Total Orders

locale total_order = partial_order +
 assumes total_order_total: "| x ∈ carrier L; y ∈ carrier L | ==>
 x ⊑ y | y ⊑ x"

sublocale total_order < weak: weak_total_order
 by default (rule total_order_total)

Introduction rule: the usual definition of total order

lemma (in partial_order) total_orderI:
 assumes total: "!!x y. [| x ∈ carrier L; y ∈ carrier L |] ==>
 x ⊑ y | y ⊑ x"

 shows "total_order L"
 by default (rule total)

Total orders are lattices.

sublocale total_order < weak: lattice
 by default (auto intro: sup_of_two_exists inf_of_two_exists)

Complete lattices
locale complete_lattice = lattice +
assumes sup_exists:
 "[| A ⊆ carrier L |] ==> EX s. least L s (Upper L A)"
and inf_exists:
 "[| A ⊆ carrier L |] ==> EX i. greatest L i (Lower L A)"

sublocale complete_lattice < weak: weak_complete_lattice
by default (auto intro: sup_exists inf_exists)

Introduction rule: the usual definition of complete lattice

lemma (in partial_order) complete_latticeI:
assumes sup_exists:
 "!!A. [| A ⊆ carrier L |] ==> EX s. least L s (Upper L A)"
and inf_exists:
 "!!A. [| A ⊆ carrier L |] ==> EX i. greatest L i (Lower L A)"
says "complete_lattice L"
by default (auto intro: sup_exists inf_exists)

theorem (in partial_order) complete_lattice_criterion1:
assumes top_exists: "EX g. greatest L g (carrier L)"
and inf_exists:
 "!!A. [| A ⊆ carrier L; A ~= {} |] ==> EX i. greatest L i (Lower L A)"
says "complete_lattice L"
proof (rule complete_latticeI)
 from top_exists obtain top where top: "greatest L top (carrier L)"

 fix A
 assume L: "A ⊆ carrier L"
 let ?B = "Upper L A"
 from L top have "top ∈ ?B" by (fast intro!: Upper_memI intro: greatest_le)
 then have B_non_empty: "?B ~= {}" by fast
 have B:L: "?B ⊆ carrier L" by simp
 from inf_exists [OF B_L B_non_empty] obtain b where b_inf_B: "greatest L b (Lower L ?B)"
 have "least L b (Upper L A)"
 apply (rule least_UpperI)
 apply (rule greatest_le [where A = "Lower L ?B"])
 apply (rule b_inf_B)
 apply (rule Lower_memI)
 apply (erule Upper_memD [THEN conjunct1])
 apply assumption
 apply (rule L)
 apply (fast intro: L [THEN subsetD])
 apply (erule greatest_Lower_below [OF b_inf_B])
 apply simp
 apply (rule L)
 apply (rule greatest_closed [OF b_inf_B])
done
then show "EX s. least L s (Upper L A)" ..
next
fix A
assume L: "A ⊆ carrier L"
show "EX i. greatest L i (Lower L A)"
proof (cases "A = {}")
 case True then show ?thesis
 by (simp add: top_exists)
next
 case False with L show ?thesis
 by (rule inf_exists)
qed
qed

2.6 Examples
2.6.1 The Powerset of a Set is a Complete Lattice

theorem powerset_is_complete_lattice:
 "complete_lattice (carrier = Pow A, eq = op =, le = op ⊆)"
(is "complete_lattice ?L")
proof (rule partial_order.complete_latticeI)
 show "partial_order ?L"
 by default auto
next
fix B
assume "B ⊆ carrier ?L"
then have "least ?L (⋃ B) (Upper ?L B)"
 by (fastforce intro!: least_UpperI simp: Upper_def)
then show "EX s. least ?L s (Upper ?L B)" ..
next
fix B
assume "B ⊆ carrier ?L"
then have "greatest ?L (⋂ B ∩ A) (Lower ?L B)"

⋂ B is not the infimum of B: ⋂ {} = UNIV which is in general bigger than A!
 by (fastforce intro!: greatest_LowerI simp: Lower_def)
then show "EX i. greatest ?L i (Lower ?L B)" ..
qed

An other example, that of the lattice of subgroups of a group, can be found in Group theory (Section 3.8).

end
3 Monoids and Groups

3.1 Definitions

Definitions follow [2].

record '"a monoid" = '"a partial_object" +
mult ::= '"["a, "a] ⇒ "a"" (infixl "⊗" 70)
one ::= '"a ("1")"

definition
 m_inv :: "('a, 'b) monoid_scheme ⇒ 'a ⇒ 'a" ("inv_" [81] 80)
 where "inv_ G x = (THE y. y ∈ carrier G & x ⊗_ G y = 1_G & y ⊗_ G x = 1_G)"

definition
 Units :: "_. ⇒ 'a set"
 — The set of invertible elements
 where "Units G = {y. y ∈ carrier G & (∃x ∈ carrier G. x ⊗_ G y = 1_G & y ⊗_ G x = 1_G)}"

consts
 pow :: "('a, 'm) monoid_scheme, 'a, 'b::semiring_1 ⇒ 'a" (infixr "(^')" 75)
overloading nat_pow == "pow :: [_, 'a, nat] ⇒ 'a"
begin
 definition "nat_pow G a n = rec_nat 1_G (%u b. b ⊗_ G a) n"
end

overloading int_pow == "pow :: [_, 'a, int] ⇒ 'a"
begin
 definition "int_pow G a z =
 (let p = rec_nat 1_G (%u b. b ⊗_ G a)
 in if z < 0 then inv_ (p (nat (-z))) else p (nat z))"
end

locale monoid =
 fixes G (structure)
 assumes m_closed [intro, simp]:
 "[x ∈ carrier G; y ∈ carrier G] ⇒ x ⊗ y ∈ carrier G"
and m_assoc:
 "[x ∈ carrier G; y ∈ carrier G; z ∈ carrier G]
 ⇒ (x ⊗ y) ⊗ z = x ⊗ (y ⊗ z)"
and one_closed [intro, simp]: "1 ∈ carrier G"
and l_one [simp]: "x ∈ carrier G ⇒ 1 ⊗ x = x"
and r_one [simp]: "x ∈ carrier G ⇒ x ⊗ 1 = x"

lemma monoidI:
 fixes G (structure)
 assumes m_closed:
"!!x y. [| x ∈ carrier G; y ∈ carrier G |] ==> x ⊗ y ∈ carrier G"

and one_closed: "1 ∈ carrier G"
and m_assoc:
 "!!x y z. [| x ∈ carrier G; y ∈ carrier G; z ∈ carrier G |] ==> (x ⊗ y) ⊗ z = x ⊗ (y ⊗ z)"

and l_one: "!!x. x ∈ carrier G ==> 1 ⊗ x = x"
and r_one: "!!x. x ∈ carrier G ==> x ⊗ 1 = x"

shows "monoid G"
by (fast intro!: monoid.intro intro: assms)

lemma (in monoid) Units_closed [dest]:
"x ∈ Units G ==> x ∈ carrier G"
by (unfold Units_def) fast

lemma (in monoid) inv_unique:
assumes eq: "y ⊗ x = 1" "x ⊗ y' = 1"
and G: "x ∈ carrier G" "y ∈ carrier G" "y' ∈ carrier G"
shows "y = y'"
proof -
from G eq have "y = y ⊗ (x ⊗ y')" by simp
also from G have "... = (y ⊗ x) ⊗ y'" by (simp add: m_assoc)
also from G eq have "... = y'" by simp
finally show ?thesis .
qed

lemma (in monoid) Units_m_closed [intro, simp]:
assumes x: "x ∈ Units G" and y: "y ∈ Units G"
shows "x ⊗ y ∈ Units G"
proof -
from x obtain x' where x: "x ∈ carrier G" "x' ∈ carrier G" and xinv:
 "x ⊗ x' = 1" "x' ⊗ x = 1"
unfolding Units_def by fast
from y obtain y' where y: "y ∈ carrier G" "y' ∈ carrier G" and yinv:
 "y ⊗ y' = 1" "y' ⊗ y = 1"
unfolding Units_def by fast
from x y xinv yinv have "y' ⊗ (x' ⊗ x) ⊗ y = 1" by simp
moreover from x y xinv yinv have "x ⊗ (y ⊗ y') ⊗ x' = 1" by simp
moreover note x y
ultimately show ?thesis unfolding Units_def
— Must avoid premature use of hyp_subst_tac.
 apply (rule_tac CollectI)
 apply (rule)
 apply (fast)
 apply (rule bexI [where x = "y' ⊗ x'"])
 apply (auto simp: m_assoc)
done
qed
lemma (in monoid) Units_one_closed [intro, simp]:
"1 ∈ Units G"
by (unfold Units_def) auto

lemma (in monoid) Units_inv_closed [intro, simp]:
"x ∈ Units G ==> inv x ∈ carrier G"
apply (unfold Units_def m_inv_def, auto)
apply (rule theI2, fast)
apply (fast intro: inv_unique, fast)
done

lemma (in monoid) Units_l_inv_ex:
"x ∈ Units G ==> ∃y ∈ carrier G. y ⊗ x = 1"
by (unfold Units_def) auto

lemma (in monoid) Units_r_inv_ex:
"x ∈ Units G ==> ∃y ∈ carrier G. x ⊗ y = 1"
by (unfold Units_def) auto

lemma (in monoid) Units_l_inv [simp]:
"x ∈ Units G ==> inv x ⊗ x = 1"
apply (unfold Units_def m_inv_def, auto)
apply (rule theI2, fast)
apply (fast intro: inv_unique, fast)
done

lemma (in monoid) Units_r_inv [simp]:
"x ∈ Units G ==> x ⊗ inv x = 1"
apply (unfold Units_def m_inv_def, auto)
apply (rule theI2, fast)
apply (fast intro: inv_unique, fast)
done

lemma (in monoid) Units_inv_Units [intro, simp]:
"x ∈ Units G ==> inv x ∈ Units G"
proof -
 assume x: "x ∈ Units G"
 show "inv x ∈ Units G"
 by (auto simp add: Units_def
 intro: Units_l_inv Units_r_inv x Units_closed [OF x])
qed

lemma (in monoid) Units_l_cancel [simp]:
"[| x ∈ Units G; y ∈ carrier G; z ∈ carrier G |] ==>
 (x ⊗ y = x ⊗ z) = (y = z)"
proof
 assume eq: "x ⊗ y = x ⊗ z"
 and G: "x ∈ Units G" "y ∈ carrier G" "z ∈ carrier G"
 then have "(inv x ⊗ x) ⊗ y = (inv x ⊗ x) ⊗ z"
by (simp add: m_assoc Units_closed del: Units_l_inv)
with G show "y = z" by simp
next
 assume eq: "y = z"
 and G: "x ∈ Units G" "y ∈ carrier G" "z ∈ carrier G"
 then show "x ⊗ y = x ⊗ z" by simp
qed

lemma (in monoid) Units_inv_inv [simp]:
 "x ∈ Units G ==> inv (inv x) = x"
proof -
 assume x: "x ∈ Units G"
 then have "inv x ⊗ inv (inv x) = inv x ⊗ x" by simp
 with x show ?thesis by (simp add: Units_closed del: Units_l_inv Units_r_inv)
qed

lemma (in monoid) inv_inj_on_Units:
 "inj_on (m_inv G) (Units G)"
proof (rule inj_onI)
 fix x y
 assume G: "x ∈ Units G" "y ∈ Units G" and eq: "inv x = inv y"
 then have "inv (inv x) = inv (inv y)" by simp
 with G show "x = y" by simp
qed

lemma (in monoid) Units_inv_comm:
 assumes inv: "x ⊗ y = 1"
 and G: "x ∈ Units G" "y ∈ Units G"
 shows "y ⊗ x = 1"
proof -
 from G have "x ⊗ y ⊗ x = x ⊗ 1" by (auto simp add: inv Units_closed)
 with G show ?thesis by (simp del: r_one add: m_assoc Units_closed)
qed

Power

lemma (in monoid) nat_pow_closed [intro, simp]:
 "x ∈ carrier G ==> x (^) (n::nat) ∈ carrier G"
by (induct n) (simp_all add: nat_pow_def)

lemma (in monoid) nat_pow_0 [simp]:
 "x (^) (0::nat) = 1"
by (simp add: nat_pow_def)

lemma (in monoid) nat_pow_Suc [simp]:
 "x (^) (Suc n) = x (^) n ⊗ x"
by (simp add: nat_pow_def)

lemma (in monoid) nat_pow_one [simp]:
 "1 (^) (n::nat) = 1"
by (induct n) simp_all

lemma (in monoid) nat_pow_mult:
 "x ∈ carrier G ==> x (^) (n::nat) ⊗ x (^) m = x (^) (n + m)"
by (induct m) (simp_all add: m_assoc [THEN sym])

lemma (in monoid) nat_pow_pow:
 "x ∈ carrier G ==> (x (^) n) (^) m = x (^) (n * m::nat)"
by (induct m) (simp, simp add: nat_pow_mult add.commute)

3.2 Groups
A group is a monoid all of whose elements are invertible.
locale group = monoid +
 assumes Units: "carrier G <= Units G"

lemma (in group) is_group: "group G"
by (rule group_axioms)

theorem groupI:
 fixes G (structure)
 assumes m_closed [simp]: "!!x y. [| x ∈ carrier G; y ∈ carrier G |] ==> x ⊗ y ∈ carrier G"
 and one_closed [simp]: "1 ∈ carrier G"
 and m_assoc: "!!x y z. [| x ∈ carrier G; y ∈ carrier G; z ∈ carrier G |] ==> (x ⊗ y) ⊗ z = x ⊗ (y ⊗ z)"
 and l_one [simp]: "!!x. x ∈ carrier G ==> 1 ⊗ x = x"
 and l_inv_ex: "!!x. x ∈ carrier G ==> ∃ y ∈ carrier G. y ⊗ x = 1"
 shows "group G"
proof -
 have l_cancel [simp]:
 "!!x y z. [| x ∈ carrier G; y ∈ carrier G; z ∈ carrier G |] ==> (x ⊗ y = x ⊗ z) = (y = z)"
proof
 fix x y z
 assume eq: "x ⊗ y = x ⊗ z"
 and G: "x ∈ carrier G" "y ∈ carrier G" "z ∈ carrier G"
 with l_inv_ex obtain x_inv where xG: "x_inv ∈ carrier G"
 and l_inv: "x_inv ⊗ x = 1" by fast
 from G eq xG have "(x_inv ⊗ x) ⊗ y = (x_inv ⊗ x) ⊗ z"
 by (simp add: m_assoc)
 with G show "y = z" by (simp add: l_inv)
next
 fix x y z
 assume eq: "y = z"
 and G: "x ∈ carrier G" "y ∈ carrier G" "z ∈ carrier G"
 then show "x ⊗ y = x ⊗ z" by simp
qed

by (induct n) simp_all
have r_one:
"!!x. x ∈ carrier G ==> x ⊗ 1 = x"
proof -
 fix x
 assume x: "x ∈ carrier G"
 with l_inv_ex obtain x_inv where xG: "x_inv ∈ carrier G"
 and l_inv: "x_inv ⊗ x = 1" by fast
 from x xG have "x_inv ⊗ (x ⊗ 1) = x_inv ⊗ x"
 by (simp add: m_assoc [symmetric] l_inv)
 with x xG show "x ⊗ 1 = x" by simp
 qed
have inv_ex:
"!!x. x ∈ carrier G ==> ∃y ∈ carrier G. y ⊗ x = 1 & x ⊗ y = 1"
proof -
 fix x
 assume x: "x ∈ carrier G"
 with l_inv_ex obtain y where y: "y ∈ carrier G"
 and l_inv: "y ⊗ x = 1" by fast
 from x y have "y ⊗ (x ⊗ y) = y ⊗ 1"
 by (simp add: m_assoc [symmetric] l_inv r_one)
 with x y have r_inv: "x ⊗ y = 1"
 by simp
 from x y show "∃y ∈ carrier G. y ⊗ x = 1 & x ⊗ y = 1"
 by (fast intro: l_inv r_inv)
 qed
then have carrier_subset_Units: "carrier G ⊆ Units G"
 by (unfold Units_def) fast
 show ?thesis by default (auto simp: r_one m_assoc carrier_subset_Units)
 qed

lemma (in monoid) group_l_invI:
 assumes l_inv_ex:
"!!x. x ∈ carrier G ==> ∃y ∈ carrier G. y ⊗ x = 1"
 shows "group G"
 by (rule groupI) (auto intro: m_assoc l_inv_ex)

lemma (in group) Units_eq [simp]:
"Units G = carrier G"
proof
 show "Units G ⊆ carrier G" by fast
next
 show "carrier G ⊆ Units G" by (rule Units)
 qed

lemma (in group) inv_closed [intro, simp]:
"x ∈ carrier G ==> inv x ∈ carrier G"
 using Units_inv_closed by simp

lemma (in group) l_inv_ex [simp]:
"x ∈ carrier G ==> ∃y ∈ carrier G. y ⊗ x = 1"
using Units_l_inv_ex by simp

lemma (in group) r_inv_ex [simp]:
"x ∈ carrier G ==> ∃y ∈ carrier G. x ⊗ y = 1"
using Units_r_inv_ex by simp

lemma (in group) l_inv [simp]:
"x ∈ carrier G ==> inv x ⊗ x = 1"
using Units_l_inv by simp

3.3 Cancellation Laws and Basic Properties

lemma (in group) l_cancel [simp]:
"[| x ∈ carrier G; y ∈ carrier G; z ∈ carrier G |] ==>
 (x ⊗ y = x ⊗ z) = (y = z)"
using Units_l_inv by simp

lemma (in group) r_cancel [simp]:
"x ∈ carrier G ==> x ⊗ inv x = 1"
proof -
 assume x: "x ∈ carrier G"
 then have "inv x ⊗ (x ⊗ inv x) = inv x ⊗ 1"
 by (simp add: m_assoc [symmetric])
 with x show ?thesis by (simp del: r_one)
qed

lemma (in group) inv_one [simp]:
"[| x ∈ carrier G; y ∈ carrier G; z ∈ carrier G |] ==>
 (y ⊗ x = z ⊗ x) = (y = z)"
proof
 assume eq: "y ⊗ x = z ⊗ x"
 and G: "x ∈ carrier G" "y ∈ carrier G" "z ∈ carrier G"
 then have "y ⊗ (x ⊗ inv x) = z ⊗ (x ⊗ inv x)"
 by (simp add: m_assoc [symmetric] del: r_inv Units_r_inv)
 with G show "y = z" by simp
next
 assume eq: "y = z"
 and G: "x ∈ carrier G" "y ∈ carrier G" "z ∈ carrier G"
 then show "y ⊗ x = z ⊗ x" by simp
qed

lemma (in group) inv_one [simp]:
"inv 1 = 1"
proof
 have "inv 1 = 1 ⊗ (inv 1)" by (simp del: r_inv Units_r_inv)
 moreover have "... = 1" by simp
 finally show ?thesis .
qed
lemma (in group) inv_inv [simp]:
"x ∈ carrier G ==> inv (inv x) = x"
using Units_inv_inv by simp

lemma (in group) inv_inj:
"inj_on (m_inv G) (carrier G)"
using inv_inj_on_Units by simp

lemma (in group) inv_mult_group:
"[| x ∈ carrier G; y ∈ carrier G |] ==> inv (x ⊗ y) = inv y ⊗ inv x"
proof -
 assume G: "x ∈ carrier G" "y ∈ carrier G"
 then have "inv (x ⊗ y) ⊗ (x ⊗ y) = (inv y ⊗ inv x) ⊗ (x ⊗ y)"
 by (simp add: m_assoc) (simp add: m_assoc [symmetric])
 with G show ?thesis by (simp del: l_inv Units_l_inv)
qed

lemma (in group) inv_comm:
"[| x ⊗ y = 1; x ∈ carrier G; y ∈ carrier G |] ==> y ⊗ x = 1"
by (rule Units_inv_comm) auto

lemma (in group) inv_equality:
"[|y ⊗ x = 1; x ∈ carrier G; y ∈ carrier G|] ==> inv x = y"
apply (simp add: m_inv_def)
apply (rule the_equality)
apply (simp add: inv_comm [of y x])
apply (rule r_cancel [THEN iffD1], auto)
done

lemma (in group) inv_solve_left:
"[| a ∈ carrier G; b ∈ carrier G; c ∈ carrier G |] ==⇒ a = inv b ⊗ c
 ↔ c = b ⊗ a"
by (metis inv_equality l_inv_ex l_one m_assoc r_inv)

lemma (in group) inv_solve_right:
"[| a ∈ carrier G; b ∈ carrier G; c ∈ carrier G |] ==⇒ a = b ⊗ inv c
 ↔ b = a ⊗ c"
by (metis inv_equality l_inv_ex l_one m_assoc r_inv)

Power

lemma (in group) int_pow_def2:
"(a (^) (z::int)) = (if z < 0 then inv (a (^) (nat (-z)))) else a (^) (nat z))"
by (simp add: int_pow_def nat_pow_def Let_def)

lemma (in group) int_pow_0 [simp]:
"(x (^) (0::int)) = 1"
by (simp add: int_pow_def2)
lemma (in group) int_pow_one [simp]:
"1 (^) (z::int) = 1"
by (simp add: int_pow_def2)

lemma (in group) int_pow_closed [intro, simp]:
"x ∈ carrier G ==> x (^) (i::int) ∈ carrier G"
by (simp add: int_pow_def2)

lemma (in group) int_pow_1 [simp]:
"x ∈ carrier G =⇒ x (^) (1::int) = x"
by (simp add: int_pow_def2)

lemma (in group) int_pow_neg:
"x ∈ carrier G =⇒ x (^) (-i::int) = inv (x (^) i)"
by (simp add: int_pow_def2)

lemma (in group) int_pow_mult:
"x ∈ carrier G =⇒ x (^) (i + j::int) = x (^) i ⊗ x (^) j"
proof -
 have [simp]: "-i - j = -j - i" by simp
 assume "x : carrier G" then
 show ?thesis
 by (auto simp add: int_pow_def2 inv_solve_left inv_solve_right nat_add_distrib
 [symmetric] nat_pow_mult)
qed

3.4 Subgroups

locale subgroup =
 fixes H and G (structure)
 assumes subset: "H ⊆ carrier G"
 and m_closed [intro, simp]: "[x ∈ H; y ∈ H] =⇒ x ⊗ y ∈ H"
 and one_closed [simp]: "1 ∈ H"
 and m_inv_closed [intro,simp]: "x ∈ H =⇒ inv x ∈ H"

lemma (in subgroup) is_subgroup:
"subgroup H G" by (rule subgroup_axioms)

declare (in subgroup) group.intro [intro]

lemma (in subgroup) mem_carrier [simp]:
"x ∈ H =⇒ x ∈ carrier G"
using subset by blast

lemma subgroup_imp_subset:
"subgroup H G =⇒ H ⊆ carrier G"
by (rule subgroup.subset)

lemma (in subgroup) subgroup_is_group [intro]:
 assumes "group G"
 shows "group (G[carrier := H])"
proof -
 interpret group G by fact
 show ?thesis
 apply (rule monoid.group_l_invI)
 apply (unfold_locales) [1]
 apply (auto intro: m_assoc l_inv mem_carrier)
 done
qed

Since H is nonempty, it contains some element x. Since it is closed under inverse, it contains inv x. Since it is closed under product, it contains x ⊗ inv x = 1.

lemma (in group) one_in_subset:
 "[| H ⊆ carrier G; H ≠ {}; ∀a ∈ H. inv a ∈ H; ∀a∈H. ∀b∈H. a ⊗ b ∈ H |] ==> 1 ∈ H"
by force

A characterization of subgroups: closed, non-empty subset.

lemma (in group) subgroupI:
 assumes subset: "H ⊆ carrier G" and non_empty: "H ≠ {}"
 and inv: "!!a. a ∈ H =⇒ inv a ∈ H"
 and mult: "!!a b. [a ∈ H; b ∈ H] =⇒ a ⊗ b ∈ H"
 shows "subgroup H G"
proof (simp add: subgroup_def assms)
 show "1 ∈ H" by (rule one_in_subset) (auto simp only: assms)
qed

declare monoid.one_closed [iff] group.inv_closed [simp]
 monoid.l_one [simp] monoid.r_one [simp] group.inv_inv [simp]

lemma subgroup_nonempty:
 "¬ subgroup {} G"
by (blast dest: subgroup.one_closed)

lemma (in subgroup) finite_imp_card_positive:
 "finite (carrier G) ==> 0 < card H"
proof (rule classical)
 assume "finite (carrier G)" and a: "¬ 0 < card H"
 then have "finite H" by (blast intro: finite_subset [OF subset])
 with is_subgroup a have "subgroup {} G" by simp
 with subgroup_nonempty show ?thesis by contradiction
qed
3.5 Direct Products

definition

\[
\text{DirProd} :: '_ \Rightarrow _ \Rightarrow ('a \times 'b) \text{ monoid} \quad \text{(infixr "\times\times" 80)} \quad \text{where}
\]

\[
\begin{align*}
G \times\times H &= (c\text{arrier } G \times \text{ carrier } H, \\
\text{mult} &= (\lambda (g, h) (g', h'). (g \otimes_G g', h \otimes_H h')), \\
\text{one} &= (1_G, 1_H))
\end{align*}
\]

lemma DirProd_monoid:

assumes "monoid G" and "monoid H"
shows "monoid (G \times\times H)"
proof -
interpret G: monoid G by fact
interpret H: monoid H by fact
from assms
show ?thesis by (unfold monoid_def DirProd_def, auto)
qed

Does not use the previous result because it’s easier just to use auto.

lemma DirProd_group:

assumes "group G" and "group H"
shows "group (G \times\times H)"
proof -
interpret G: group G by fact
interpret H: group H by fact
show ?thesis by (rule groupI)
 (auto intro: G.m_assoc H.m_assoc G.l_inv H.l_inv
 simp add: DirProd_def)
qed

lemma carrier_DirProd [simp]:

"carrier (G \times\times H) = \text{carrier } G \times \text{ carrier } H"
by (simp add: DirProd_def)

lemma one_DirProd [simp]:

"1_G \times\times H = (1_G, 1_H)"
by (simp add: DirProd_def)

lemma mult_DirProd [simp]:

"(g, h) \otimes (G \times\times H) (g', h') = (g \otimes_G g', h \otimes_H h')"
by (simp add: DirProd_def)

lemma inv_DirProd [simp]:

assumes "group G" and "group H"
assumes g: "g \in \text{carrier } G"
and h: "h \in \text{carrier } H"
shows "m_inv (G \times\times H) (g, h) = (\text{inv}_G g, \text{inv}_H h)"
proof -
interpret G: group G by fact
interpret H: group H by fact
interpret Prod: group "G ×× H"
 by (auto intro: DirProd_group group.intro group.axioms assms)
show ?thesis by (simp add: Prod.inv_equality g h)
qed

3.6 Homomorphisms and Isomorphisms

definition
 hom :: "_ => _ => ('a => 'b) set" where
 "hom G H = {h. h ∈ carrier G -> carrier H & (∀x ∈ carrier G. ∀y ∈ carrier G. h (x ⊗_G y) = h x ⊗_H h y)}"

lemma (in group) hom_compose:
 "[|h ∈ hom G H; i ∈ hom H I|] ==> compose (carrier G) i h ∈ hom G I"
 by (fastforce simp add: hom_def compose_def)

definition
 iso :: "_ => _ => ('a => 'b) set" (infixr "∼=" 60)
 where "G ∼=" H = {h. h ∈ hom G H & bij_betw h (carrier G) (carrier H)}"

lemma iso_refl: "(λx. x) ∈ G ∼=" G" by (simp add: iso_def hom_def inj_on_def bij_betw_def Pi_def)
lemma iso_sym: "h ∈ G ∼=" H =⇒ inv_into (carrier G) h ∈ H ∼=" G"
 apply (simp add: iso_def bij_betw_imp_funcset [OF bij_betw_inv_into])
 done

lemma iso_trans: "[|h ∈ G ∼=" H; i ∈ H ∼=" I|] =⇒ (compose (carrier G) i h) ∈ G ∼=" I"
 by (auto simp add: iso_def hom_compose bij_betw_compose)
lemma DirProd_commut_iso:
 shows "("λ(x,y). (y,x))" ∈ (G ×× H) ∼=" (H ×× G)"
 by (auto simp add: iso_def hom_def inj_on_def bij_betw_def)
lemma DirProd_assoc_iso:
 shows "("λ(x,y,z). (x,(y,z)))" ∈ (G ×× H ×× I) ∼=" (G ×× (H ×× I))"
 by (auto simp add: iso_def hom_def inj_on_def bij_betw_def)

Basis for homomorphism proofs: we assume two groups G and H, with a homomorphism h between them
locale group_hom = G: group G + H: group H for G (structure) and H (structure) +
 fixes h
 assumes homh: "h ∈ hom G H"

lemma (in group_hom) hom_mult [simp]:
 "[| x ∈ carrier G; y ∈ carrier G |] ==> h (x ⊗_G y) = h x ⊗_H h y"
proof -
 assume "x ∈ carrier G" "y ∈ carrier G"
 with homh [unfolded hom_def] show ?thesis by simp
qed

lemma (in group_hom) hom_closed [simp]:
 "x ∈ carrier G ==> h x ∈ carrier H"
proof -
 assume "x ∈ carrier G"
 with homh [unfolded hom_def] show ?thesis by auto
qed

lemma (in group_hom) one_closed [simp]:
 "h 1 ∈ carrier H"
by simp

lemma (in group_hom) hom_one [simp]:
 "h 1 = 1_H"
proof -
 have "h 1 ⊗_H 1_H = h 1 ⊗_H h 1"
 by (simp add: hom_mult [symmetric] del: hom_mult)
 then show ?thesis by (simp del: r_one)
qed

lemma (in group_hom) inv_closed [simp]:
 "x ∈ carrier G ==> h (inv x) ∈ carrier H"
by simp

lemma (in group_hom) hom_inv [simp]:
 "x ∈ carrier G ==> h (inv x) = inv_H (h x)"
proof -
 assume x: "x ∈ carrier G"
 then have "h x ⊗_H h (inv x) = 1_H"
 by (simp add: hom_mult [symmetric] del: hom_mult)
 also from x have "... = h x ⊗_H inv_H (h x)"
 by (simp add: hom_mult [symmetric] del: hom_mult)
 finally have "h x ⊗_H h (inv x) = h x ⊗_H inv_H (h x)".
 with x show ?thesis by (simp del: H.r_inv H.Units_r_inv)
qed

lemma (in group) int_pow_is_hom:
"x ∈ carrier G ⟹ (op(^) x) ∈ hom (\{carrier = UNIV, mult = op +, one = 0::int\}) G"
unfolding hom_def by (simp add: int_pow_mult)

3.7 Commutative Structures

Naming convention: multiplicative structures that are commutative are called *commutative*, additive structures are called *Abelian*.

locale comm_monoid = monoid +
 assumes m_comm: "[| x ∈ carrier G; y ∈ carrier G |] ⟹ x ⊗ y = y ⊗ x"

lemma (in comm_monoid) m_lcomm:
 "[| x ∈ carrier G; y ∈ carrier G; z ∈ carrier G |] ⟹
 x ⊗ (y ⊗ z) = y ⊗ (x ⊗ z)"
proof -
 assume xyz: "x ∈ carrier G" "y ∈ carrier G" "z ∈ carrier G"
from xyz have "x ⊗ (y ⊗ z) = (x ⊗ y) ⊗ z" by (simp add: m_assoc)
also from xyz have "... = (y ⊗ x) ⊗ z" by (simp add: m_comm)
also from xyz have "... = y ⊗ (x ⊗ z)" by (simp add: m_assoc)
finally show ?thesis .
qed

lemmas (in comm_monoid) m_ac = m_assoc m_comm m_lcomm

lemma comm_monoidI:
 fixes G (structure)
 assumes m_closed: "!!x y. [| x ∈ carrier G; y ∈ carrier G |] ==> x ⊗ y ∈ carrier G"
 and one_closed: "1 ∈ carrier G"
 and m_assoc: "!!x y z. [| x ∈ carrier G; y ∈ carrier G; z ∈ carrier G |] ==>
 (x ⊗ y) ⊗ z = x ⊗ (y ⊗ z)"
 and l_one: "!!x. x ∈ carrier G ==>
 1 ⊗ x = x"
 and m_comm: "!!x y. [| x ∈ carrier G; y ∈ carrier G |] ==>
 x ⊗ y = y ⊗ x"
shows "comm_monoid G"
using l_one
by (auto intro!: comm_monoid.intro comm_monoid_axioms.intro monoid.intro
 intro: assms simp: m_closed one_closed m_comm)

lemma (in monoid) monoid_comm_monoidI:
 assumes m_comm: "!!x y. [| x ∈ carrier G; y ∈ carrier G |] ==> x ⊗ y = y ⊗ x"
shows "comm_monoid G"
by (rule comm_monoidI) (auto intro: m_assoc m_comm)
lemma (in comm_monoid) nat_pow_distr:
"[| x ∈ carrier G; y ∈ carrier G |] ==>
(x ⊗ y) (^) (n::nat) = x (^) n ⊗ y (^) n"
bysimp (simp, simp add: m_ac)

locale comm_group = comm_monoid + group

lemma (in group) group_comm_groupI:
assumes m_comm: "!!x y. [| x ∈ carrier G; y ∈ carrier G |] ==>
x ⊗ y = y ⊗ x"
sows "comm_group G"
bysimp (simp_all add: m_comm)

locale comm_groupI:
fixes G (structure)
assumes m_closed:
"!!x y. [| x ∈ carrier G; y ∈ carrier G |] ==> x ⊗ y ∈ carrier G"
and one_closed: "1 ∈ carrier G"
and m_assoc:
"!!x y z. [| x ∈ carrier G; y ∈ carrier G; z ∈ carrier G |] ==>
(x ⊗ y) ⊗ z = x ⊗ (y ⊗ z)"
and m_comm:
"!!x y. [| x ∈ carrier G; y ∈ carrier G |] ==> x ⊗ y = y ⊗ x"
and l_one: "!!x. x ∈ carrier G ==⇒ 1 ⊗ x = x"
and l_inv_ex: "!!x. x ∈ carrier G ==⇒ ∃y ∈ carrier G. y ⊗ x = 1"
sows "comm_group G"
bysimp (fast intro: group.group_comm_groupI groupI assms)

lemma (in comm_group) inv_mult:
"[| x ∈ carrier G; y ∈ carrier G |] ==> inv (x ⊗ y) = inv x ⊗ inv y"
bysimp (simp add: m_ac inv_mult_group)

3.8 The Lattice of Subgroups of a Group

theorem (in group) subgroups_partial_order:
"partial_order {carrier = {H. subgroup H G}, eq = op =, le = op ⊆}"
bysimp_all

lemma (in group) subgroup_self:
"subgroup (carrier G) G"
bysimp (rule subgroupI auto)

lemma (in group) subgroup_imp_group:
"subgroup H G ==⇒ group (G |carrier := H)"
bysimp (erule subgroup.subgroup_is_group) (rule group_axioms)

lemma (in group) is_monoid [intro, simp]:
"monoid G"

by (auto intro: monoid.intro m_assoc)

lemma (in group) subgroup_inv_equality:
 "\[| subgroup H G; x \in H | \implies m_inv (G (|carrier := H|)) x = inv x\]
apply (rule_tac inv_equality [THEN sym])
apply (rule group.l_inv [OF subgroup_imp_group, simplified], assumption+)
apply (rule subsetD [OF subgroup.subset], assumption+)
apply (rule_tac group.inv_closed [OF subgroup_imp_group, simplified], assumption+)
done

theorem (in group) subgroups_Inter:
 assumes subgr: "(\forall H. H \in A \implies subgroup H G)"
 and not_empty: "A \neq {}"
 shows "subgroup (\bigcap A) G"
proof (rule subgroupI)
from subgr [THEN subgroup.subset] and not_empty
show "\bigcap A \subseteq carrier G" by blast
next
from subgr [THEN subgroup.one_closed]
show "\bigcap A \neq {}" by blast
next
fix x assume "x \in \bigcap A"
with subgr [THEN subgroup.m_inv_closed]
show "inv x \in \bigcap A" by blast
next
fix x y assume "x \in \bigcap A" "y \in \bigcap A"
with subgr [THEN subgroup.m_closed]
show "x \otimes y \in \bigcap A" by blast
qed

theorem (in group) subgroups_complete_lattice:
 "complete_lattice (|carrier = \{H. subgroup H G\}, eq = op =, le = op \subseteq|)"
 (is "complete_lattice ?L")
proof (rule partial_order.complete_lattice_criterion1)
show "partial_order ?L" by (rule subgroups_partial_order)
next
have "greatest ?L (carrier G) (carrier ?L)"
 by (unfold greatest_def) (simp add: subgroup.subset subgroup_self)
then show "\exists G. greatest ?L G (carrier ?L)" ..
next
fix A
assume L: "A \subseteq carrier ?L" and non_empty: "A \neq {}"
then have Int_subgroup: "subgroup (\bigcap A) G"
 by (fastforce intro: subgroups_Inter)
have "greatest ?L (\bigcap A) (Lower ?L A)" (is "greatest _ ?Int _")
proof (rule greatest_Lower1)
fix H
assume H: "H ∈ A"
with L have subgroupH: "subgroup H G" by auto
from subgroupH have groupH: "group (G (carrier := H))" (is "group ?H")
 by (rule subgroup_imp_group)
from groupH have monoidH: "monoid ?H"
 by (rule group.is_monoid)
from H have Int_subset: "?Int ⊆ H" by fastforce
then show "le ?L ?Int H" by simp
next
fix H
assume H: "H ∈ Lower ?L A"
with L Int_subgroup show "le ?L H ?Int"
 by (fastforce simp: Lower_def intro: Inter_greatest)
next
show "A ⊆ carrier ?L" by (rule L)
next
show "?Int ∈ carrier ?L" by simp (rule Int_subgroup)
qed
then show "∃I. greatest ?L I (Lower ?L A)" ..
qed

end

theory FiniteProduct
imports Group
begin

3.9 Product Operator for Commutative Monoids

3.9.1 Inductive Definition of a Relation for Products over Sets

Instantiation of locale LC of theory Finite_Set is not possible, because here we have explicit typing rules like x ∈ carrier G. We introduce an explicit argument for the domain D.

inductive_set
foldSetD :: "['a set, 'b => 'a => 'a, 'a] => ('b set * 'a) set"
for D :: "'a set" and f :: "'b => 'a => 'a" and e :: 'a
where
 emptyI [intro]: "e ∈ D ==> ({}, e) ∈ foldSetD D f e"
| insertI [intro]: "[| x ~: A; f x y ∈ D; (A, y) ∈ foldSetD D f e |
 ==> (insert x A, f x y) ∈ foldSetD D f e"

inductive_cases empty_foldSetDE [elim!]: "({}, x) ∈ foldSetD D f e"

definition
foldD :: "('a set, 'b => 'a, 'a) => 'a" where "foldD f e A = (THE x. (A, x) ∈ foldSetD D f e)"

lemma foldSetD_closed:
"[| (A, z) ∈ foldSetD D f e ; e ∈ D; !!x y. [| x ∈ A; y ∈ D |] ==> f x y ∈ D |
] ==> z ∈ D"
by (erule foldSetD.cases) auto

lemma Diff1_foldSetD:
"[| (A - {x}, y) ∈ foldSetD D f e; x ∈ A; f x y ∈ D |
] ==> (A, f x y) ∈ foldSetD D f e"
apply (erule insert_Diff [THEN subst], rule foldSetD.intros)
apply auto
done

lemma foldSetD_imp_finite [simp]: "(A, x) ∈ foldSetD D f e ==> finite A"
by (induct set: foldSetD) auto

lemma finite_imp_foldSetD:
"[| finite A; e ∈ D; !!x y. [| x ∈ A; y ∈ D |] ==> f x y ∈ D |
] ==> EX x. (A, x) ∈ foldSetD D f e"
proof (induct set: finite)
 case empty
 then show ..
next
 case (insert x F)
 then obtain y where "y ∈ D" by auto
 with insert have "y ∈ D" by (auto dest: foldSetD_closed)
 with y and insert have "(A, x) ∈ foldSetD D f e"
 by (intro foldSetD.intros) auto
 then show ..
qed

Left-Commutative Operations
locale LCD =
 fixes B :: "'b set"
 and D :: "'a set"
 and f :: "'b => 'a => 'a" (infixl "." 70)
assumes left_commute:
"[| x ∈ B; y ∈ B; z ∈ D |] ==> x . (y . z) = y . (x . z)"
and f_closed [simp, intro!]: "!!x y. [| x ∈ B; y ∈ D |] ==> f x y ∈ D"

lemma (in LCD) foldSetD_closed [dest]:
"(A, z) ∈ foldSetD D f e ==> z ∈ D"
by (erule foldSetD.cases) auto

lemma (in LCD) Diff1_foldSetD:
"[| (A - {x}, y) ∈ foldSetD D f e; x ∈ A; A ⊆ B |] ==> (A, f x y) ∈ foldSetD D f e"
apply (subgoal_tac "x ∈ B")
prefer 2 apply fast
apply (erule insert_Diff [THEN subst], rule foldSetD.intros)
apply auto
done

lemma (in LCD) foldSetD_imp_finite [simp]:
"(A, x) ∈ foldSetD D f e ==> finite A"
by (induct set: foldSetD) auto

lemma (in LCD) finite_imp_foldSetD:
"[| finite A; A ⊆ B; e ∈ D |] ==> EX x. (A, x) ∈ foldSetD D f e"
proof (induct set: finite)
case empty then show ?case by auto
next
case (insert x F)
then obtain y where y: "(F, y) ∈ foldSetD D f e" by auto
with insert have "y ∈ D" by auto
with y and insert have "(insert x F, f x y) ∈ foldSetD D f e"
by (intro foldSetD.intros) auto
then show ?case ..
qed

lemma (in LCD) foldSetD_determ_aux:
"e ∈ D ==> ∀ A x. A ⊆ B & card A < n --> (A, x) ∈ foldSetD D f e -->
(∀ y. (A, y) ∈ foldSetD D f e --> y = x)"
apply (induct n)
apply (auto simp add: less_Suc_eq)
apply (erule foldSetD.cases)
apply blast
apply (erule foldSetD.cases)
apply blast
apply clarify
force simplification of card A < card (insert ...).
apply (erule rev_mp)
apply (simp add: less_Suc_eq_le)
apply (rule impl)
apply (rename_tac xa Aa ya xb Ab yb, case_tac "xa = xb")
apply (subgoal_tac "Aa = Ab")
prefer 2 apply (blast elim!: equalityE)
apply blast

case xa ⊏ xb.
apply (subgoal_tac "Aa - {xb} = Ab - {xa} & xb ⊏ Aa & xa ⊏ Ab")
prefer 2 apply (blast elim!: equalityE)
apply clarify
apply (subgoal_tac "Aa = insert xb Ab - {xa}")
prefer 2 apply blast
apply (subgoal_tac "card Aa ≤ card Ab")
prefer 2
apply (rule Suc_le_mono [THEN subst])
apply (simp add: card_Suc_Diff1)
apply (rule_tac A1 = "Aa - {xb}" in finite_imp_foldSetD [THEN exE])
apply (blast intro: foldSetD_imp_finite)
apply blast
apply blast
apply (frule (1) Diff1_foldSetD)
apply best
apply best
apply (subgoal_tac "ya = f xb x")
prefer 2
apply (subgoal_tac "Aa ⊆ B")
prefer 2
apply (blast del: equalityCE)
apply (subgoal_tac "(Ab - {xa}, x) ∈ foldSetD D f e")
prefer 2 apply simp
apply (subgoal_tac "yb = f xa x")
prefer 2
apply (blast del: equalityCE dest: Diff1_foldSetD)
apply (simp (no_asm_simp))
apply (rule left_commute)
apply assumption
apply best
apply best
done

lemma (in LCD) foldSetD_determ:
"[| (A, x) ∈ foldSetD D f e; (A, y) ∈ foldSetD D f e; e ∈ D; A ⊆ B |
] ==> y = x"
by (blast intro: foldSetD_determ_aux [rule_format])

lemma (in LCD) foldD_equality:
"[| (A, y) ∈ foldSetD D f e; e ∈ D; A ⊆ B |] ==> foldD D f e A = y"
by (unfold foldD_def) (blast intro: foldSetD_determ)

lemma foldD_empty [simp]:
"e ∈ D ==> foldD D f e {} = e"
by (unfold foldD_def) blast

lemma (in LCD) foldD_insert_aux:
"[| x ~: A; x ∈ B; e ∈ D; A ⊆ B |] ==> (insert x A, v) ∈ foldSetD D f e =
(EX y. (A, y) ∈ foldSetD D f e & v = f x y)"
apply auto
apply (rule_tac A1 = A in finite_imp_foldSetD [THEN exE])
apply (fastforce dest: foldSetD_imp_finite)
apply assumption
apply assumption
apply (blast intro: foldSetD_determ)
done

lemma (in LCD) foldD_insert:
 "[| finite A; x ~: A; x ∈ B; e ∈ D; A ⊆ B |] ==> foldD D f e (insert x A) = f x (foldD D f e A)"
apply (unfold foldD_def)
apply (simp add: foldD_insert_aux)
apply (rule the_equality)
apply (auto intro: finite_imp_foldSetD cong add: conj_cong simp add: foldD_def [symmetric] foldD_equality)
done

lemma (in LCD) foldD_closed [simp]:
 "[| finite A; e ∈ D; A ⊆ B |] ==> foldD D f e A ∈ D"
proof (induct set: finite)
case empty then show ?case by simp
next
case insert then show ?case by (simp add: foldD_insert)
qed

lemma (in LCD) foldD_commute:
 "[| finite A; x ∈ B; e ∈ D; A ⊆ B |] ==> f x (foldD D f e A) = foldD D f (f x e) A"
apply (induct set: finite)
apply simp
apply (auto simp add: left_commute foldD_insert)
done

lemma Int_mono2:
 "[| A ⊆ C; B ⊆ C |] ==> A Int B ⊆ C"
by blast

lemma (in LCD) foldD_nest_Un_Int:
 "[| finite A; finite C; e ∈ D; A ⊆ B; C ⊆ B |] ==> foldD D f (foldD D f e C) A = foldD D f (foldD D f e (A Int C)) (A Un C)"
apply (induct set: finite)
apply simp
apply (auto simp add: foldD_insert foldD_commute Int_insert_left insert_absorb Int_mono2)
done

lemma (in LCD) foldD_nest_Un_disjoint:
 "[| finite A; finite B; A Int B = {}; e ∈ D; A ⊆ B; C ⊆ B |] ==> foldD D f e (A Un B) = foldD D f (foldD D f e B) A"
by (simp add: foldD_nest_Un_Int)

— Delete rules to do with foldSetD relation.

declare foldSetD_imp_finite [simp del]
empty_foldSetDE [rule del]
foldSetD.intros [rule del]
declare (in LCD)
foldSetD_closed [rule del]

Commutative Monoids

We enter a more restrictive context, with \(f : \cdot \cdot \cdot \cdot \rightarrow \cdot \cdot \cdot \cdot \) instead of \(\cdot \cdot \cdot \cdot \cdot \rightarrow \cdot \cdot \cdot \cdot \cdot \) instead of \(\cdot \cdot \cdot \cdot \cdot \rightarrow \cdot \cdot \cdot \cdot \cdot \cdot \).

locale ACeD =
fixes D :: ‘a set
and f :: ‘a => ‘a => ‘a" (infixl "·" 70)
and e :: ‘a
assumes ident [simp]: "x ∈ D ==> x · e = x"
and commute: "[| x ∈ D; y ∈ D |] ==> x · y = y · x"
and assoc: "[| x ∈ D; y ∈ D; z ∈ D |] ==> (x · y) · z = x · (y · z)"
and e_closed [simp]: "e ∈ D"
and f_closed [simp]: "[| x ∈ D; y ∈ D |] ==> x · y ∈ D"

lemma (in ACeD) left_commute:
"[| x ∈ D; y ∈ D; z ∈ D |] ==> x · (y · z) = y · (x · z)"
proof -
assume D: "x ∈ D" "y ∈ D" "z ∈ D"
then have "x · (y · z) = (y · z) · x" by (simp add: commute)
also from D have "... = y · (z · x)" by (simp add: assoc)
also from D have "z · x = x · z" by (simp add: commute)
finally show ?thesis .
qed

lemmas (in ACeD) AC = assoc commute left_commute

dialect (locale):
lemma (in ACeD) left_ident [simp]: "x ∈ D ==> e · x = x"
proof -
assume "x ∈ D"
then have "x · e = x" by (rule ident)
with ‘x ∈ D’ show ?thesis by (simp add: commute)
qed

dialect (locale):
lemma (in ACeD) foldD_Un_Int:
"[| finite A; finite B; A ⊆ D; B ⊆ D |] ==>
foldD D f e (A Un B) · foldD D f e (A Int B)"
apply (induct set: finite)
apply (simp add: left_commute LCD.foldD_closed [OF LCD.intro [of D]])
apply (simp add: AC insert_absorb Int_insert_left
LCD.foldD_insert [OF LCD.intro [of D]]
LCD.foldD_closed [OF LCD.intro [of D]]
Int_mono2)
done

lemma (in ACeD) foldD_Un_disjoint:
"[| finite A; finite B; A Int B = {}; A ⊆ D; B ⊆ D |] ==>
foldD D f e (A Un B) = foldD D f e A · foldD D f e B"
by (simp add: foldD_Un_Int
 left_commute LCD.foldD_closed [OF LCD.intro [of D]])

3.9.2 Products over Finite Sets

definition
 finprod :: "[('b, 'm) monoid_scheme, 'a => 'b, 'a set] => 'b"
 where "finprod G f A =
 (if finite A
 then foldD (carrier G) (mult G o f) 1_G A
 else undefined)"

syntax
 "_finprod" :: "index => idt => 'a set => 'b => 'b"
 ("3 __ __ __ __") [1000, 0, 51, 10] 10
syntax (xsymbols)
 "_finprod" :: "index => idt => 'a set => 'b => 'b"
 ("3 __ __ __ __") [1000, 0, 51, 10] 10
syntax (HTML output)
 "_finprod" :: "index => idt => 'a set => 'b => 'b"
 ("3 __ __ __ __") [1000, 0, 51, 10] 10
translations
 "⨂ __ ∈ _. __" == "CONST finprod ◦ (%. b) A"
 — Beware of argument permutation!

lemma (in comm_monoid) finprod_empty [simp]:
 "finprod G f {} = 1"
by (simp add: finprod_def)

declare funcsetI [intro]
funcset_mem [dest]

context comm_monoid begin

lemma finprod_insert [simp]:
 "[| finite F; a ∉ F; f ∈ F -> carrier G; f a ∈ carrier G |] ==> finprod G f (insert a F) = f a ⊗ finprod G f F"
apply (rule trans)
apply (simp add: finprod_def)
apply (rule trans)
apply (rule LCD.foldD_insert [OF LCD.intro [of "insert a F"]])
 apply simp
 apply (rule m_lcomm)
 apply fast
 apply fast
 apply assumption
 apply fastforce
 apply simp+
 apply fast
 apply (auto simp add: finprod_def)
done

lemma finprod_one [simp]:
 "finite A ==> (∏ i:A. 1) = 1"
proof (induct set: finite)
 case empty show ?case by simp
next
 case (insert a A)
 have "(%i. 1) ∈ A -> carrier G" by auto
 with insert show ?case by simp
qed

lemma finprod_closed [simp]:
 fixes A
 assumes fin: "finite A" and f: "f ∈ A -> carrier G"
 shows "finprod G f A ∈ carrier G"
using fin f
proof induct
 case empty show ?case by simp
next
 case (insert a A)
 then have a: "f a ∈ carrier G" by fast
 from insert have A: "f ∈ A -> carrier G" by fast
 from insert A a show ?case by simp
qed

lemma funcset_Int_left [simp, intro]:
 "[| f ∈ A -> C; f ∈ B -> C |] ==> f ∈ A Int B -> C"
by fast

lemma funcset_Un_left [iff]:
 "(f ∈ A Un B -> C) = (f ∈ A -> C & f ∈ B -> C)"
by fast

lemma finprod_Un_Int:
 "[| finite A; finite B; g ∈ A -> carrier G; g ∈ B -> carrier G |] ==>
 finprod G g (A Un B) ⊗ finprod G g (A Int B) =
 finprod G g (A ⊗ finprod G g B)"
— The reversed orientation looks more natural, but LOOPS as a simprule!
proof (induct set: finite)
case empty then show ?case by simp
next
case (insert a A)
then have a: "g a ∈ carrier G" by fast
from insert have A: "g ∈ A → carrier G" by fast
from insert A a show ?case
 by (simp add: m_ac Int_insert_left insert_absorb Int_mono2)
qed

lemma finprod_Un_disjoint:
"[| finite A; finite B; A Int B = {}; g ∈ A → carrier G; g ∈ B → carrier G |] ==>
finprod G g (A Un B) = finprod G g A ⊗ finprod G g B"
apply (subst finprod_Un_Int [symmetric])
 apply auto
done

lemma finprod_multf:
"[| finite A; f ∈ A → carrier G; g ∈ A → carrier G |] ==>
finprod G (%x. f x ⊗ g x) A = (finprod G f A ⊗ finprod G g A)"
proof (induct set: finite)
case empty show ?case by simp
next
case (insert a A) then
 have fA: "f ∈ A → carrier G" by fast
 from insert have fa: "f a ∈ carrier G" by fast
 from insert have gA: "g ∈ A → carrier G" by fast
 from insert have ga: "g a ∈ carrier G" by fast
 from insert have fgA: "(%x. f x ⊗ g x) ∈ A → carrier G"
 by (simp add: Pi_def)
 show ?case
 by (simp add: insert fA fa gA ga fgA m_ac)
qed

lemma finprod_cong':
"[| A = B; g ∈ B → carrier G;
 !!i. i ∈ B ==> f i = g i |] ==>
finprod G f A = finprod G g B"
proof -
 assume prems: "A = B" "g ∈ B → carrier G"
 "!!i. i ∈ B ==> f i = g i"
 show ?thesis
 proof (cases "finite B")
 case True
 then have "!!A. [| A = B; g ∈ B → carrier G;"
 "!!i. i ∈ B ==> f i = g i |] ==>
 finprod G f A = finprod G g B"
 proof induct
 case empty thus ?case by simp
 next
case (insert x B)
then have "finprod G f A = finprod G f (insert x B)" by simp
also from insert have "... = f x \otimes finprod G f B"
proof (intro finprod_insert)
 show "finite B" by fact
 next
 show "x \notin: B" by fact
 next
 assume "x \notin: B" "!!i. i \in insert x B \Longrightarrow f i = g i"
 "g \in insert x B \rightarrow carrier G"
 thus "f \in B \rightarrow carrier G" by fastforce
 next
 assume "x \notin: B" "!!i. i \in insert x B \Longrightarrow f i = g i"
 "g \in insert x B \rightarrow carrier G"
 thus "f x \in carrier G" by fastforce
 qed
 also from insert have "... = g x \otimes finprod G g B" by fastforce
 also from insert have "... = finprod G g (insert x B)"
by (intro finprod_insert [THEN sym]) auto
finally show ?case.
qed
with prems show ?thesis by simp
next
 case False with prems show ?thesis by (simp add: finprod_def)
qed

lemma finprod_cong:
 "[| A = B; f \in B \rightarrow carrier G = True;
 !!i. i \in B \Longrightarrow f i = g i |] ==> finprod G f A = finprod G g B"
 by (rule finprod_cong') (auto simp add: simp_implies_def)

Usually, if this rule causes a failed congruence proof error, the reason is that
the premise g \in B \rightarrow carrier G cannot be shown. Adding Pi_def to the
simpset is often useful. For this reason, finprod_cong is not added to the
simpset by default.

end

declare funcsetI [rule del]
 funcset_mem [rule del]

context comm_monoid begin

lemma finprod_0 [simp]:
 "f \in {0::nat} \rightarrow carrier G \Longrightarrow finprod G f {..0} = f 0"
by (simp add: Pi_def)
lemma finprod_Suc [simp]:
"f ∈ {...Suc n} -> carrier G ==>
 finprod G f {...Suc n} = (f (Suc n) ⊗ finprod G f {...n})"
by (simp add: Pi_def atMost_Suc)

lemma finprod_Suc2:
"f ∈ {...Suc n} -> carrier G ==>
 finprod G f {...Suc n} = (finprod G (%i. f (Suc i)) {...n} ⊗ f 0)"
proof (induct n)
case 0 thus ?case by (simp add: Pi_def)
next
case Suc thus ?case by (simp add: m_assoc Pi_def)
qed

lemma finprod_mult [simp]:
"[| f ∈ {...n} -> carrier G; g ∈ {...n} -> carrier G |
 ==> finprod G (%i. f i ⊗ g i) {...n::nat} =
 finprod G f {...n} ⊗ finprod G g {...n}" by (induct n) (simp_all add: m_ac Pi_def)

lemma finprod_reindex:
assumes fin: "finite A"
shows "f : (h ' A) -> carrier G ==> inj_on h A =>
 finprod G f (h ' A) = finprod G (%x. f (h x)) A"
using fin
by (induct (auto simp add: Pi_def)

lemma finprod_const:
assumes fin [simp]: "finite A"
 and a [simp]: "a : carrier G"
shows "finprod G (%x. a) A = a (^) card A"
using fin apply induct
apply force
apply (subst finprod_insert)
apply auto
apply (subst m_comm)
apply auto
done

lemma finprod_singleton:
assumes i_in_A: "i ∈ A" and fin_A: "finite A" and f_Pi: "f ∈ A ->
 carrier G"
shows "(⨂j∈A. if i = j then f j else 1) = f i"
using i_in_A finprod_insert [of "A - {i}" i "(λj. if i = j then f j else 1)"]
4 Cosets and Quotient Groups

definition r_coset :: "[_, 'a set, 'a] ⇒ 'a set" (infixl "#>_" 60)
where "H #>_ a = (⋃h∈H. {h ⊗_ G a})"

definition l_coset :: "[_, 'a, 'a set] ⇒ 'a set" (infixl "<#_" 60)
where "a <#_ G H = (⋃h∈H. {a ⊗_ G h})"

definition RCOSETS :: "[_, 'a set] ⇒ ('a set) set" ("rcosets__" [81] 80)
where "rcosets__ G H = (⋃a∈carrier G. {H #>_ G a})"

definition set_mult :: "[_, 'a set ,'a set] ⇒ 'a set" (infixl "<#__" 60)
where "H <#__ G K = (⋃h∈H. ⋃k∈K. {h ⊗_ G k})"

definition SET_INV :: "[_,'a set] ⇒ 'a set" ("set_inv_" [81] 80)
where "set_inv_ G H = (⋃h∈H. {inv_ G h})"

locale normal = subgroup + group +
 assumes coset_eq: "(∀x ∈ carrier G. H #> x = x <# H)"
 abbreviation normal_rel :: "[_'a set, ('a, 'b) monoid_scheme] ⇒ bool" (infixl "<__" 60)
where "H <__ G ≡ normal H G"

4.1 Basic Properties of Cosets

lemma (in group) coset_mult_assoc:
 "([| M ⊆ carrier G; g ∈ carrier G; h ∈ carrier G |]"
lemma (in group) coset_mult_one [simp]: "M ⊆ carrier G ==> M #> 1 = M"
by (force simp add: r_coset_def)

lemma (in group) coset_mult_inv1:
 "[| M #> (x ⊗ (inv y)) = M; x ∈ carrier G ; y ∈ carrier G; M ⊆ carrier G |] ==> M #> x = M #> y"
apply (erule subst [of concl: "%z. M #> x = z #> y"])
apply (simp add: coset_mult_assoc m_assoc)
done

lemma (in group) coset_mult_inv2:
 "[| M #> x = M #> y; x ∈ carrier G; y ∈ carrier G; M ⊆ carrier G |] ==> M #> (x ⊗ (inv y)) = M"
apply (simp add: coset_mult_assoc [symmetric])
apply (simp add: coset_mult_assoc)
done

lemma (in group) coset_join1:
 "[| H #> x = H; x ∈ carrier G; subgroup H G |] ==> x ∈ H"
apply (erule subst)
apply (simp add: r_coset_def)
apply (blast intro: l_one subgroup.one_closed sym)
done

lemma (in group) solve_equation:
 "[| subgroup H G; x ∈ H; y ∈ H |] =⇒ ∃ h ∈ H. y = h ⊗ x"
apply (rule bexI [of _ "y ⊗ (inv x)"])
apply (auto simp add: subgroup.m_closed subgroup.m_inv_closed m_assoc subgroup.subset [THEN subsetD])
done

lemma (in group) repr_independence:
 "[| y ∈ H #> x; x ∈ carrier G; subgroup H G |] =⇒ H #> x = H #> y"
by (auto simp add: r_coset_def m_assoc [symmetric]
 subgroup.subset [THEN subsetD]
 subgroup.m_closed solve_equation)

lemma (in group) coset_join2:
 "[| x ∈ carrier G; subgroup H G; x ∈ H |] =⇒ H #> x = H"
 — Alternative proof is to put x = 1 in repr_independence.
by (force simp add: subgroup.m_closed r_coset_def solve_equation)

lemma (in monoid) r_coset_subset_G:
 "[| H ⊆ carrier G; x ∈ carrier G |] =⇒ H #> x ⊆ carrier G"
by (auto simp add: r_coset_def)

lemma (in group) rcosI:
 "[| h ∈ H; H ⊆ carrier G; x ∈ carrier G |] ==> h ⊗ x ∈ H #> x"
by (auto simp add: r_coset_def)

lemma (in group) rcosetsI:
 "[| H ⊆ carrier G; x ∈ carrier G |] ==> H #> x ∈ rcosets H"
by (auto simp add: RCOSETS_def)

Really needed?

lemma (in group) transpose_inv:
 "[| x ⊗ y = z; x ∈ carrier G; y ∈ carrier G; z ∈ carrier G |] ==> (inv x) ⊗ z = y"
by (force simp add: m_assoc [symmetric])

lemma (in group) rcos_self: "[| x ∈ carrier G; subgroup H G |] ==> x ∈ H #> x"
apply (simp add: r_coset_def)
apply (blast intro: sym l_one subgroup.subset [THEN subsetD] subgroup.one_closed)
done

Opposite of "repr_independence"

lemma (in group) repr_independenceD:
 assumes "subgroup H G"
 assumes ycarr: "y ∈ carrier G"
 and repr: "H #> x = H #> y"
 shows "y ∈ H #> x"
proof -
 interpret subgroup H G by fact
 show ?thesis apply (subst repr)
 apply (intro rcos_self)
 apply (rule ycarr)
 done
qed

Elements of a right coset are in the carrier

lemma (in subgroup) elemrcos_carrier:
 assumes "group G"
 assumes acarr: "a ∈ carrier G"
 and a': "a' ∈ H #> a"
 shows "a' ∈ carrier G"
proof -
 interpret group G by fact
 from subset and acarr
 have "H #> a ⊆ carrier G" by (rule r_coset_subset_G)
 from this and a'

show "a' ∈ carrier G"
by fast
qed

lemma (in subgroup) rcos_const:
assumes "group G"
assumes hH: "h ∈ H"
shows "H #> h = H"
proof -
interpret group G by fact
show ?thesis apply (unfold r_coset_def)
 apply rule
 apply rule
 apply clarsimp
 apply (intro subgroup.m_closed)
 apply (rule is_subgroup)
 apply assumption
 apply (rule hH)
 apply rule
 apply simp
proof -
 fix h'
 assume h'H: "h' ∈ H"
 note carr = hH[THEN mem_carrier] h'H[THEN mem_carrier]
 from carr
 have a: "h' = (h' ⊗ inv h) ⊗ h" by (simp add: m_assoc)
 from h'H hH
 have "h' ⊗ inv h ∈ H" by simp
 from this and a
 show "∃x∈H. h' = x ⊗ h" by fast
qed

Step one for lemma rcos_module

lemma (in subgroup) rcos_module_imp:
assumes "group G"
assumes xcarr: "x ∈ carrier G"
 and x'cos: "x' ∈ H #> x"
shows "(x' ⊗ inv x) ∈ H"
proof -
interpret group G by fact
from xcarr x'cos
 have x'carr: "x' ∈ carrier G" by (rule elemrcos_carrier[OF is_group])
from xcarr
 have ixcarr: "inv x ∈ carrier G" by simp
from x'cos
 have "∃h∈H. x' = h ⊗ x"
unfolding r_coset_def

by fast

from this

obtain h

where hH: "h ∈ H"

and x': "x' = h ⊗ x"

by auto

from hH and subset

have hcarr: "h ∈ carrier G" by fast

note carr = xcarr x'carr hcarr

from x' and carr

have "x' ⊗ (inv x) = (h ⊗ x) ⊗ (inv x)" by fast

also from carr

have "... = h ⊗ (x ⊗ inv x)" by (simp add: m_assoc)

also from carr

have "... = h ⊗ 1" by simp

finally

have "x' ⊗ (inv x) = h" by simp

from hH this

show "x' ⊗ (inv x) ∈ H" by simp

qed

Step two for lemma rcos_module

lemma (in subgroup) rcos_module_rev:

assumes "group G"

assumes carr: "x ∈ carrier G" "x' ∈ carrier G"

and xixH: "(x' ⊗ inv x) ∈ H"

shows "x' ∈ H #> x"

proof -

interpret group G by fact

from xixH

have "∃h∈H. x' ⊗ (inv x) = h" by fast

from this

obtain h

where hH: "h ∈ H"

and hsym: "x' ⊗ (inv x) = h"

by fast

from hH subset have hcarr: "h ∈ carrier G" by simp

note carr = carr hcarr

from hsym[symmetric] have "h ⊗ x = x' ⊗ (inv x) ⊗ x" by fast

also from carr

have "... = x' ⊗ ((inv x) ⊗ x)" by (simp add: m_assoc)

also from carr

have "... = x' ⊗ 1" by simp

also from carr

have "... = x'" by simp

finally
have "b ⊗ x = x'" by simp
from this[symmetric] and hH
show "x' ∈ H #> x"
unfolding r_coset_def
by fast
qed

Module property of right cosets

lemma (in subgroup) rcos_module:
 assumes "group G"
 assumes carr: "x ∈ carrier G" "x' ∈ carrier G"
 shows "(x' ∈ H #> x) = (x' ⊗ inv x ∈ H)"
proof -
 interpret group G by fact
 show ?thesis proof assume "x' ∈ H #> x"
 from this and carr
 show "x' ⊗ inv x ∈ H"
 by (intro rcos_module_imp[OF is_group])
 next
 assume "x' ⊗ inv x ∈ H"
 from this and carr
 show "x' ∈ H #> x"
 by (intro rcos_module_rev[OF is_group])
 qed
qed

Right cosets are subsets of the carrier.

lemma (in subgroup) rcosets_carrier:
 assumes "group G"
 assumes XH: "X ∈ rcosets H"
 shows "X ⊆ carrier G"
proof -
 interpret group G by fact
 from XH have "∃x∈ carrier G. X = H #> x"
 unfolding RCOSETS_def
 by fast
 from this
 obtain x
 where xcarr: "x∈ carrier G"
 and X: "X = H #> x"
 by fast
 from subset and xcarr
 show "X ⊆ carrier G"
 unfolding X
 by (rule r_coset_subset_G)
 qed

Multiplication of general subsets

lemma (in monoid) set_mult_closed:
assumes Acarr: "A ⊆ carrier G"
and Bcarr: "B ⊆ carrier G"
shows "A <#> B ⊆ carrier G"

apply rule apply (simp add: set_mult_def, clarsimp)

proof -
 fix a b
 assume "a ∈ A"
 from this and Acarr
 have acarr: "a ∈ carrier G" by fast

 assume "b ∈ B"
 from this and Bcarr
 have bcarr: "b ∈ carrier G" by fast

 from acarr bcarr
 show "a ⊗ b ∈ carrier G" by (rule m_closed)

qed

lemma (in comm_group) mult_subgroups:
assumes subH: "subgroup H G"
and subK: "subgroup K G"
shows "subgroup (H <#> K) G"

apply (rule subgroup.intro)
 apply (intro set_mult_closed subgroup.subset[OF subH] subgroup.subset[OF subK])
 apply (simp add: set_mult_def)
 apply clarsimp
defer 1
 apply (simp add: set_mult_def)
defer 1
 apply (simp add: set_mult_def, clarsimp)
defer 1

proof -
 fix ha hb ka kb
 assume haH: "ha ∈ H" and hbH: "hb ∈ H" and kaK: "ka ∈ K" and kbK: "kb ∈ K"

 note carr = haH[THEN subgroup.mem_carrier[OF subH]] hbH[THEN subgroup.mem_carrier[OF subH]]
 kaK[THEN subgroup.mem_carrier[OF subK]] kbK[THEN subgroup.mem_carrier[OF subK]]
 from carr
 have "(ha ⊗ ka) ⊗ (hb ⊗ kb) = ha ⊗ (ka ⊗ hb) ⊗ kb" by (simp add: m_assoc)
 also from carr
 have "... = ha ⊗ (hb ⊗ ka) ⊗ kb" by (simp add: m_comm)
 also from carr
 have "... = (ha ⊗ hb) ⊗ (ka ⊗ kb)" by (simp add: m_assoc)
 finally
 have eq: "(ha ⊗ ka) ⊗ (hb ⊗ kb) = (ha ⊗ hb) ⊗ (ka ⊗ kb)" .

 from haH hbH have hH: "ha ⊗ hb ∈ H" by (simp add: subgroup.m_closed[OF subH])
 from kaK kbK have kK: "ka ⊗ kb ∈ K" by (simp add: subgroup.m_closed[OF subK])
from hH and kK and eq
 show "∃h'∈H. ∃k'∈K. (ha ⊗ ka) ⊗ (hb ⊗ kb) = h' ⊗ k'" by fast
next
 have "1 = 1 ⊗ 1" by simp
 from subgroup.one_closed[OF subH] subgroup.one_closed[OF subK] this
 show "∃h∈H. ∃k∈K. 1 = h ⊗ k" by fast
next
 fix h k
 assume hH: "h ∈ H"
 and kK: "k ∈ K"

 from hH[THEN subgroup.mem_carrier[OF subH]] kK[THEN subgroup.mem_carrier[OF subK]]
 have "inv (h ⊗ k) = inv h ⊗ inv k" by (simp add: inv_mult_group m_comm)

 from subgroup.m_inv_closed[OF subH hH] and subgroup.m_inv_closed[OF subK kK] and this
 show "∃ha∈H. ∃ka∈K. inv (h ⊗ k) = ha ⊗ ka" by fast
qed

lemma (in subgroup) lcos_module_rev:
 assumes "group G"
 assumes carr: "x ∈ carrier G" "x' ∈ carrier G"
 and xixH: "((inv x) ⊗ x') ∈ H"
 shows "x' ∈ x <# H"
proof -
 interpret group G by fact
 from xixH
 have "∃h∈H. (inv x) ⊗ x' = h" by fast
 from this
 obtain h
 where hH: "h ∈ H"
 and hsym: "(inv x) ⊗ x' = h"
 by fast

 from hH subset have hcarr: "h ∈ carrier G" by simp
 note carr = carr hcarr
 from hsym[symmetric] have "x ⊗ h = x ⊗ ((inv x) ⊗ x')" by fast
 also from carr
 have "... = (x ⊗ (inv x)) ⊗ x'" by (simp add: m_assoc[symmetric])
 also from carr
 have "... = 1 ⊗ x'" by simp
 also from carr
 have "... = x'" by simp
 finally
 have "x ⊗ h = x'" by simp
from this[symmetric] and hH
show "x' ∈ x <# H"
unfolding l coset_def
by fast

qed

4.2 Normal subgroups

lemma normal_imp_subgroup: "H ⊲ G ⟷ subgroup H G"
 by (simp add: normal_def subgroup_def)

lemma (in group) normalI:
 "subgroup H G ⟹ (∀ x ∈ carrier G. H #> x = x <# H) ⟹ H ⊲ G"
 by (simp add: normal_def normal_axioms_def is_group)

lemma (in normal) inv_op_closed1:
 "[x ∈ carrier G; h ∈ H] ⟹ (inv x) ↘ h ↘ x ∈ H"
apply (insert coset_eq)
apply (auto simp add: l coset_def r coset_def)
apply (drule bspec, assumption)
apply (drule equalityD1 [THEN subsetD], blast, clarify)
apply (simp add: m_assoc)
apply (simp add: m_assoc [symmetric])
done

lemma (in normal) inv_op_closed2:
 "[x ∈ carrier G; h ∈ H] ⟹ x ↘ h ↘ (inv x) ∈ H"
apply (subgoal_tac "inv (inv x) ↘ h ↘ (inv x) ∈ H")
apply (simp add:)
apply (blast intro: inv_op_closed1)
done

Alternative characterization of normal subgroups

lemma (in group) normal_inv_iff:
 "(N ⊲ G) =
 (subgroup N G & (∀ x ∈ carrier G. ∀ h ∈ N. x ⊗ h ⊗ (inv x) ∈ N))"
(is "?rhs")
proof
 assume N: "N ⊲ G"
 show ?rhs
 by (blast intro: N normal.inv_op_closed2 normal_imp_subgroup)
next
 assume ?rhs
 hence sg: "subgroup N G"
 and closed: "∀ x ∈ carrier G. ∀ h ∈ N. x ⊗ h ⊗ inv x ∈ N" by auto
 hence sb: "N ⊆ carrier G" by (simp add: subgroup.subset)
 show "N ⊲ G"
 proof (intro normalI [OF sg], simp add: l coset_def r coset_def, clarify)
 from this[symmetric] and hH
 show "x' ∈ x <# H"
fix x
assume x: "x ∈ carrier G"

show "(\{h∈N. h ⊗ x\}) = (\{h∈N. {x ⊗ h}\})"
proof
 show "(\{h∈N. h ⊗ x\}) ⊆ (\{h∈N. {x ⊗ h}\})"
 proof clarify
 fix n
 assume n: "n ∈ N"
 show "n ⊗ x ∈ (\{h∈N. {x ⊗ h}\})"
 proof
 from closed [of "inv x"]
 show "inv x ⊗ n ⊗ x ∈ N" by (simp add: x n)
 show "n ⊗ x ∈ \{x ⊗ (inv x ⊗ n ⊗ x)\}"
 by (simp add: x n m_assoc [symmetric] sb [THEN subsetD])
 qed
 qed
next
 show "(\{h∈N. {x ⊗ h}\}) ⊆ (\{h∈N. h ⊗ x\})"
 proof clarify
 fix n
 assume n: "n ∈ N"
 show "x ⊗ n ∈ (\{h∈N. h ⊗ x\})"
 proof
 show "x ⊗ n ⊗ inv x ∈ N" by (simp add: x n closed)
 show "x ⊗ n ∈ \{x ⊗ n ⊗ inv x ⊗ x\}"
 by (simp add: x n m_assoc sb [THEN subsetD])
 qed
 qed
qed

4.3 More Properties of Cosets

lemma (in group) lcos_m_assoc:
 "[| M ⊆ carrier G; g ∈ carrier G; h ∈ carrier G |] ==>
 g <# (h <# M) = (g ⊗ h) <# M"
by (force simp add: l_coset_def m_assoc)

lemma (in group) lcos_mult_one: "M ⊆ carrier G ==>
 1 <# M = M"
by (force simp add: l_coset_def)

lemma (in group) l_coset_subset_G:
 "[| H ⊆ carrier G; x ∈ carrier G |] ==> x <# H ⊆ carrier G"
by (auto simp add: l_coset_def subsetD)

lemma (in group) l_coset_swap:
 "[y ∈ x <# H; x ∈ carrier G; subgroup H G] ==> x <# y <# H"
proof (simp add: l_coset_def)
assume "∃h∈H. y = x ⊗ h"
and x: "x ∈ carrier G"
and sb: "subgroup H G"
then obtain h’ where h’: "h’ ∈ H & x ⊗ h’ = y" by blast
show "∃h∈H. x = y ⊗ h’"
proof
 show "x = y ⊗ inv h’" using h’ x sb
 (auto simp add: m_assoc subgroup.subset [THEN subsetD])
 show "inv h’ ∈ H" using h’ sb
 (auto simp add: subgroup.subset [THEN subsetD] subgroup.m_inv_closed)
qed
qed

lemma (in group) l_coset_carrier:
 "[| y ∈ x <# H; x ∈ carrier G; subgroup H G |] ==> y ∈ carrier G"
by (auto simp add: l_coset_def m_assoc subgroup.subset [THEN subsetD] subgroup.m_closed)

lemma (in group) l_repr_imp_subset:
 assumes y: "y ∈ x <# H" and x: "x ∈ carrier G" and sb: "subgroup H G"
 shows "y <# H ⊆ x <# H"
proof
 from y
 obtain h’ where "h’ ∈ H" "x ⊗ h’ = y" by (auto simp add: l_coset_def)
 thus ?thesis using x sb
 (auto simp add: l_coset_def m_assoc subgroup.subset [THEN subsetD] subgroup.m_closed)
qed

lemma (in group) l_repr_independence:
 assumes y: "y ∈ x <# H" and x: "x ∈ carrier G" and sb: "subgroup H G"
 shows "x <# H = y <# H"
proof
 show "x <# H ⊆ y <# H"
 (rule l_repr_imp_subset,
 (blast intro: l_coset_swap l_coset_carrier y x sb)+)
 show "y <# H ⊆ x <# H" by (rule l_repr_imp_subset [OF y x sb])
qed

lemma (in group) setmult_subset_G:
 "[H ⊆ carrier G; K ⊆ carrier G] ==> H <#> K ⊆ carrier G"
by (auto simp add: set_mult_def subsetD)

lemma (in group) subgroup_mult_id: "subgroup H G ==> H <#> H = H"
apply (auto simp add: subgroup.m_closed set_mult_def Sigma_def image_def)
apply (rule_tac x = x in bexI)
apply (rule bexI [of _])
apply (auto simp add: subgroup.one_closed subgroup.subset [THEN subsetD])
done

4.3.1 Set of Inverses of an r_coset.

lemma (in normal) rcos_inv:
 assumes x: "x ∈ carrier G"
 shows "set_inv (H #> x) = H #> (inv x)"
proof (simp add: r_coset_def SET_INV_def x inv_mult_group, safe)
 fix h
 assume h: "h ∈ H"
 show "inv x ⊗ inv h ∈ {j ∈ H. {j ⊗ (inv x)}}"
 proof
 show "inv x ⊗ inv h ⊗ x ∈ H" by (simp add: inv_op_closed1 h x)
 show "inv x ⊗ inv h ∈ {inv x ⊗ inv h ⊗ inv x}"
 by (simp add: h x m_assoc)
 qed
 show "h ⊗ inv x ∈ {j ∈ H. {inv x ⊗ inv j}}"
 proof
 show "x ⊗ inv h ⊗ inv x ∈ H" by (simp add: inv_op_closed2 h x)
 show "h ⊗ inv x ∈ {inv x ⊗ inv (x ⊗ inv h ⊗ inv x)}"
 by (simp add: h x m_assoc [symmetric] inv_mult_group)
 qed
qed

4.3.2 Theorems for #< with #> or #<.

lemma (in group) setmult_rcos_assoc:
 "[H ⊆ carrier G; K ⊆ carrier G; x ∈ carrier G]
 ⇒ H #< (K #> x) = (H #< K) #> x"
by (force simp add: r_coset_def set_mult_def m_assoc)

lemma (in group) rcos_assoc_lcos:
 "[H ⊆ carrier G; K ⊆ carrier G; x ∈ carrier G]
 ⇒ (H #> x) #> K = H #> (x #< K)"
by (force simp add: r_coset_def l_coset_def set_mult_def m_assoc)

lemma (in normal) rcos_mult_step1:
 "[x ∈ carrier G; y ∈ carrier G]
 ⇒ (H #> x) #< (H #> y) = (H #> (x #< H)) #> y"
by (simp add: setmult_rcos_assoc subset r_coset_subset_G l_coset_subset_G rcos_assoc_lcos)

lemma (in normal) rcos_mult_step2:
 "[x ∈ carrier G; y ∈ carrier G]
 ⇒ (H #> (x #< H)) #> y = (H #> (H #> x)) #> y"
by (insert coset_eq, simp add: normal_def)
lemma (in normal) rcos_mult_step3:
"[x ∈ carrier G; y ∈ carrier G]
⇒ (H #> (H #> x)) #> y = H #> (x ⊗ y)"
by (simp add: setmult_rcos_assoc coset_mult_assoc
 subgroup_mult_id normal.axioms subset normal_axioms)

lemma (in normal) rcos_sum:
"[x ∈ carrier G; y ∈ carrier G]
⇒ (H #> x) #> (H #> y) = H #> (x ⊗ y)"
by (simp add: rcos_mult_step1 rcos_mult_step2 rcos_mult_step3)

lemma (in normal) rcosets_mult_eq: "M ∈ rcosets H ⇒ H #> M = M"
− generalizes subgroup_mult_id
by (auto simp add: RCOSETS_def subset
 setmult_rcos_assoc subgroup_mult_id normal.axioms normal_axioms)

4.3.3 An Equivalence Relation

definition
r_congruent :: "[(‘a,’b)monoid_scheme, ‘a set] ⇒ (‘a*'a)set" ("rcong_"
where "rcong G H = {(x,y). x ∈ carrier G & y ∈ carrier G & inv G x ⊗ G y ∈ H}"

lemma (in subgroup) equiv_rcong:
assumes "group G"
shows "equiv (carrier G) (rcong H)"
proof -
interpret group G by fact
show ?thesis
proof (intro equivI)
 show "refl_on (carrier G) (rcong H)"
 by (auto simp add: r_congruent_def refl_on_def)
next
 show "sym (rcong H)"
 proof (simp add: r_congruent_def sym_def, clarify)
 fix x y
 assume [simp]: "x ∈ carrier G" "y ∈ carrier G"
 and "inv x ⊗ y ∈ H"
 hence "inv (inv x ⊗ y) ∈ H" by simp
 thus "inv y ⊗ x ∈ H" by (simp add: inv_mult_group)
 qed
next
 show "trans (rcong H)"
 proof (simp add: r_congruent_def trans_def, clarify)
 fix x y z
 assume [simp]: "x ∈ carrier G" "y ∈ carrier G" "z ∈ carrier G"
and "inv x \otimes y \in H" and "inv y \otimes z \in H"
hence "(inv x \otimes y) \otimes (inv y \otimes z) \in H" by simp
hence "inv x \otimes (y \otimes inv y) \otimes z \in H"
by (simp add: m_assoc del: r_inv Units_r_inv)
thus "inv x \otimes z \in H" by simp
qed
qed
qed

Equivalence classes of rcong correspond to left cosets. Was there a mistake in the definitions? I’d have expected them to correspond to right cosets.

lemma (in subgroup) l_coset_eq_rcong:
 assumes "group G"
 assumes a: "a \in carrier G"
 shows "a <# H = rcong H ' ' {a}"
proof -
 interpret group G by fact
 show ?thesis by (force simp add: r_congruent_def l_coset_def m_assoc [symmetric] a)
qed

4.3.4 Two Distinct Right Cosets are Disjoint

lemma (in group) rcos_equation:
 assumes "subgroup H G"
 assumes p: "ha \otimes a = h \otimes b" "a \in carrier G" "b \in carrier G" "h \in H"
 "ha \in H" "hb \in H"
 shows "hb \otimes a \in (\bigcup h \in H. \{h \otimes b\})"
proof -
 interpret subgroup H G by fact
 from p show ?thesis apply (rule_tac UN_I [of "hb \otimes ((inv ha) \otimes h)"])
 apply (simp add:)
 apply (simp add: m_assoc transpose_inv)
 done
qed

lemma (in group) rcos_disjoint:
 assumes "subgroup H G"
 assumes p: "a \in rcosets H" "b \in rcosets H" "a \neq b"
 shows "a \cap b = {}"
proof -
 interpret subgroup H G by fact
 from p show ?thesis
 apply (simp add: RCOSETS_def r_coset_def)
 apply (blast intro: rcos_equation assms sym)
 done
qed
4.4 Further lemmas for \textit{r_congruent}

The relation is a congruence

\textbf{lemma} (in normal) congruent_rcong:

shows "\text{congruent2 (rcong H) (rcong H) (λa b. a ⊖ b <$ H)"}

\textbf{proof} (intro congruent2I [of "carrier G" _ "carrier G" _] equiv_rcong is_group)

fix a b c

assume abrcong: "(a, b) ∈ rcong H"

and ccarr: "c ∈ carrier G"

from abrcong

have acarr: "a ∈ carrier G"

and bcarr: "b ∈ carrier G"

and abH: "\text{inv a ⊖ b ∈ H}"

unfolding r_congruent_def

by fast+

note carr = acarr bcarr ccarr

from ccarr and abH

have "\text{inv c ⊖ (inv a ⊖ b) ⊖ c ∈ H}" by (rule inv_op_closed1)

moreover

from carr and inv_closed

have "\text{inv c ⊖ (inv a ⊖ b) ⊖ c = (inv c ⊖ inv a) ⊖ (b ⊖ c)}"

by (force cong: m_assoc)

moreover

from carr and inv_closed

have "... = (inv (a ⊖ c)) ⊖ (b ⊖ c)"

by (simp add: inv_mult_group)

ultimately

have "(inv (a ⊖ c)) ⊖ (b ⊖ c) ∈ H" by simp

from carr and this

have "(b ⊖ c) ∈ (a ⊖ c) <$ H"

by (simp add: lcos_module_rev [OF is_group])

from carr and this and is_subgroup

show "(a ⊖ c) <$ H = (b ⊖ c) <$ H" by (intro l_repr_independence, simp+)

next

fix a b c

assume abrcong: "(a, b) ∈ rcong H"

and ccarr: "c ∈ carrier G"

from ccarr have "c ∈ Units G" by simp

hence cinvc_one: "\text{inv c ⊖ c = 1}" by (rule Units_l_inv)

from abrcong

have acarr: "a ∈ carrier G"

and bcarr: "b ∈ carrier G"

and abH: "inv a ⊖ b ∈ H"
by (unfold r_congruent_def, fast+)

note carr = acarr bcarr ccarr

from carr and inv_closed
 have "inv a ⊗ b = inv a ⊗ (1 ⊗ b)" by simp
also from carr and inv_closed
 have "... = inv a ⊗ (inv c ⊗ c) ⊗ b" by simp
also from carr and inv_closed
 have "... = (inv a ⊗ inv c) ⊗ (c ⊗ b)" by (force cong: m_assoc)
also from carr and inv_closed
 have "... = inv (c ⊗ a) ⊗ (c ⊗ b)" by (simp add: inv_mult_group)
finally
 have "inv a ⊗ b = inv (c ⊗ a) ⊗ (c ⊗ b)".
from abH and this
 have "inv (c ⊗ a) ⊗ (c ⊗ b) ∈ H" by simp

from carr and this
 have "(c ⊗ b) ∈ (c ⊗ a) <# H"
 by (simp add: lcos_module_rev[OF is_group])
from carr and this and is_subgroup
 show "(c ⊗ a) <# H = (c ⊗ b) <# H" by (intro l_repr_independence, simp+)
Qed

4.5 Order of a Group and Lagrange’s Theorem

definition
 order :: "('a, 'b) monoid_scheme ⇒ nat"
where "order S = card (carrier S)"

lemma (in group) rcosets_part_G:
 assumes "subgroup H G"
 shows "⋃(rcosets H) = carrier G"
proof -
 interpret subgroup H G by fact
 show ?thesis
 apply (rule equalityI)
 apply (force simp add: RCOSETS_def r_coset_def)
 apply (force simp add: RCOSETS_def intro: rcos_self assms)
 done
qed

lemma (in group) cosets_finite:
 "[c ∈ rcosets H; H ⊆ carrier G; finite (carrier G)] ⟹ finite c"
apply (auto simp add: RCOSETS_def)
apply (simp add: r_coset_subset_G [THEN finite_subset])
done
The next two lemmas support the proof of card_cosets_equal.

lemma (in group) inj_on_f:
 "\[H \subseteq \text{carrier } G; \ a \in \text{carrier } G \] \implies \text{inj}_on (\lambda y. y \otimes \text{inv } a) (H \#> a)"
apply (rule inj_onI)
apply (subgoal_tac "x \in \text{carrier } G \& y \in \text{carrier } G")
 prefer 2 apply (blast intro: r_coset_subset_G [THEN subsetD])
apply (simp add: subsetD)
done

lemma (in group) inj_on_g:
 "\[H \subseteq \text{carrier } G; \ a \in \text{carrier } G \] \implies \text{inj}_on (\lambda y. y \otimes a) H"
by (force simp add: inj_on_def subsetD)

lemma (in group) card_cosets_equal:
 "\[c \in \text{rcosets } H; \ H \subseteq \text{carrier } G; \ \text{finite} (\text{carrier } G) \] \implies \text{card } c = \text{card } H"
apply (auto simp add: RCOSETS_def)
apply (rule card_bij_eq)
 apply (rule inj_on_f, assumption+)
 apply (force simp add: m_assoc subsetD r_coset_def)
 apply (rule inj_on_g, assumption+)
 apply (force simp add: m_assoc subsetD r_coset_def)
The sets \(H \#> a \) and \(H \) are finite.
apply (simp add: r_coset_subset_G [THEN finite_subset])
apply (blast intro: finite_subset)
done

lemma (in group) rcosets_subset_PowG:
 "\text{subgroup } H G \implies \text{rcosets } H \subseteq \text{Pow}(\text{carrier } G)"
apply (simp add: RCOSETS_def)
apply (blast dest: r_coset_subset_G subgroup.subset)
done

theorem (in group) lagrange:
 "\[\text{finite} (\text{carrier } G); \ \text{subgroup } H G \] \implies \text{card}(\text{rcosets } H) \times \text{card}(H) = \text{order}(G)"
apply (simp (no_asm_simp) add: order_def rcosets_part_G [symmetric])
apply (subst mult.commute)
apply (rule card_partition)
 apply (simp add: rcosets_subset_PowG [THEN finite_subset])
 apply (simp add: rcosets_part_G)
 apply (simp add: card_cosets_equal subgroup.subset)
 apply (simp add: rcos_disjoint)
done
4.6 Quotient Groups: Factorization of a Group

Definition

\[
\text{FactGroup} :: (\text{'a,'b} \text{ monoid_scheme}, \text{'a set}) \Rightarrow (\text{'a set} \text{ monoid})
\]\n
- Actually defined for groups rather than monoids

where \[\text{FactGroup} \ G \ H = ([\text{carrier} = \text{rcosets}_G \ H, \ \text{mult} = \text{set_mult} \ G, \ \text{one} = H]\]

Lemma (in normal) setmult_closed:

\[\text{if } K_1 \in \text{rcosets} \ H; \ K_2 \in \text{rcosets} \ H \text{ then } K_1 \# K_2 \in \text{rcosets} \ H\]

by (auto simp add: rcos_sum RCOSETS_def)

Lemma (in normal) setinv_closed:

\[K \in \text{rcosets} \ H \Rightarrow \text{set_inv} \ K \in \text{rcosets} \ H\]

by (auto simp add: rcos_inv RCOSETS_def)

Lemma (in normal) rcosets_assoc:

\[\text{if } M_1 \in \text{rcosets} \ H; \ M_2 \in \text{rcosets} \ H; \ M_3 \in \text{rcosets} \ H \text{ then } M_1 \# M_2 \# M_3 = M_1 \# (M_2 \# M_3)\]

by (auto simp add: RCOSETS_def rcos_sum m_assoc)

Lemma (in subgroup) subgroup_in_rcosets:

assumes "group G"

shows "H \in \text{rcosets} \ H"

proof -
interpret \ G \ by fact
from \ subgroup_axioms \ have "H \# 1 = H"
by (rule coset_join2) auto
then show ?thesis
by (auto simp add: RCOSETS_def)

qed

Lemma (in normal) rcosets_inv_mult_group_eq:

\[M \in \text{rcosets} \ H \Rightarrow \text{set_inv} \ M \# M = H\]

by (auto simp add: RCOSETS_def rcos_inv rcos_sum subgroup.subset normal.axioms normal_axioms)

Theorem (in normal) factorgroup_is_group:

"group (G Mod H)"

apply (simp add: FactGroup_def)
apply (rule groupI)
apply (simp add: setmult_closed)
apply (simp add: normal_imp_subgroup subgroup_in_rcosets [OF is_group])
apply (simp add: restrictI setmult_closed rcosets_assoc)
apply (simp add: normal_imp_subgroup subgroup_in_rcosets rcosets_mult_eq)
apply (auto dest: rcosets_inv_mult_group_eq simp add: setinv_closed)
done
lemma mult_FactGroup [simp]: "X ⊗ (G Mod H) X' = X <#> G X'"
by (simp add: FactGroup_def)

lemma (in normal) inv_FactGroup:
"X ∈ carrier (G Mod H) =⇒ inv_{G Mod H} X = set_inv X"
apply (rule group.inv_equality [OF factorgroup_is_group])
apply (simp_all add: FactGroup_def setinv_closed rcosets_inv_mult_group_eq)
done

The coset map is a homomorphism from G to the quotient group G Mod H

lemma (in normal) r_coset_hom_Mod:
"(λa. H #> a) ∈ hom G (G Mod H)"
by (auto simp add: FactGroup_def RCOSETS_def Pi_def hom_def rcos_sum)

4.7 The First Isomorphism Theorem

The quotient by the kernel of a homomorphism is isomorphic to the range
of that homomorphism.

definition
 kernel :: "('a, 'm) monoid_scheme ⇒ ('b, 'n) monoid_scheme ⇒ ('a ⇒ 'b) ⇒ 'a set"
 -- the kernel of a homomorphism
 where "kernel G H h = {x. x ∈ carrier G & h x = 1_H}"

lemma (in group_hom) subgroup_kernel: "subgroup (kernel G H h) G"
apply (rule subgroup.intro)
apply (auto simp add: kernel_def group.intro is_group)
done

The kernel of a homomorphism is a normal subgroup

lemma (in group_hom) normal_kernel: "(kernel G H h) ◁ G"
apply (simp add: G.normal_inv_iff subgroup_kernel)
apply (simp add: kernel_def)
done

lemma (in group_hom) FactGroup_nonempty:
 assumes X: "X ∈ carrier (G Mod kernel G H h)"
 shows "X ≠ {}"
proof -
 from X
 obtain g where "g ∈ carrier G"
 and "X = kernel G H h #> g"
 by (auto simp add: FactGroup_def RCOSETS_def)
 thus ?thesis
 by (auto simp add: kernel_def r_coset_def image_def intro: hom_one)
qed
Lemma \((\text{in \ group_hom})\) \text{FactGroup_the_elem_mem}:
\begin{align*}
\text{assumes } & X: "X \in \text{carrier } (G \text{ Mod } (\text{kernel } G \text{ H } h))" \\
\text{shows } & "\text{the_elem } (h'X) \in \text{carrier } H"
\end{align*}

\text{proof -}
\begin{itemize}
\item from \(X\) obtain \(g\) where \(g: "g \in \text{carrier } G"\)
\begin{itemize}
\item and \("X = \text{kernel } G \text{ H } h \#> g"\)
\end{itemize}
\item hence \("h'X = \{h g\}" by (auto simp add: \text{kernel}_def \text{r_coset}_def \text{image}_def \(g\))
\end{itemize}
thus \(\text{thesis}\) by (auto simp add: \(g\))
\end{itemize}
\text{qed}

Lemma \((\text{in \ group_hom})\) \text{FactGroup_hom}:
\begin{align*}
"(\lambda X. \text{the_elem } (h'X)) &\in \text{hom } (G \text{ Mod } (\text{kernel } G \text{ H } h)) H"
\end{align*}
\text{apply (simp add: \text{hom}_def \text{FactGroup_the_elem_mem} \text{normal}_factor_group_is_group \\
[OF \text{normal}_kernel] \text{group}_axioms \text{monoid}_m_closed)\}
\text{proof (intro ballI)}
\begin{itemize}
\item fix \(X\) and \(X'\)
\item assume \(X: "X \in \text{carrier } (G \text{ Mod } \text{kernel } G \text{ H } h)"\)
\item and \(X': "X' \in \text{carrier } (G \text{ Mod } \text{kernel } G \text{ H } h)"\)
\item then obtain \(g\) and \(g'\)
\begin{itemize}
\item where \("g \in \text{carrier } G"\) and \("g' \in \text{carrier } G"\)
\item and \("X = \text{kernel } G \text{ H } h \#> g"\) and \("X' = \text{kernel } G \text{ H } h \#> g'"\)
\end{itemize}
\item hence \("h' (X \#> X') = \{h g \otimes_H h g'\}" using \(X X'\)\)
\begin{itemize}
\item by (auto dest!: FactGroup_nonempty)
\item simp add: \text{set_mult}_def \text{image}_eq_UN \\
\text{subsetD [OF Xsub] subsetD [OF X'sub]})\)
\item thus \"the_elem \((h' (X \#> X')) = the_elem \((h' X) \otimes_H the_elem \(h' X')\)"
\item by (simp add: all \text{image}_eq_UN FactGroup_nonempty \(X X'\))
\end{itemize}
\end{itemize}
\text{qed}

Lemma for the following injectivity result

Lemma \((\text{in \ group_hom})\) \text{FactGroup_subset}:
\begin{align*}
"[g \in \text{carrier } G; g' \in \text{carrier } G; h g = h g'] \\
\implies \text{kernel } G \text{ H } h \#> g \subseteq \text{kernel } G \text{ H } h \#> g'"
\end{align*}
\text{apply (clarsimp simp add: \text{kernel}_def \text{r_coset}_def \text{image}_def)\}
\text{apply (rename_tac \(y\))\}
\text{apply (rule_tac \(x="y \otimes g \otimes inv g'"\) in exI)\}
\text{apply (simp add: \text{G}_m_assoc)\}
\text{done}

Lemma \((\text{in \ group_hom})\) \text{FactGroup_inj_on}:
"inj_on (λX. the_elem (h · X)) (carrier (G Mod kernel G H h))"

proof (simp add: inj_on_def, clarify)
 fix X and X'
 assume X: "X ∈ carrier (G Mod kernel G H h)"
 and X': "X' ∈ carrier (G Mod kernel G H h)"
 then obtain g and g'
 where gX: "g ∈ carrier G" "g' ∈ carrier G"
 "X = kernel G H h #> g" "X' = kernel G H h #> g'"
 by (auto simp add: FactGroup_def RCOSETS_def)
 hence all: "∀x∈X. h x = h g" "∀x∈X'. h x = h g'"
 by (force simp add: kernel_def r_coset_def image_def)+
 assume "the_elem (h · X) = the_elem (h · X')"
 hence h: "h g = h g'"
 by (simp add: image_eq_UN all FactGroup_nonempty X X')
 show "X=X'" by (rule equalityI) (simp_all add: FactGroup_subset h gX)
qed

If the homomorphism h is onto H, then so is the homomorphism from the quotient group

lemma (in group_hom) FactGroup_onto:
 assumes h: "h ' carrier G = carrier H"
 shows "(λX. the_elem (h · X)) ' carrier (G Mod kernel G H h) ⊆ carrier H"
proof
 show "(λX. the_elem (h · X)) ' carrier (G Mod kernel G H h) ⊆ carrier H"
 by (auto simp add: FactGroup_the_elem_mem)
 show "carrier H ⊆ (λX. the_elem (h · X)) ' carrier (G Mod kernel G H h)"
 proof
 fix y
 assume y: "y ∈ carrier H"
 with h obtain g where g: "g ∈ carrier G" "h g = y"
 by (blast elim: equalityE)
 hence "(⋃x∈kernel G H h #> g. {h x}) = {y}"
 by (auto simp add: y kernel_def r_coset_def)
 with g show "y ∈ (λX. the_elem (h · X)) ' carrier (G Mod kernel G H h)"
 by (auto intro!: bexI simp add: FactGroup_def RCOSETS_def image_eq_UN)
 qed
qqed

If h is a homomorphism from G onto H, then the quotient group G Mod kernel G H h is isomorphic to H.

theorem (in group_hom) FactGroup_iso:
 "h ' carrier G = carrier H
 ⇒ (λX. the_elem (h·X)) ∈ (G Mod (kernel G H h)) ≃ H"
5 Sylow’s Theorem

5.1 The Combinatorial Argument Underlying the First Sylow Theorem

definition
 exponent :: "nat => nat => nat"
 where "exponent p s = (if prime p then (GREATEST r. p^r dvd s) else 0)"

Prime Theorems

lemma prime_iff:
 "(prime p) = (Suc 0 < p & (∀ a b. p dvd a*b --> (p dvd a) | (p dvd b)))"
apply (auto simp add: prime_gt_Suc_0_nat)
by (metis (full_types) One_nat_def Suc_lessD dvd.order_refl nat_dvd_not_less
 not_prime_eq_prod_nat)

lemma zero_less_prime_power:
 fixes p::nat shows "prime p ==> 0 < p^a"
by (force simp add: prime_iff)

lemma zero_less_card_empty: "[| finite S; S ≠ {} |] ==> 0 < card(S)"
by (rule ccontr, simp)

lemma prime_dvd_cases:
 fixes p::nat
 shows "[| p*k dvd m*n; prime p |] ==> (∃ x. k dvd x*n & m = p*x) | (∃ y. k dvd m*y & n = p*y)"
apply (simp add: prime_iff)
apply (frule dvd_mult_left)
apply (subgoal_tac "p dvd m | p dvd n")
 prefer 2 apply blast
apply (erule disjE)
apply (rule disjI1)
apply (rule_tac [2] disjI2)
apply (auto elim!: dvdE)
done
lemma prime_power_dvd_cases [rule_format (no_asm)]:
fixed p::nat
 shows "prime p
 ==> \forall m n. p^c dvd m*n -->
 (\forall a b. a+b = Suc c --> p^a dvd m | p^b dvd n)"
apply (induct c)
apply (metis dvd_1_left nat_power_eq_Suc_0_iff one_is_add)
apply simp
apply clarify
apply (erule prime_dvd_cases [THEN disjE], assumption, auto)
 apply (case_tac "a")
 apply simp
 apply clarify
 apply (rule spec, drule spec, erule (1) notE impE)
 apply (drule_tac x = nat in spec)
 apply simp
apply (case_tac "b")
apply simp
apply clarify
apply (drule spec, drule spec, erule (1) notE impE)
apply (drule_tac x = a in spec)
apply simp
apply simp
apply (case_tac "b")
apply simp
apply clarify
apply (drule spec, drule spec, erule (1) notE impE)
apply (drule_tac x = nat in spec)
apply simp
done

lemma div_combine:
fixed p::nat
 shows
"\{ | prime p; ~ (p ^ (Suc r) dvd n); p^(a+r) dvd n*k |\} ==> p ^ a dvd k"
b by (metis add_Suc add.commute prime_power_dvd_cases)

lemma Suc_le_power: "Suc 0 < p ==> Suc n <= p^n"
apply (induct n)
apply simp (no_asm_simp)
apply simp
apply (subgoal_tac "2 * n + 2 <= p * p^n", simp)
apply (subgoal_tac "2 * p^n <= p * p^n")
apply arith
apply (drule_tac k = 2 in mult_le_mono2, simp)
done
lemma power_dvd_bound: "[| p^n dvd a; Suc 0 < p; a > 0 |] ==> n < a"
apply (drule dvd_imp_le)
apply (drule_tac [2] n = n in Suc_le_power, auto)
done

Exponent Theorems

lemma exponent_ge [rule_format]:
"[| p^k dvd n; prime p; 0 < n |] ==> k <= exponent p n"
apply (simp add: exponent_def)
apply (erule Greatest_le)
apply (blast dest: prime_gt_Suc_0_nat power_dvd_bound)
done

lemma power_exponent_dvd: "s > 0 ==> (p ^ exponent p s) dvd s"
apply (simp add: exponent_def)
apply clarify
apply (rule_tac k = 0 in GreatestI)
pref 2 apply (blast dest: prime_gt_Suc_0_nat power_dvd_bound, simp)
done

lemma power_Suc_exponent_Not_dvd:
"[| (p * p ^ exponent p s) dvd s; prime p |] ==> s = 0"
apply (subgoal_tac "p ^ Suc (exponent p s) dvd s")
prefer 2 apply simp
apply (rule ccontr)
apply (drule exponent_ge, auto)
done

lemma exponent_power_eq [simp]: "prime p ==> exponent p (p^a) = a"
apply (simp add: exponent_def)
apply (rule Greatest_equality, simp)
apply (simp (no_asm_simp) add: prime_gt_Suc_0_nat power_dvd_imp_le)
done

lemma exponent_equalityI:
"!r::nat. (p^r dvd a) = (p^r dvd b) ==> exponent p a = exponent p b"
by (simp (no_asm_simp) add: exponent_def)

lemma exponent_eq_0 [simp]: "¬ prime p ==> exponent p s = 0"
by (simp (no_asm_simp) add: exponent_def)

lemma exponent_mult_add1: "[| a > 0; b > 0 |]
 ==> (exponent p a) + (exponent p b) <= exponent p (a * b)"
apply (case_tac "prime p")
apply (rule exponent_ge)
apply (auto simp add: power_add)
by (metis mult_dvd_mono power_exponent_dvd)
lemma exponent_mult_add2: "[| a > 0; b > 0 |]
 ==> exponent p (a * b) <= (exponent p a) + (exponent p b)"
apply (case_tac "prime p")
apply (rule leI, clarify)
apply (cut_tac p = p and s = "a*b" in power_exponent_dvd, auto)
apply (subgoal_tac "p ^ (Suc (exponent p a + exponent p b)) dvd a * b")
apply (rule_tac [2] le_imp_power_dvd [THEN dvd_trans])
 prefer 3 apply assumption
 prefer 2 apply simp
apply (frule_tac a = "Suc (exponent p a) " and b = "Suc (exponent p b)
 " in prime_power_dvd_cases)
 apply (assumption, force, simp)
apply (blast dest: power_Suc_exponent_Not_dvd)
done

lemma exponent_mult_add: "[| a > 0; b > 0 |]
 ==> exponent p (a * b) = (exponent p a) + (exponent p b)"
bysimp intro: exponent_mult_add1 exponent_mult_add2 order_antisym

lemma not_divides_exponent_0: "¬ (p dvd n) ==> exponent p n = 0"
apply (case_tac "exponent p n", simp)
apply (case_tac "n", simp)
apply (cut_tac s = n and p = p in power_exponent_dvd)
apply (auto dest: dvd_mult_left)
done

lemma exponent_1_eq_0 [simp]:
 fixes p::nat
 shows "exponent p (Suc 0) = 0"
apply (case_tac "prime p")
apply (metis exponent_power_eq nat_power_eq_Suc_0_iff)
apply (simp add: prime_iff not_divides_exponent_0)
done

Main Combinatorial Argument

lemma gcd_mult': fixes a::nat shows "gcd b (a * b) = b"
bysimp add: mult.commute[of a b]

lemma le_extend_mult: "[| c > 0; a <= b |] ==> a <= b * (c::nat)"
apply (rule_tac P = "∀x. x <= b * c" in subst)
apply (rule_tac [2] mult_1_right)
apply (rule_tac [2] mult_le_mono, auto)
done

lemma p_fac_forw_lemma:
 "[| (m::nat) > 0; k > 0; k < p^a; (p^r) dvd (p^a)* m - k |
 ==> r <=

apply (rule notnotD)
apply (rule notI)
apply (drule contrapos_nn [OF _ leI, THEN notnotD], assumption)
apply (drule less_imp_le [of a])
apply (drule le_imp_power_dvd)
apply (drule_tac b = "p ^ r" in dvd_trans, assumption)
apply (metis diff_is_0_eq dvd_diffD1 gcd_dvd2_nat gcd_mult' gr0I le_extend_mult
less_diff_conv nat_dvd_not_less mult.commute not_add_less2 xt1(10))
done

lemma p_fac_forw: "[| (m::nat) > 0; k>0; k < p^a; (p^r) dvd (p^a)* m - k |
==> (p^r) dvd (p^a) - k"
apply (frule p_fac_forw_lemma [THEN le_imp_power_dvd, of _ k p], auto)
apply (subgoal_tac "p^r dvd p^a*m")
 prefer 2 apply (blast intro: dvd_mult2)
apply (drule dvd_diffD1)
 apply assumption
 prefer 2 apply (blast intro: dvd_diff_nat)
apply (drule gr0_implies_Suc, auto)
done

lemma r_le_a_forw: "[| (k::nat) > 0; k < p^a; p>0; (p^r) dvd (p^a) - k |
==> r <= a"
by (rule_tac m = "Suc 0" in p_fac_forw_lemma, auto)

lemma p_fac_backw: "[| m>0; k>0; (p::nat) ≠ 0; k < p^a; (p^r) dvd p^a - k |
==> (p^r) dvd (p^a)*m - k"
apply (frule_tac k1 = k and p1 = p in r_le_a_forw [THEN le_imp_power_dvd],
auto)
apply (subgoal_tac "p^r dvd p^a*m")
 prefer 2 apply (blast intro: dvd_mult2)
apply (drule dvd_diffD1)
 apply assumption
 prefer 2 apply (blast intro: dvd_diff_nat)
apply (drule less_imp_Suc_add, auto)
done

lemma exponent_p_a_m_k_equation: "[| m>0; k>0; (p::nat) ≠ 0; k < p^a |
==> exponent p (p^a * m - k) = exponent p (p^a - k)"
apply (blast intro: exponent_equalityI p_fac_forw p_fac_backw)
done

Suc rules that we have to delete from the simpset
lemmas bad_Sucs = binomial_Suc_Suc mult_Suc mult_Suc_right
lemma p_not_div_choose_lemma [rule_format]:
 "[| ∀ i. Suc i < K --> exponent p (Suc i) = exponent p (Suc(j+i))]|]
 ==> k<K --> exponent p ((j+k) choose k) = 0"
apply (cases "prime p")
prefer 2 apply simp
apply (induct k)
apply (simp (no_asm))

apply (subgoal_tac "((Suc (j+k) choose Suc k) > 0")
prefer 2 apply (simp, clarify)
apply (subgoal_tac "exponent p ((Suc (j+k) choose Suc k) * Suc k) =
 exponent p (Suc k)")

First, use the assumed equation. We simplify the LHS to exponent p (Suc (j + k) choose Suc k) + exponent p (Suc k) the common terms cancel, proving the conclusion.

 apply (simp del: bad_Sucs add: exponent_mult_add)

Establishing the equation requires first applying Suc_times_binomial_eq ...

 apply (simp del: bad_Sucs add: Suc_times_binomial_eq [symmetric])

...then exponent_mult_add and the quantified premise.

 apply (simp del: bad_Sucs add: exponent_mult_add)
done

lemma p_not_div_choose:
 "[| k<K; k<n;
 ∀ j. 0<j & j<K --> exponent p (n - k + (K - j)) = exponent p (K - j)|]
 ==> exponent p (n choose k) = 0"
apply (cut_tac j = "n-k" and k = k and p = p in p_not_div_choose_lemma)
prefer 3 apply simp
prefer 2 apply assumption
apply (drule_tac x = "K - Suc i" in spec)
apply (simp add: Suc_diff_le)
done

lemma const_p_fac_right:
 "m>0 ==> exponent p ((p^a * m - Suc 0) choose (p^a - Suc 0)) = 0"
apply (case_tac "prime p")
prefer 2 apply simp
apply (frule_tac a = a in zero_less_prime_power)
apply (rule_tac K = "p^n" in p_not_div_choose)
 apply simp
 apply simp
apply (case_tac "m")
apply (case_tac [2] "p^a")
apply auto

apply (subgoal_tac "0<p")
prefer 2 apply (force dest!: prime_gt_Suc_0_nat)
apply (subst exponent_p_a_m_k_equation, auto)
done

lemma const_p_fac:
"m>0 ==> exponent p (((p^a) * m) choose p^a) = exponent p m"
apply (case_tac "prime p")
prefer 2 apply simp
apply (subgoal_tac "0 < p^a * m & p^a <= p^a * m")
prefer 2 apply (force simp add: prime_iff)

A similar trick to the one used in p_not_div_choose_lemma: insert an equation;
use exponent_mult_add on the LHS; on the RHS, first transform the binomial
coefficient, then use exponent_mult_add.

apply (subgoal_tac "exponent p ((((p^a) * m) choose p^a) * p^a) =
 a + exponent p m")
apply (simp add: exponent_mult_add)

one subgoal left!

apply (subst times_binomial_minus1_eq, simp, simp)
apply (subst exponent_mult_add, simp)
apply (simp (no_asm_simp))
apply arith
apply (simp del: bad_Sucs add: exponent_mult_add const_p_fac_right)
done

end

theory Sylow
imports Coset Exponent
begin

See also [3].

The combinatorial argument is in theory Exponent

locale sylow = group +
 fixes p and a and m and calM and RelM
 assumes prime_p: "prime p"
 and order_G: "order(G) = (p^a) * m"
 and finite_G [iff]: "finite (carrier G)"
 defines "calM == {s. s ⊆ carrier(G) & card(s) = p^a}"
 and "RelM == {(N1,N2). N1 ∈ calM & N2 ∈ calM &
 (∃g ∈ carrier(G). N1 = (N2 #> g))}"
lemma (in sylow) RelM_refl_on: "refl_on calM RelM"
apply (auto simp add: refl_on_def RelM_def calM_def)
apply (blast intro!: coset_mult_one [symmetric])
done

lemma (in sylow) RelM_sym: "sym RelM"
proof (unfold sym_def RelM_def, clarify)
 fix y g
 assume "y ∈ calM"
 and g: "g ∈ carrier G"
 hence "y = y #> g #> (inv g)" by (simp add: coset_mult_assoc calM_def)
 thus "∃g'∈carrier G. y = y #> g #> g'" by (blast intro: g)
qed

lemma (in sylow) RelM_trans: "trans RelM"
by (auto simp add: trans_def RelM_def calM_def coset_mult_assoc)

lemma (in sylow) RelM_equiv: "equiv calM RelM"
apply (unfold equiv_def)
apply (blast intro: RelM_refl_on RelM_sym RelM_trans)
done

lemma (in sylow) M_subset_calM_prep: "M' ∈ calM // RelM ==> M' ⊆ calM"
apply (unfold RelM_def)
apply (blast elim!: quotientE)
done

5.2 Main Part of the Proof
locale sylow_central = sylow +
 fixes H and M1 and M
 assumes M_in_quot: "M ∈ calM // RelM"
 and not_dvd_M: "¬ (p ^ Suc(exponent p m) dvd card(M))"
 and M1_in_M: "M1 ∈ M"
 defines "H == {g. g ∈ carrier G & M1 #> g = M1}"
lemma (in sylow_central) M_subset_calM: "M ⊆ calM"
by (rule M_in_quot [THEN M_subset_calM_prep])

lemma (in sylow_central) card_M1: "card(M1) = p^a"
apply (cut_tac M_subset_calM M1_in_M)
apply (simp add: calM_def, blast)
done

lemma card_nonempty: "0 < card(S) ==> S ≠ {}"
by force

lemma (in sylow_central) exists_x_in_M1: "∃x. x ∈ M1"
apply (subgoal_tac "0 < card M1")
apply (blast dest: card_nonempty)
apply (cut_tac prime_p [THEN prime_gt_Suc_0_nat])
apply (simp (no_asm_simp) add: card_M1)
done

lemma (in sylow_central) M1_subset_G [simp]: "M1 ⊆ carrier G"
apply (rule subsetD [THEN PowD])
apply (rule_tac [2] M1_in_M)
apply (rule M_subset_calM [THEN subset_trans])
apply (auto simp add: calM_def)
done

lemma (in sylow_central) M1_inj_H: "∃f ∈ H → M1. inj_on f H"
proof -
from exists_x_in_M1 obtain m1 where m1M: "m1 ∈ M1"..
have m1G: "m1 ∈ carrier G" by (simp add: m1M M1_subset_G [THEN subsetD])
show ?thesis
proof
show "inj_on (λz∈H. m1 ⊗ z) H"
by (simp add: inj_on_def l_cancel [of m1 x y, THEN iffD1] H_def m1G)
show "restrict (op ⊗ m1) H ∈ H → M1"
proof (rule restrictI)
fix z assume zH: "z ∈ H"
show "m1 ⊗ z ∈ M1"
proof -
from zH
have zG: "z ∈ carrier G" and M1zeq: "M1 #> z = M1"
by (auto simp add: H_def)
show ?thesis
by (rule subst [OF M1zeq], simp add: m1M zG rcosI)
qed
qed
qed

5.3 Discharging the Assumptions of sylow_central

lemma (in sylow) EmptyNotInEquivSet: "{} ∉ calM // RelM"
by (blast elim!: quotientE dest: RelM_equiv [THEN equiv_class_self])

lemma (in sylow) existsM1inM: "M ∈ calM // RelM ==> ∃M1. M1 ∈ M"
apply (subgoal_tac "M ≠ {}")
apply blast
apply (cut_tac EmptyNotInEquivSet, blast)
done

lemma (in sylow) zero_less_o_G: "0 < order(G)"
apply (unfold order_def)
apply (blast intro: zero_less_card_empty)
done

lemma (in sylow) zero_less_m: "m > 0"
apply (cut_tac zero_less_o_G)
apply (simp add: order_G)
done

lemma (in sylow) card_calM: "card(calM) = (p^a) * m choose p^a"
by (simp add: calM_def n_subsets order_G [symmetric] order_def)

lemma (in sylow) zero_less_card_calM: "card calM > 0"
by (simp add: card_calM zero_less_binomial le_extend_mult zero_less_m)

lemma (in sylow) max_p_div_calM: "~ (p ^ Suc(exponent p m) dvd card(calM))"
apply (subgoal_tac "exponent p m = exponent p (card calM) ")
apply (cut_tac zero_less_card_calM prime_p)
apply (force dest: power_Suc_exponent_Not_dvd)
apply (simp add: card_calM zero_less_m [THEN const_p_fac])
done

lemma (in sylow) finite_calM: "finite calM"
apply (unfold calM_def)
apply (rule_tac B = "Pow (carrier G) " in finite_subset)
apply auto
done

lemma (in sylow) lemma_A1: "\exists M \in calM // RelM. ~ (p ^ Suc(exponent p m) dvd card(M))"
apply (rule max_p_div_calM [THEN contrapos_np])
apply (simp add: finite_calM equiv_imp_dvd_card [OF _ RelM_equiv])
done

5.3.1 Introduction and Destruct Rules for H

lemma (in sylow_central) H_I: "\[| g \in carrier G; M1 #> g = M1|] ==> g \in H"
by (simp add: H_def)

lemma (in sylow_central) H_into_carrier_G: "x \in H ==> x \in carrier G"
by (simp add: H_def)

lemma (in sylow_central) in_H_imp_eq: "g : H ==> M1 #> g = M1"
by (simp add: H_def)

lemma (in sylow_central) H_m_closed: "\[| x\in H; y\in H|] ==> x \otimes y \in H"
apply (unfold H_def)
apply (simp add: coset_mult_assoc [symmetric])
done

lemma (in sylow_central) H_not_empty: "H ≠ {}"
apply (simp add: H_def)
apply (rule exI [of _ 1], simp)
done

lemma (in sylow_central) H_is_subgroup: "subgroup H G"
apply (rule subgroupI)
apply (rule subsetI)
apply (erule H_into_carrier_G)
apply (rule H_not_empty)
apply (simp add: H_def, clarify)
apply (erule_tac P = "%z. ?lhs(z) = M1" in subst)
apply (simp add: coset_mult_assoc)
apply (blast intro: H_m_closed)
done

lemma (in sylow_central) rcosetGM1g_subset_G:
 "[| g ∈ carrier G; x ∈ M1 #> g |] ==> x ∈ carrier G"
by (blast intro: M1_subset_G [THEN r_coset_subset_G, THEN subsetD])

lemma (in sylow_central) finite_M1: "finite M1"
by (rule finite_subset [OF M1_subset_G finite_G])

lemma (in sylow_central) finite_rcosetGM1g: "g ∈ carrier G ==> finite (M1 #> g)"
apply (rule finite_subset)
apply (rule subsetI)
apply (erule rcosetGM1g_subset_G, assumption)
apply (rule finite_G)
done

lemma (in sylow_central) M1_cardeq_rcosetGM1g:
 "g ∈ carrier G ==> card(M1 #> g) = card(M1)"
by (simp (no_asm_simp) add: card_cosets_equal rcosetsI)

lemma (in sylow_central) M1_RelM_rcosetGM1g:
 "g ∈ carrier G ==> (M1, M1 #> g) ∈ RelM"
apply (simp add: RelM_def calM_def card_M1)
apply (rule conjI)
apply (blast intro: rcosetGM1g_subset_G)
apply (simp add: card_M1 M1_cardeq_rcosetGM1g)
apply (metis M1_subset_G coset_mult_assoc coset_mult_one r_inv_ex)
done
5.4 Equal Cardinalities of \(M \) and the Set of Cosets

Injections between \(M \) and \(rcosets_G \) \(H \) show that their cardinalities are equal.

Lemma \(\text{ElemClassEquiv} \):

\[
\text{\textquote{equiv \text{A r; C \in A // r}}} \implies \forall x \in C. \forall y \in C. (x, y) \in r
\]

by \((\text{unfold equiv_def quotient_def sym_def trans_def, blast})\)

Lemma \(\text{(in sylow_central) M_elem_map} \):

\[
\text{\textquote{\text{M2 \in M \implies \exists g. g \in carrier G & M1 \#> g = M2}}}
\]

apply \((\text{cut_tac M1_in_M M_in_quot [THEN RelM_equiv [THEN ElemClassEquiv] \]}))\)

apply \((\text{simp add: RelM_def})\)

apply \((\text{blast dest!: bspec})\)

done

Lemmas \(\text{(in sylow_central) M_elem_map_carrier} = \)

\(M_elem_map \) \(\text{[THEN someI_ex, THEN conjunct1]} \)

Lemmas \(\text{(in sylow_central) M_elem_map_eq} = \)

\(M_elem_map \) \(\text{[THEN someI_ex, THEN conjunct2]} \)

Lemma \(\text{(in sylow_central) M_funcset_rcosets_H} \):

\[
\text{\textquote{\(\forall x : M. H \#> (\text{SOME g. g \in carrier G & M1 \#> g = x}) \in M \rightarrow r\cosets H \)}}
\]

by \((\text{metis (lifting) H_is_subgroup M_elem_map_carrier r\cosetsI restrictI subgroup_imp_subset})\)

Lemma \(\text{(in sylow_central) inj_M_G_mod_H} \):

\[
\text{\textquote{\exists f \in M \rightarrow r\cosets H. inj_on f M}}
\]

apply \((\text{rule bexI})\)

apply \((\text{rule_tac [2] M_funcset_rcosets_H})\)

apply \((\text{rule inj_onI, simp})\)

apply \((\text{rule trans [OF _ M_elem_map_eq])})\)

prefer 2 apply assumption

apply \((\text{rule M_elem_map_eq [symmetric, THEN trans], assumption})\)

apply \((\text{rule coset_mult_inv1})\)

apply \((\text{erule_tac [2] M_elem_map_carrier}+)\)

apply \((\text{rule_tac [2] M1_subset_G})\)

apply \((\text{rule coset_join1 [THEN in_H_imp_eq])})\)

apply \((\text{rule_tac [3] H_is_subgroup})\)

prefer 2 apply \((\text{blast intro: M_elem_map_carrier})\)

apply \((\text{simp add: coset_mult_inv2 H_def M_elem_map_carrier subset_eq})\)

done

5.4.1 The Opposite Injection

Lemma \(\text{(in sylow_central) H_elem_map} \):

\[
\text{\textquote{\text{H1 \in r\cosets H \implies \exists g. g \in carrier G & H \#> g = H1}}}\]

by \((\text{auto simp add: RCOSETS_def})\)

Lemmas \(\text{(in sylow_central) H_elem_map_carrier} = \)
H Elem_map [THEN someI_ex, THEN conjunct1]

lemmas (in sylow central) H Elem_map_eq =
H Elem_map [THEN someI_ex, THEN conjunct2]

lemma (in sylow central) rcosets H_funcset_M:
"(@C ∈ rcosets H. M1 #> (@g. g ∈ carrier G ∧ H #> g = C)) ∈ rcosets H → M"
apply (simp add: RCOSETS_def)
apply (fast intro: someI2 intro!: M1_in_M in_quotient_imp_closed [OF RelM_equiv M_in_quot _ M1_RelM_rcosetGM1g])
done

close to a duplicate of inj M_GmodH

lemma (in sylow central) inj GmodH_M:
"∃g ∈ rcosets H → M. inj_on g (rcosets H)"
apply (rule bexI)
apply (rule_tac _ rcosets_H_funcset_M)
apply (rule inj_onI)
apply (simp)
apply (rule trans [OF _ H Elem_map_eq])
prefer 2 apply assumption
apply (rule H Elem_map_eq [symmetric, THEN trans], assumption)
apply (rule coset_mult_inv1)
apply (erule_tac _ H Elem_map_carrier+)
apply (rule_tac _ H_is_subgroup [THEN subgroup.subset])
apply (rule coset_join2)
apply (blast intro: H Elem_map_carrier)
apply (rule H_is_subgroup)
apply (simp add: H_I coset_mult_inv2 H Elem_map_carrier)
done

lemma (in sylow central) calM_subset_PowG: "calM ⊆ Pow(carrier G)"
by (auto simp add: calM_def)

lemma (in sylow central) finite M: "finite M"
by (metis M_subset_calM finite_calM rev_finite_subset)

lemma (in sylow central) card M_eq_H: "card(M) = card(rcosets H)"
apply (insert inj M_GmodH inj GmodH_M)
apply (blast intro: card_bij finite M H_is_subgroup rcosets_subset_PowG [THEN finite_subset] finite_Pow_iff [THEN iffD2])
done

lemma (in sylow central) index lem: "card(M) * card(H) = order(G)"
by (simp add: card M_eq_H lagrange H_is_subgroup)
lemma (in sylow_central) lemma_leq1: "p^a \leq \text{card}(H)"
apply (rule dvd_imp_le)
apply (rule div_combine [OF prime_p not_dvd_M])
prefer 2 apply (blast intro: subgroup.finite_imp_card_positive H_is_subgroup)
apply (simp add: index_lem order_G power_add mult_dvd_mono power_exponent_dvd zero_less_m)
done

lemma (in sylow_central) lemma_leq2: "\text{card}(H) \leq p^a"
apply (subst card_M1 [symmetric])
apply (cut_tac M1_inj_H)
apply (blast intro!: M1_subset_G intro:
 card_inj H_into_carrier_G finite_subset [OF _ finite_G])
done

lemma (in sylow_central) card_H_eq: "\text{card}(H) = p^a"
by (blast intro: le_antisym lemma_leq1 lemma_leq2)

lemma (in sylow) sylow_thm: "\exists H. \text{subgroup } H G \& \text{card}(H) = p^a"
apply (cut_tac lemma_A1, clarify)
apply (frule existsM1inM, clarify)
apply (subgoal_tac "sylow_central G p a m M1 M")
apply (blast dest: sylow_central.H_is_subgroup sylow_central.card_H_eq)
apply (simp add: sylow_central_def sylow_central_axioms_def sylow_axioms
calM_def RelM_def)
done

Needed because the locale's automatic definition refers to semigroup G and
group_axioms G rather than simply to group G.

lemma sylow_eq: "sylow G p a m = (\text{group } G \& sylow_axioms G p a m)"
by (simp add: sylow_def group_def)

5.5 Sylow’s Theorem

theorem sylow_thm:
"[| \text{prime } p; \text{group}(G); \text{order}(G) = (p^a) \ast m; \text{finite } (\text{carrier } G)|]"
==\rightarrow \exists H. \text{subgroup } H G \& \text{card}(H) = p^a"
apply (rule sylow.sylow_thm [of G p a m])
apply (simp add: sylow_eq sylow_axioms_def)
done

end

theory Bij
imports Group
begin
6 Bijections of a Set, Permutation and Automorphism Groups

definition
\[\text{Bij} :: 'a \text{ set} \Rightarrow ('a \Rightarrow 'a) \text{ set} \]
— Only extensional functions, since otherwise we get too many.
where "Bij S = extensional S \cap \{f. bij_betw f S S\}"

definition
\[\text{BijGroup} :: 'a \text{ set} \Rightarrow ('a \Rightarrow 'a) \text{ monoid} \]
where "BijGroup S =
\{\text{carrier} = \text{Bij S},
\text{mult} = \lambda g \in \text{Bij S}. \lambda f \in \text{Bij S}. \text{compose S} g f,
\text{one} = \lambda x \in S. x\}"

declare \text{Id_compose} \ [\text{simp}] \ \text{compose_Id} \ [\text{simp}]

lemma \text{Bij_imp_extensional}:
\[f \in \text{Bij S} \Rightarrow f \in \text{extensional S} \]
by (simp add: Bij_def)

lemma \text{Bij_imp_funcset}:
\[f \in \text{Bij S} \Rightarrow f \in S \rightarrow S \]
by (auto simp add: Bij_def bij_betw_imp_funcset)

6.1 Bijections Form a Group

lemma \text{restrict_inv_into_Bij}:
\[f \in \text{Bij S} \Rightarrow (\lambda x \in S. (\text{inv_into S} f) x) \in \text{Bij S} \]
by (simp add: Bij_def bij_betw_inv_into)

lemma \text{id_Bij}:
\[(\lambda x \in S. x) \in \text{Bij S} \]
by (auto simp add: Bij_def bij_betw_def inj_on_def)

lemma \text{compose_Bij}:
\[[x \in \text{Bij S}; y \in \text{Bij S}] \Rightarrow \text{compose S} x y \in \text{Bij S} \]
by (auto simp add: Bij_def bij_betw_compose)

lemma \text{Bij_compose_restrict_eq}:
\["f \in \text{Bij S} \Rightarrow \text{compose S}'(\text{restrict (inv_into S} f) S) f = (\lambda x \in S. x)" \]
by (simp add: Bij_def compose_inv_into_id)

theorem \text{group_BijGroup}:
"\text{group} (\text{BijGroup S})"
apply (simp add: BijGroup_def)
apply (rule groupI)
 apply (simp add: compose_Bij)
 apply (simp add: id_Bij)
 apply (simp add: compose_Bij)
 apply (blast intro: compose_assoc [symmetric] dest: Bij_imp_funcset)
apply (simp add: id_Bij Bij_imp_imp_funcset Bij_imp_extensional, simp)
apply (blast intro: Bij-compose_restrict_eq restrict_inv_into_Bij)
done

6.2 Automorphisms Form a Group

lemma Bij_inv_into_mem: "[f ∈ Bij S; x ∈ S] ⇒ inv_into S f x ∈ S"
by (simp add: Bij_def bij_betw_def inv_into_into)

lemma Bij_inv_into_lemma:
 assumes eq: "⋀ x y. [x ∈ S; y ∈ S] ⇒ h(g x y) = g (h x) (h y)"
 shows "[h ∈ Bij S; g ∈ S → S → S; x ∈ S; y ∈ S]
 ⇒ inv_into S h (g x y) = g (inv_into S h x) (inv_into S h y)"
apply (simp add: Bij_def bij_betw_def)
apply (subgoal_tac "∃ x' ∈ S. ∃ y' ∈ S. x = h x' & y = h y'", clarify)
apply (simp add: eq [symmetric] inv_f_f funcset_mem [THEN funcset_mem], blast)
done

definition auto :: "('a, 'b) monoid_scheme ⇒ ('a ⇒ 'a) set"
 where "auto G = hom G G ∩ Bij (carrier G)"

definition AutoGroup :: "('a, 'c) monoid_scheme ⇒ ('a ⇒ 'a) monoid"
 where "AutoGroup G = BijGroup (carrier G) (carrier := auto G)"

lemma (in group) id_in_auto: "(λ x ∈ carrier G. x) ∈ auto G"
by (simp add: auto_def hom_def restrictI group.axioms id_Bij)

lemma (in group) mult_funcset: "mult G ∈ carrier G → carrier G → carrier G"
by (simp add: Pi_I group.axioms)

lemma (in group) restrict_inv_into_hom:
 "[h ∈ hom G G; h ∈ Bij (carrier G)]
 ⇒ restrict (inv_into (carrier G) h) (carrier G) ∈ hom G G"
by (simp add: hom_def Bij_inv_into_mem restrictI mult_funcset group.axioms Bij_inv_into_lemma)

lemma inv_BijGroup:
 "f ∈ Bij S ⇒ m_inv (BijGroup S) f = (λ x ∈ S. (inv_into S f) x)"
apply (rule group.inv_equality)
apply (rule group_BijGroup)
apply (simp_all add:BijGroup_def restrict_inv_into_Bij Bij-compose_restrict_eq)
done

lemma (in group) subgroup_auto:
 "subgroup (auto G) (BijGroup (carrier G))"
proof (rule subgroup.intro)
 show "auto G ⊆ carrier (BijGroup (carrier G))"
 by (force simp add: auto_def BijGroup_def)

next
 fix x y
 assume "x ∈ auto G" "y ∈ auto G"
 thus "x ⨽ BijGroup (carrier G) y ∈ auto G"
 by (force simp add: BijGroup_def is_group auto_def Bij_imp_funcset
 group.hom_compose compose_Bij)

next
 show "1_BijGroup (carrier G) ∈ auto G" by (simp add: BijGroup_def id_in_auto)

next
 fix x
 assume "x ∈ auto G"
 thus "inv_BijGroup (carrier G) x ∈ auto G"
 by (simp del: restrict_apply
 add: inv_BijGroup auto_def restrict_inv_into_Bij restrict_inv_into_hom)

qed

theorem (in group) AutoGroup: "group (AutoGroup G)"
 by (simp add: AutoGroup_def subgroup.subgroup_is_group subgroup_auto group_BijGroup)

end

7 Divisibility in monoids and rings

theory Divisibility
imports "~/src/HOL/Library/Permutation" Coset Group
begin

8 Factorial Monoids

8.1 Monoids with Cancellation Law

locale monoid_cancel = monoid +
 assumes l_cancel:
 "[c ⨽ a = c ⨽ b; a ∈ carrier G; b ∈ carrier G; c ∈ carrier G] ⇒ a = b"
 and r_cancel:
 "[a ⨽ c = b ⨽ c; a ∈ carrier G; b ∈ carrier G; c ∈ carrier G] ⇒ a = b"

lemma (in monoid) monoid_cancelI:
 assumes l_cancel:
 "∀a b c. [c ⨽ a = c ⨽ b; a ∈ carrier G; b ∈ carrier G; c ∈ carrier G] ⇒ a = b"
and r_cancel:

"∀ a b c. [a ⊗ c = b ⊗ c; a ∈ carrier G; b ∈ carrier G; c ∈ carrier G] ⇒ a = b"

shows "monoid_cancel G"

by default fact+

lemma (in monoid_cancel) is_monoid_cancel:

"monoid_cancel G"

..

sublocale group ⊆ monoid_cancel

by default simp_all

locale comm_monoid_cancel = monoid_cancel + comm_monoid

lemma comm_monoid_cancelI:

fixes G (structure)

assumes "comm_monoid G"

assumes cancel:

"∀ a b c. [a ⊗ c = b ⊗ c; a ∈ carrier G; b ∈ carrier G; c ∈ carrier G] ⇒ a = b"

shows "comm_monoid_cancel G"

proof -

interpret comm_monoid G by fact

show "comm_monoid_cancel G"

by unfold_locales (metis assms(2) m_ac(2))+

qed

lemma (in comm_monoid_cancel) is_comm_monoid_cancel:

"comm_monoid_cancel G"

by intro_locales

sublocale comm_group ⊆ comm_monoid_cancel

..

8.2 Products of Units in Monoids

lemma (in monoid) Units_m_closed[simp, intro]:

assumes h1unit: "h1 ∈ Units G" and h2unit: "h2 ∈ Units G"

shows "h1 ⊗ h2 ∈ Units G"

unfolding Units_def

using assms

by auto (metis Units_inv_closed Units_l_inv Units_m_closed Units_r_inv)

lemma (in monoid) prod_unit_l:

assumes abunit[simp]: "a ⊗ b ∈ Units G" and aunit[simp]: "a ∈ Units G"

and carr[simp]: "a ∈ carrier G" "b ∈ carrier G"
shows "b ∈ Units G"
proof -
 have c: "inv (a ⊗ b) ⊗ a ∈ carrier G" by simp

 have "(inv (a ⊗ b) ⊗ a) ⊗ b = inv (a ⊗ b) ⊗ (a ⊗ b)" by (simp add: m_assoc)
 also have "... = 1" by simp
 finally have li: "(inv (a ⊗ b) ⊗ a) ⊗ b = 1".

 have "1 = inv a ⊗ a" by (simp add: Units_l_inv[symmetric])
 also have "... = inv a ⊗ 1 ⊗ a" by simp
 also have "... = inv a ⊗ ((a ⊗ b) ⊗ inv (a ⊗ b)) ⊗ a"
 by (simp add: Units_r_inv[OF abunit, symmetric] del: Units_r_inv)
 also have "... = ((inv a ⊗ a) ⊗ b) ⊗ inv (a ⊗ b) ⊗ a"
 by (simp add: m_assoc del: Units_l_inv)
 also have "... = b ⊗ inv (a ⊗ b) ⊗ a" by simp
 also have "... = b ⊗ (inv (a ⊗ b) ⊗ a)" by (simp add: m_assoc)
 finally have ri: "b ⊗ (inv (a ⊗ b) ⊗ a) = 1" by simp

 from c li ri
 show "b ∈ Units G" by (simp add: Units_def, fast)
qed

lemma (in monoid) prod_unit_r:
 assumes abunit[simp]: "a ⊗ b ∈ Units G" and bunit[simp]: "b ∈ Units G"
 and carr[simp]: "a ∈ carrier G" "b ∈ carrier G"
 shows "a ∈ Units G"
proof -
 have c: "b ⊗ inv (a ⊗ b) ∈ carrier G" by simp

 have "a ⊗ (b ⊗ inv (a ⊗ b)) = (a ⊗ b) ⊗ inv (a ⊗ b)"
 by (simp add: m_assoc del: Units_r_inv)
 also have "... = 1" by simp
 finally have li: "a ⊗ (b ⊗ inv (a ⊗ b)) = 1".

 have "1 = b ⊗ inv b" by (simp add: Units_r_inv[symmetric])
 also have "... = b ⊗ 1 ⊗ inv b" by simp
 also have "... = b ⊗ (inv (a ⊗ b) ⊗ (a ⊗ b)) ⊗ inv b"
 by (simp add: Units_l_inv[OF abunit, symmetric] del: Units_l_inv)
 also have "... = (b ⊗ inv (a ⊗ b) ⊗ a) ⊗ (b ⊗ inv b)"
 by (simp add: m_assoc del: Units_l_inv)
 also have "... = b ⊗ inv (a ⊗ b) ⊗ a" by simp
 finally have ri: "(b ⊗ inv (a ⊗ b)) ⊗ a = 1" by simp

 from c li ri
 show "a ∈ Units G" by (simp add: Units_def, fast)
qed
lemma (in comm_monoid) unit_factor:
 assumes abunit: "a ⊗ b ∈ Units G"
 and [simp]: "a ∈ carrier G" "b ∈ carrier G"
 shows "a ∈ Units G"
using abunit[simplified Units_def]
proof clarsimp
 fix i
 assume [simp]: "i ∈ carrier G"
 and li: "i ⊗ (a ⊗ b) = 1"
 and ri: "a ⊗ b ⊗ i = 1"
 have carr': "b ⊗ i ∈ carrier G" by simp
 have "(b ⊗ i) ⊗ a = (i ⊗ b) ⊗ a" by (simp add: m_comm)
 also have "... = i ⊗ (b ⊗ a)" by (simp add: m_assoc)
 also have "... = i ⊗ (a ⊗ b)" by (simp add: m_comm)
 also note li
 finally have li': "(b ⊗ i) ⊗ a = 1".
 have "a ⊗ (b ⊗ i) = a ⊗ b ⊗ i" by (simp add: m_assoc)
 also note ri
 finally have ri': "a ⊗ (b ⊗ i) = 1".
 from carr' li' ri'
 show "a ∈ Units G" by (simp add: Units_def, fast)
qed

8.3 Divisibility and Association

8.3.1 Function definitions

definition
 factor :: "[_, 'a, 'a] ⇒ bool" (infix "divides") 65
 where "a divides b ←→ (∃c∈carrier G. b = a ⊗ G c)"

definition
 associated :: "[_, 'a, 'a] ⇒ bool" (infix "∼") 55
 where "a ∼ G b ←→ a divides G b ∧ b divides G a"

abbreviation
 "division_rel G == (carrier = carrier G, eq = op ∼, le = op divides G)"

definition
 properfactor :: "[_, 'a, 'a] ⇒ bool"
 where "properfactor G a b ←→ a divides G b ∧ ¬(b divides G a)"

definition
 irreducible :: "[_, 'a] ⇒ bool"
 where "irreducible G a ←→ a ∉ Units G ∧ (∀b∈carrier G. properfactor G b a → b ∈ Units G)"
definition
prime :: "(_, 'a) ⇒ bool" where
"prime G p ⇔
 p ∉ Units G ∧
 (∀a∈carrier G. ∀b∈carrier G. p dividesG (a ⊗G b) → p dividesG a ∨ p dividesG b)"

8.3.2 Divisibility

lemma dividesI:
 fixes G (structure)
 assumes carr: "c ∈ carrier G"
 and p: "b = a ⊗ c"
 shows "a divides b"
unfolding factor_def
using assms by fast

lemma dividesI' [intro]:
 fixes G (structure)
 assumes p: "b = a ⊗ c"
 and carr: "c ∈ carrier G"
 shows "a divides b"
using assms
by (fast intro: dividesI)

lemma dividesD:
 fixes G (structure)
 assumes "a divides b"
 shows "∃c∈carrier G. b = a ⊗ c"
using assms
unfolding factor_def
by fast

lemma dividesE [elim]:
 fixes G (structure)
 assumes d: "a divides b"
 and elim: "∀c. [b = a ⊗ c; c ∈ carrier G] → P"
 shows "P"
proof -
 from dividesD[OF d]
 obtain c
 where "c∈carrier G"
 and "b = a ⊗ c"
 by auto
 thus "P" by (elim elim)
qed

lemma (in monoid) divides_refl[simp, intro!]:
assumes carr: "a ∈ carrier G"
shows "a divides a"
apply (intro dividesI[of "1"], simp, simp add: carr)
done

lemma (in monoid) divides_trans [trans]:
assumes dvds: "a divides b" "b divides c"
and acarr: "a ∈ carrier G"
shows "a divides c"
using dvds[THEN dividesD]
by (blast intro: dividesI m_assoc acarr)

lemma (in monoid) divides_mult_lI [intro]:
assumes ab: "a divides b"
and carr: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"
shows "(c ⊗ a) divides (c ⊗ b)"
using ab
apply (elim dividesE, simp add: m_assoc[symmetric] carr)
apply (fast intro: dividesI)
done

lemma (in monoid_cancel) divides_mult_l [simp]:
assumes carr: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"
shows "(c ⊗ a) divides (c ⊗ b) = a divides b"
apply safe
apply (elim dividesE, intro dividesI, assumption)
apply (rule l_cancel[of c])
apply (simp add: m_assoc carr)+
apply (fast intro: carr)
done

lemma (in comm_monoid) divides_mult_rI [intro]:
assumes ab: "a divides b"
and carr: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"
shows "(a ⊗ c) divides (b ⊗ c)"
using carr ab
apply (simp add: m_comm[of a c] m_comm[of b c])
apply (rule divides_mult_lI, assumption+)
done

lemma (in comm_monoid_cancel) divides_mult_r [simp]:
assumes carr: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"
shows "(a ⊗ c) divides (b ⊗ c) = a divides b"
using carr
by (simp add: m_comm[of a c] m_comm[of b c])

lemma (in monoid) divides_prod_r:
assumes ab: "a divides b"
and \(c \in \text{carrier } G \) \(a \in \text{carrier } G \) \(b \in \text{carrier } G \)

shows "\(a \) divides \((b \odot c)\)"

using ab carr

by (fast intro: m_assoc)

lemma (in comm_monoid) divides_prod_1:
 assumes carr[intro]: "a \in \text{carrier } G" "b \in \text{carrier } G" "c \in \text{carrier } G"
 and ab: "a divides b"
 shows "a divides \((c \odot b)\)"

using ab carr

apply (simp add: m_comm[of c b])

apply (fast intro: divides_prod_r)

done

lemma (in monoid) unit_divides:
 assumes uunit: "u \in \text{Units } G"
 and acarr: "a \in \text{carrier } G"
 shows "a divides u"

proof
 (intro dividesI[of "(inv u) \odot a"], fast intro: uunit acarr)

 from uunit acarr
 have xcarr: "inv u \odot a \in \text{carrier } G" by fast

 from uunit acarr
 have "u \odot (inv u \odot a) = (u \odot inv u) \odot a" by (fast intro: m_assoc[symmetric])

 also have "... = 1 \odot a" by (simp add: Units_r_inv[OF uunit])

 also from acarr
 have "... = a" by simp

 finally
 show "a = u \odot (inv u \odot a)" ..

qed

lemma (in comm_monoid) divides_unit:
 assumes udvd: "a divides u"
 and carr: "a \in \text{carrier } G" "u \in \text{Units } G"
 shows "a \in \text{Units } G"

using udvd carr

by (blast intro: unit_factor)

lemma (in comm_monoid) Unit_eq_dividesone:
 assumes ucarr: "u \in \text{carrier } G"
 shows "u \in \text{Units } G = u \text{ divides 1}"

using ucarr

by (fast dest: divides_unit intro: unit_divides)

8.3.3 Association

lemma associatedI:
 fixes G (structure)
assumes "a divides b" "b divides a"
shows "a ∼ b"
using assms
by (simp add: associated_def)

lemma (in monoid) associatedI2:
 assumes uunit[simp]: "u ∈ Units G"
 and a: "a = b ⊗ u"
 and bcarr[simp]: "b ∈ carrier G"
 shows "a ∼ b"
using uunit bcarr
unfolding a
apply (intro associatedI)
apply (rule dividesI[of "inv u"], simp)
apply (simp add: m_assoc Units_closed)
apply fast
done

lemma (in monoid) associatedI2':
 assumes a: "a = b ⊗ u"
 and uunit: "u ∈ Units G"
 and bcarr: "b ∈ carrier G"
 shows "a ∼ b"
using assms by (intro associatedI2)

lemma associatedD:
 fixes G (structure)
 assumes "a ∼ b"
 shows "a divides b"
using assms by (simp add: associated_def)

lemma (in monoid_cancel) associatedD2:
 assumes assoc: "a ∼ b"
 and carr: "a ∈ carrier G" "b ∈ carrier G"
 shows "∃ u∈Units G. a = b ⊗ u"
using assoc
unfolding associated_def
proof clarify
assume "b divides a"
hence "∃ u∈carrier G. a = b ⊗ u" by (rule dividesD)
from this obtain u
 where ucarr: "u ∈ carrier G" and a: "a = b ⊗ u"
 by auto

assume "a divides b"
hence "∃ u'∈carrier G. b = a ⊗ u'" by (rule dividesD)
from this obtain u'
 where u'carr: "u' ∈ carrier G" and b: "b = a ⊗ u'"
 by auto
note carr = carr ucarr u’carr

from carr
 have "a ⊗ 1 = a" by simp
also have "... = b ⊗ u" by (simp add: a)
also have "... = a ⊗ u' ⊗ u" by (simp add: b)
also from carr
 have "... = a ⊗ (u' ⊗ u)" by (simp add: m_assoc)
finally
 have "a ⊗ 1 = a ⊗ (u' ⊗ u)" .
with carr
 have u1: "1 = u' ⊗ u" by (fast dest: l_cancel)

from carr
 have "b ⊗ 1 = b" by simp
also have "... = a ⊗ u'" by (simp add: b)
also have "... = b ⊗ u ⊗ u'" by (simp add: a)
also from carr
 have "... = b ⊗ (u ⊗ u')" by (simp add: m_assoc)
finally
 have "b ⊗ 1 = b ⊗ (u ⊗ u')" .
with carr
 have u2: "1 = u ⊗ u'" by (fast dest: l_cancel)

from u’carr u1[symmetric] u2[symmetric]
 have "u' ∈ carrier G. u' ⊗ u = 1 ∧ u ⊗ u' = 1" by fast
hence "u ∈ Units G" by (simp add: Units_def ucarr)

from ucarr this a
 show "∃ u ∈ Units G. a = b ⊗ u" by fast
qed

lemma associatedE:
 fixes G (structure)
 assumes assoc: "a ~ b"
 and e: "[a divides b; b divides a] ==> P"
 shows "P"
proof -
 from assoc
 have "a divides b" "b divides a"
 by (simp add: associated_def)+
 thus "P" by (elim e)
 qed

lemma (in monoid_cancel) associatedE2:
 assumes assoc: "a ~ b"
 and e: "\[a = b ⊗ u; u ∈ Units G\] ==> P"
 and carr: "a ∈ carrier G" "b ∈ carrier G"
 shows "P"
proof -
 from assoc and carr
 have "∃u∈Units G. a = b ⊗ u" by (rule associatedD2)
 from this obtain u
 where "u ∈ Units G" "a = b ⊗ u"
 by auto
 thus "P" by (elim e)
qed

lemma (in monoid) associated_refl [simp, intro!]:
 assumes "a ∈ carrier G"
 shows "a ∼ a"
using assms
by (fast intro: associatedI)

lemma (in monoid) associated_sym [sym]:
 assumes "a ∼ b"
 and "a ∈ carrier G" "b ∈ carrier G"
 shows "b ∼ a"
using assms
by (iprover intro: associatedI elim: associatedE)

lemma (in monoid) associated_trans [trans]:
 assumes "a ∼ b" "b ∼ c"
 and "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"
 shows "a ∼ c"
using assms
by (iprover intro: associatedI divides_trans elim: associatedE)

lemma (in monoid) division_equiv [intro, simp]:
 "equivalence (division_rel G)"
apply unfold_locales
apply simp_all
apply (metis associated_def)
apply (iprover intro: associated_trans)
done

8.3.4 Division and associativity

lemma divides_antisym:
 fixes G (structure)
 assumes "a divides b" "b divides a"
 and "a ∈ carrier G" "b ∈ carrier G"
 shows "a ∼ b"
using assms
by (fast intro: associatedI)

lemma (in monoid) divides_cong_l [trans]:
 assumes xx': "x ∼ x'"
and x dvd y: "x’ divides y"
and carr [simp]: "x ∈ carrier G" "x’ ∈ carrier G" "y ∈ carrier G"
shows "x divides y"
proof -
 from xx’
 have "x divides x’" by (simp add: associatedD)
 also note x dvd y
 finally
 show "x divides y" by simp
qed

lemma (in monoid) divides_cong_r [trans]:
 assumes x dvd y: "x divides y"
 and yy’: "y ∼ y’"
 and carr [simp]: "x ∈ carrier G" "y ∈ carrier G" "y’ ∈ carrier G"
 shows "x divides y’"
proof -
 note x dvd y
 also from yy’
 have "y divides y’" by (simp add: associatedD)
 finally
 show "x divides y’" by simp
qed

lemma (in monoid) division_weak_partial_order [simp, intro!]:
 "weak_partial_order (division_rel G)"
apply unfold_locales
apply simp_all
apply (simp add: associated_sym)
apply (blast intro: associated_trans)
apply (simp add: divides_antisym)
apply (blast intro: divides_trans)
apply (blast intro: divides_cong_l divides_cong_r associated_sym)
done

8.3.5 Multiplication and associativity

lemma (in monoid_cancel) mult_cong_r:
 assumes "b ∼ b’"
 and carr: "a ∈ carrier G" "b ∈ carrier G" "b’ ∈ carrier G"
 shows "a ⊗ b ∼ a ⊗ b’"
using assms
apply (elim associatedE2, intro associatedI2)
apply (auto intro: m_assoc[symmetric])
done

lemma (in comm_monoid_cancel) mult_cong_l:
 assumes "a ∼ a’"
and carr: "a ∈ carrier G" "a' ∈ carrier G" "b ∈ carrier G"
shows "a ⊗ b ∼ a' ⊗ b"
using assms
apply (elim associatedE2, intro associatedI2)
 apply assumption
 apply (simp add: m_assoc Units_closed)
 apply (simp add: m_comm Units_closed)
 apply simp+
done

lemma (in monoid_cancel) assoc_l_cancel:
assumes carr: "a ∈ carrier G" "b ∈ carrier G" "b' ∈ carrier G"
and "a ⊗ b ∼ a ⊗ b'"
shows "b ∼ b'"
using assms
apply (elim associatedE2, intro associatedI2)
 apply assumption
 apply (rule l_cancel[of a])
 apply (simp add: m_assoc Units_closed)
 apply fast+
done

lemma (in comm_monoid_cancel) assoc_r_cancel:
assumes "a ⊗ b ∼ a' ⊗ b"
and carr: "a ∈ carrier G" "a' ∈ carrier G" "b ∈ carrier G"
shows "a ∼ a'"
using assms
apply (elim associatedE2, intro associatedI2)
 apply assumption
 apply (rule r_cancel[of a b])
 apply (metis Units_closed assms(3) assms(4) m_ac)
 apply fast+
done

8.3.6 Units

lemma (in monoid_cancel) assoc_unit_l [trans]:
assumes asc: "a ∼ b" and bunit: "b ∈ Units G"
and carr: "a ∈ carrier G"
shows "a ∈ Units G"
using assms
by (fast elim: associatedE2)

lemma (in monoid_cancel) assoc_unit_r [trans]:
assumes aunit: "a ∈ Units G" and asc: "a ∼ b"
and bcarr: "b ∈ carrier G"
shows "b ∈ Units G"
using aunit bcarr associated_sym[OF asc]
by (blast intro: assoc_unit_l)
lemma (in comm_monoid) Units_cong:
 assumes aunit: "a ∈ Units G" and asc: "a ∼ b"
 and bcarr: "b ∈ carrier G"
 shows "b ∈ Units G"
using assms
by (blast intro: divides_unit elim: associatedE)

lemma (in monoid) Units_assoc:
 assumes units: "a ∈ Units G" "b ∈ Units G"
 shows "a ∼ b"
using units
by (fast intro: associatedI unit_divides)

lemma (in monoid) Units_are_ones:
 "Units G {.=} (division_rel G) {1}"
apply (simp add: set_eq_def elem_def, rule, simp_all)
proof clarsimp
 fix a
 assume aunit: "a ∈ Units G"
 show "a ∼ 1"
 apply (rule associatedI)
 apply (fast intro: dividesI[of "inv a"] aunit Units_r_inv[symmetric])
 apply (fast intro: dividesI[of "a"] l_one[symmetric] Units_closed[OF aunit])
 done
next
 have "1 ∈ Units G" by simp
 moreover have "1 ∼ 1" by simp
 ultimately show "∃ a ∈ Units G. 1 ∼ a" by fast
qed

lemma (in comm_monoid) Units_Lower:
 "Units G = Lower (division_rel G) (carrier G)"
apply (simp add: Units_def Lower_def)
apply (rule, rule)
apply clarsimp
apply (rule unit_divides)
apply (unfold Units_def, fast)
apply assumption
apply clarsimp
apply (metis Unit_eq_dividesone Units_r_inv_ex m_ac(2) one_closed)
done

8.3.7 Proper factors

lemma properfactorI:
 fixes G (structure)
 assumes "a divides b"
and "¬(b divides a)"
shows "properfactor G a b"
using assms
unfolding properfactor_def
by simp

lemma properfactorI2:
 fixes G (structure)
 assumes advdb: "a divides b"
 and neq: "¬(a ∼ b)"
shows "properfactor G a b"
apply (rule properfactorI, rule advdb)
proof (rule ccontr, simp)
 assume "b divides a"
 with advdb have "a ∼ b" by (rule associatedI)
 with neq show "False" by fast
qed

lemma (in comm_monoid_cancel) properfactorI3:
 assumes p: "p = a ⊗ b"
 and nunit: "b /∈ Units G"
 and carr: "a ∈ carrier G" "b ∈ carrier G" "p ∈ carrier G"
shows "properfactor G a p"
unfolding p
using carr
apply (intro properfactorI, fast)
proof (clarsimp, elim dividesE)
 fix c
 assume ccarr: "c ∈ carrier G"
 note [simp] = carr ccarr
 have "a ⊗ 1 = a" by simp
 also assume "a = a ⊗ b ⊗ c"
 also have "... = a ⊗ (b ⊗ c)" by (simp add: m_assoc)
 finally have "a ⊗ 1 = a ⊗ (b ⊗ c)".

 hence rinv: "1 = b ⊗ c" by (intro l_cancel[of "a" "1" "b ⊗ c"], simp+)
 also have "... = c ⊗ b" by (simp add: m_comm)
 finally have linv: "1 = c ⊗ b".

 from ccarr linv[symmetric] rinv[symmetric]
 have "b ∈ Units G" unfolding Units_def by fastforce
 with nunit
 show "False" ..
qed

lemma properfactorE:
 fixes G (structure)
 assumes pf: "properfactor G a b"
and r: "[a divides b; ¬(b divides a)] \implies P"
shows "P"
using pf
unfolding properfactor_def
by (fast intro: r)

lemma properfactorE2:
 fixes G (structure)
 assumes pf: "properfactor G a b"
 and elim: "[a divides b; ¬(a \sim b)] \implies P"
 shows "P"
using pf
unfolding properfactor_def
by (fast elim: elim associatedE)

lemma (in monoid) properfactor_unitE:
 assumes uunit: "u \in Units G"
 and pf: "properfactor G a u"
 and acarr: "a \in carrier G"
 shows "P"
using pf unit_divides[OF uunit acarr]
by (fast elim: properfactorE)

lemma (in monoid) properfactor_divides:
 assumes pf: "properfactor G a b"
 shows "a divides b"
using pf
by (elim properfactorE)

lemma (in monoid) properfactor_trans1 [trans]:
 assumes dvds: "a divides b" "properfactor G b c"
 and carr: "a \in carrier G" "b \in carrier G" "c \in carrier G"
 shows "properfactor G a c"
using dvds carr
apply (elim properfactorE, intro properfactorI)
apply (iprover intro: divides_trans)+
done

lemma (in monoid) properfactor_trans2 [trans]:
 assumes dvds: "properfactor G a b" "b divides c"
 and carr: "a \in carrier G" "b \in carrier G" "c \in carrier G"
 shows "properfactor G a c"
using dvds carr
apply (elim properfactorE, intro properfactorI)
apply (iprover intro: divides_trans)+
done

lemma properfactor_lless:
fixes G (structure)
 shows "properfactor $G = lless (division_rel G)"
apply (rule ext) apply (rule ext) apply rule
apply (fastforce elim: properfactorE2 intro: weak_llessI)
apply (fastforce elim: weak_llessE intro: properfactorI2)
done

lemma (in monoid) properfactor_cong_l [trans]:
 assumes $x':x': "x' \sim x"
 and pf: "properfactor $G \ x \ y"
 and carr: "x \in carrier G" "x' \in carrier G" "y \in carrier G"
 shows "properfactor $G \ x' \ y"
using pf
unfolding properfactor_lless
proof -
 interpret weak_partial_order "division_rel G" ..
 from x'
 have "$x' = \text{division_rel}_G \ x" by simp
 also assume "$x \sqsubseteq \text{division_rel}_G \ y"
 finally
 show "$x' \sqsubseteq \text{division_rel}_G \ y" by (simp add: carr)
qed

lemma (in monoid) properfactor_cong_r [trans]:
 assumes pf: "properfactor $G \ x \ y"
 and yy': "y \sim y'"
 and carr: "x \in carrier G" "y \in carrier G" "y' \in carrier G"
 shows "properfactor $G \ x \ y'"
using pf
unfolding properfactor_lless
proof -
 interpret weak_partial_order "division_rel G" ..
 assume "$x \sqsubseteq \text{division_rel}_G \ y"
 also from yy'
 have "$y = \text{division_rel}_G \ y'" by simp
 finally
 show "$x \sqsubseteq \text{division_rel}_G \ y'" by (simp add: carr)
qed

lemma (in monoid_cancel) properfactor_mult_lI [intro]:
 assumes ab: "properfactor $G \ a \ b"
 and carr: "a \in carrier G" "b \in carrier G" "c \in carrier G"
 shows "properfactor $G \ (c \otimes a) \ (c \otimes b)"
using ab carr
by (fastforce elim: properfactorE intro: properfactorI1)

lemma (in monoid_cancel) properfactor_mult_l [simp]:
 assumes carr: "a \in carrier G" "b \in carrier G" "c \in carrier G"
 shows "properfactor $G \ (c \otimes a) \ (c \otimes b) = properfactor $G \ a \ b"
using carr by (fastforce elim: properfactorE intro: properfactorI)

lemma (in comm_monoid_cancel) properfactor_mult_rI [intro]:
 assumes ab: "properfactor G a b"
 and carr: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"
 shows "properfactor G (a ⊗ c) (b ⊗ c)"
using ab carr
by (fastforce elim: properfactorE intro: properfactorI)

lemma (in comm_monoid_cancel) properfactor_mult_r [simp]:
 assumes carr: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"
 shows "properfactor G (a ⊗ c) (b ⊗ c) = properfactor G a b"
using carr
by (fastforce elim: properfactorE intro: properfactorI)

lemma (in monoid) properfactor_prod_r:
 assumes ab: "properfactor G a b"
 and carr[simp]: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"
 shows "properfactor G a (b ⊗ c)"
by (intro properfactor_trans2[OF ab] divides_prod_r, simp+)

lemma (in comm_monoid) properfactor_prod_l:
 assumes ab: "properfactor G a b"
 and carr[simp]: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"
 shows "properfactor G a (c ⊗ b)"
by (intro properfactor_trans2[OF ab] divides_prod_l, simp+)

8.4 Irreducible Elements and Primes

8.4.1 Irreducible elements

lemma irreducibleI:
 fixes G (structure)
 assumes "a /∈ Units G"
 and "∀b. [b ∈ carrier G; properfactor G b a] → b ∈ Units G"
 shows "irreducible G a"
using assms
unfolding irreducible_def
by blast

lemma irreducibleE:
 fixes G (structure)
 assumes irr: "irreducible G a"
 and elim: "[a /∈ Units G; ∀b. b ∈ carrier G ∧ properfactor G b a
 → b ∈ Units G] → P"
 shows "P"
using assms
unfolding irreducible_def
by blast
lemma irreducibleD:
fixes G (structure)
assumes irr: "irreducible G a"
and pf: "properfactor G b a"
and bcarr: "b \in carrier G"
shows "b \in Units G"
using assms
by (fast elim: irreducibleE)

lemma (in monoid_cancel) irreducible_cong [trans]:
assumes irreducible: "irreducible G a"
and aa': "a \sim a'"
and carr[simp]: "a \in carrier G" "a' \in carrier G"
shows "irreducible G a'"
using assms
apply (elim irreducibleE, intro irreducibleI)
apply simp_all
apply (metis assms(2) assms(3) assoc_unit_l)
apply (metis assms(2) assms(3) assms(4) associated_sym properfactor_cong_r)
done

lemma (in monoid) irreducible_prod_rI:
assumes airr: "irreducible G a"
and carr: "b \in Units G"
and carr[simp]: "a \in carrier G" "b \in carrier G"
shows "irreducible G (a \otimes b)"
using airr carr bunit
apply (elim irreducibleE, intro irreducibleI, clarify)
apply (intro irreducible_prod_rI assms)
done

lemma (in comm_monoid) irreducible_prod_lI:
assumes birr: "irreducible G b"
and carr \[simp\]: "a \in carrier G" "b \in carrier G"
shows "irreducible G (a \otimes b)"
apply (subst m_comm, simp+)
apply (intro irreducible_prod_rI assms)
done

lemma (in comm_monoid_cancel) irreducible_prodE [elim]:
assumes irr: "irreducible G (a \otimes b)"
and carr[simp]: "a \in carrier G" "b \in carrier G"
and e1: "[[irreducible G a; b \in Units G] \implies P]
and e2: "[[a \in Units G; irreducible G b] \implies P]
shows "P"
using irr
proof (elim irreducibleE)
 assume abnunit: "a ⊗ b \notin Units G"
 and isunit[rule_format]: "∀ ba. ba ∈ carrier G ∧ properfactor G ba
 (a ⊗ b) ⟹ ba ∈ Units G"

 show "P"
 proof (cases "a ∈ Units G")
 assume aunit: "a ∈ Units G"
 have "irreducible G b"
 apply (rule irreducibleI)
 proof (rule ccontr, simp)
 assume "b ∈ Units G"
 with aunit have "(a ⊗ b) ∈ Units G" by fast
 with abnunit show "False" ..
 next
 fix c
 assume ccarr: "c ∈ carrier G"
 and "properfactor G c b"
 hence "properfactor G c (a ⊗ b)" by (simp add: properfactor_prod_l[of c b a])
 from ccarr this show "c ∈ Units G" by (fast intro: isunit)
 qed

 from aunit this show "P" by (rule e2)
 next
 assume anunit: "a /∈ Units G"
 with carr have "properfactor G b (b ⊗ a)" by (fast intro: properfactor13)
 hence bf: "properfactor G b (a ⊗ b)" by (subst m_comm[of a b], simp+)
 hence bunit: "b ∈ Units G" by (intro isunit, simp)
 have "irreducible G a"
 apply (rule irreducibleI)
 proof (rule ccontr, simp)
 assume "a ∈ Units G"
 with bunit have "(a ⊗ b) ∈ Units G" by fast
 with abnunit show "False" ..
 next
 fix c
 assume ccarr: "c ∈ carrier G"
 and "properfactor G c a"
 hence "properfactor G c (a ⊗ b)" by (simp add: properfactor_prod_r[of c a b])
 from ccarr this show "c ∈ Units G" by (fast intro: isunit)
 qed

 from this bunit show "P" by (rule e1)
 qed
8.4.2 Prime elements

lemma primeI:
 fixes G (structure)
 assumes "p \not\in Units G"
 and "\forall a b. [a \in carrier G; b \in carrier G; p divides (a \otimes b)] \implies p divides a \lor p divides b"
 shows "prime G p"
using assms
unfolding prime_def
by blast

lemma primeE:
 fixes G (structure)
 assumes pprime: "prime G p"
 and e: "[p \not\in Units G; \forall a\in carrier G. \forall b\in carrier G. p divides a \otimes b \implies p divides a \lor p divides b]""
 shows "p"
using pprime
unfolding prime_def
by (blast dest: e)

lemma (in comm_monoid_cancel) prime_divides:
 assumes carr: "a \in carrier G" "b \in carrier G"
 and pprime: "prime G p"
 and pdvd: "p divides a \otimes b"
 shows "p divides a \lor p divides b"
using assms
by (blast elim: primeE)

lemma (in monoid_cancel) prime_cong [trans]:
 assumes pprime: "prime G p"
 and pp': "p \sim p'"
 and carr[simp]: "p \in carrier G" "p' \in carrier G"
 shows "prime G p'"
using pprime
apply (elim primeE, intro primeI)
apply (metis assms(2) assms(3) assoc_unit_l)
apply (metis assms(2) assms(3) assms(4) associated_sym divides_cong_l m_closed)
done

8.5 Factorization and Factorial Monoids

8.5.1 Function definitions

definition
 factors :: "[,'a list, 'a] \Rightarrow bool"
where "factors G fs a \longleftrightarrow (\forall x \in (set fs). irreducible G x) \land foldr
\[(\text{op } \otimes_G) \text{ fs } 1_G = a\]

Definition

\[\text{wfactors} ::\([_, 'a \text{ list}, 'a] \Rightarrow \text{bool}\]

where "wfactors G fs a \iff (\forall x \in (\text{set fs}). \text{irreducible G x}) \land \text{foldr (op } \otimes_G) \text{ fs } 1_G \sim_G a"

Abbreviation

\[\text{list_assoc} ::\('(a,_) \text{ monoid_scheme} \Rightarrow 'a \text{ list } \Rightarrow 'a \text{ list } \Rightarrow \text{bool}\]

infix "\[\sim\]" 44

where "list_assoc G == \text{list_all2 (op } \sim_G)"

Definition

\[\text{essentially_equal} ::\([_, 'a \text{ list}, 'a \text{ list}] \Rightarrow \text{bool}\]

where "essentially_equal G fs1 fs2 \iff (\exists fs1'. fs1 \sim_G fs1' \land fs1' [\sim_G] G fs2)"

Locale

\[\text{factorial_monoid} = \text{comm_monoid_cancel} +
\text{assumes factors_exist:}\]

\[\llbracket a \in \text{carrier G}; a \notin \text{Units G} \rrbracket \Rightarrow \exists fs. \text{set fs } \subseteq \text{carrier G} \land \text{factors G fs a}\]

and **factors_unique:**

\[\llbracket \text{factors G fs a}; \text{factors G fs' a}; a \in \text{carrier G}; a \notin \text{Units G}; \text{set fs } \subseteq \text{carrier G}; \text{set fs' } \subseteq \text{carrier G} \rrbracket \Rightarrow \text{essentially_equal G fs fs'}\]

8.5.2 Comparing lists of elements

Association on lists

Lemma (in monoid) **listassoc_refl** [simp, intro]:

assumes "set as \subseteq carrier G"

shows "as [\sim] as"

using assms

by (induct as) simp+

Lemma (in monoid) **listassoc_sym** [sym]:

assumes "as [\sim] bs"

and "set as \subseteq carrier G" and "set bs \subseteq carrier G"

shows "bs [\sim] as"

using assms

Proof (induct as arbitrary: bs, simp)

case Cons

thus ?case

apply (induct bs, simp)

apply clarsimp

apply (iprover intro: associated_sym)

done
qed

lemma (in monoid) listassoc_trans [trans]:
 assumes "as [~] bs" and "bs [~] cs"
 and "set as \subseteq carrier G" and "set bs \subseteq carrier G" and "set cs \subseteq carrier G"
 shows "as [~] cs"
using assms
apply (simp add: list_all2_conv_all_nth set_conv_nth, safe)
apply (rule associated_trans)
apply (subgoal_tac "as ! i \sim bs ! i", assumption)
apply (simp, simp)
apply blast+
done

lemma (in monoid_cancel) irrlist_listassoc_cong:
 assumes "\forall a \in set as. irreducible G a"
 and "as [~] bs"
 and "set as \subseteq carrier G" and "set bs \subseteq carrier G"
 shows "\forall a \in set bs. irreducible G a"
using assms
apply (clarsimp simp add: list_all2_conv_all_nth set_conv_nth)
apply (blast intro: irreducible_cong)
done

Permutations

lemma perm_map [intro]:
 assumes p: "a <~~> b"
 shows "map f a <~~> map f b"
using p
by (induct auto)

lemma perm_map_switch:
 assumes m: "map f a = map f b" and p: "b <~~> c"
 shows "\exists d. a <~~> d \land map f d = map f c"
using p m
by (induct arbitrary: a) (simp, force, force, blast)

lemma (in monoid) perm_assoc_switch:
 assumes a:"as [~] bs" and p: "bs <~~> cs"
 shows "\exists bs'. as <~~> bs' \land bs' [~] cs"
using p a
apply (induct bs cs arbitrary: as, simp)
apply (clarsimp simp add: list_all2_Cons2, blast)
apply (clarsimp simp add: list_all2_Cons2)
apply blast
apply blast
apply blast
apply blast
done
lemma (in monoid) perm_assoc_switch_r:
 assumes p: "as <~~> bs" and a:"bs [~] cs"
 shows "∃ bs'. as [~] bs' ∧ bs' <~~> cs"
using p a
apply (induct as bs arbitrary: cs, simp)
apply (clarsimp simp add: list_all2_Cons1, blast)
apply (clarsimp simp add: list_all2_Cons1)
apply blast
apply blast
done

declare perm_sym [sym]

lemma perm_setP:
 assumes perm: "as <~~> bs"
 and as: "P (set as)"
 shows "P (set bs)"
proof -
 from perm
 have "multiset_of as = multiset_of bs"
 by (simp add: multiset_of_eq_perm)
 hence "set as = set bs" by (rule multiset_of_eq_setD)
 with as
 show "P (set bs)" by simp
qed

lemmas (in monoid) perm_closed =
 perm_setP[of _ _ "as ⊆ carrier G"]

lemmas (in monoid) irrlist_perm_cong =
 perm_setP[of _ _ "as. ∀ a∈as. irreducible G a"]

Essentially equal factorizations

lemma (in monoid) essentially_equalI:
 assumes ex: "fs1 <~~> fs1'" "fs1' [~] fs2"
 shows "essentially_equal G fs1 fs2"
using ex
unfolding essentially_equal_def
by fast

lemma (in monoid) essentially_equalE:
 assumes ee: "essentially_equal G fs1 fs2"
 and e: "∀ fs1'. [fs1 <~~> fs1'; fs1' [~] fs2] ⇒ P"
 shows "P"
using ee
unfolding essentially_equal_def
by (fast intro: e)

lemma (in monoid) ee_refl [simp,intro]:
assumes carr: "set as ⊆ carrier G"
shows "essentially_equal G as as"
using carr
by (fast intro: essentially_equalI)

lemma (in monoid) ee_sym [sym]:
assumes ee: "essentially_equal G as bs"
and carr: "set as ⊆ carrier G" "set bs ⊆ carrier G"
shows "essentially_equal G bs as"
using ee
proof (elim essentially_equalE)
fix fs
assume "as <~~> fs" "fs [~] bs"
hence "∃fs'. as [~] fs' ∧ fs' <~~> bs" by (rule perm_assoc_switch_r)
from this obtain fs'
 where a: "as [~] fs'" and p: "fs' <~~> bs" by auto
from p have "bs <~~> fs'" by (rule perm_sym)
with a[symmetric] carr
show ?thesis
 by (iprover intro: essentially_equalI perm_closed)
qed

lemma (in monoid) ee_trans [trans]:
assumes ab: "essentially_equal G as bs" and bc: "essentially_equal G bs cs"
 and ascarr: "set as ⊆ carrier G"
 and bscarr: "set bs ⊆ carrier G"
 and cscarr: "set cs ⊆ carrier G"
shows "essentially_equal G as cs"
using ab bc
proof (elim essentially_equalE)
fix abs bcs
assume "abs [~] bs" and pb: "bs <~~> bcs"
hence "∃bs'. abs <~~> bs' ∧ bs' [~] bcs" by (rule perm_assoc_switch)
from this obtain bs'
 where p: "abs <~~> bs'" and a: "bs' [~] bcs" by auto
assume "as <~~> abs"
with p
 have pp: "as <~~> bs'" by fast
from pp ascarr have c1: "set bs' ⊆ carrier G" by (rule perm_closed)
from pb bscarr have c2: "set bcs ⊆ carrier G" by (rule perm_closed)
note a
also assume "bcs [~] cs"
finally (listassoc_trans) have"bs' [~] cs" by (simp add: c1 c2 cscarr)
with pp
 show ?thesis
 by (rule essentially_equalI)
qed

8.5.3 Properties of lists of elements

Multiplication of factors in a list

lemma (in monoid) multlist_closed [simp, intro]:
 assumes ascarr: "set fs ⊆ carrier G"
 shows "foldr (op ⊗) fs 1 ∈ carrier G"
by (insert ascarr, induct fs, simp+)

lemma (in comm_monoid) multlist_dividesI :
 assumes "f ∈ set fs" and "f ∈ carrier G" and "set fs ⊆ carrier G"
 shows "f divides (foldr (op ⊗) fs 1)"
using assms
apply (induct fs)
apply simp
apply (case_tac "f = a", simp)
apply (fast intro: dividesI)
apply clarsimp
apply (metis assms(2) divides_prod_l multlist_closed)
done

lemma (in comm_monoid_cancel) multlist_listassoc_cong:
 assumes "fs ∼~ fs'" and "set fs ⊆ carrier G" and "set fs' ⊆ carrier G"
 shows "foldr (op ⊗) fs 1 ∼~ foldr (op ⊗) fs' 1"
using assms
proof (induct fs arbitrary: fs', simp)
case (Cons a as fs')
thus ?case
apply (induct fs', simp)
proof clarsimp
fix b bs
assume "a ∼ b"
 and acarr: "a ∈ carrier G" and bcarr: "b ∈ carrier G"
 and ascarr: "set as ⊆ carrier G"
 hence p: "a ⊗ foldr op ⊗ as 1 ∼ b ⊗ foldr op ⊗ as 1"
 by (fast intro: mult_cong_l)
 also
 assume "as ∼~ bs"
 and bscarr: "set bs ⊆ carrier G"
 and "∀fs'. [as ∼~ fs'; set fs' ⊆ carrier G] ⇒ foldr op ⊗ as 1 ∼ foldr op ⊗ bs 1"
 hence "foldr op ⊗ as 1 ∼ foldr op ⊗ bs 1" by simp
 with ascarr bscarr bcarr
 have "b ⊗ foldr op ⊗ as 1 ∼ b ⊗ foldr op ⊗ bs 1"
by (fast intro: mult_cong_r)

finally

show "a ⊗ foldr op ⊗ as 1 ∼ b ⊗ foldr op ⊗ bs 1"

by (simp add: ascarr bscarr acarr bcarr)

qed

lemma (in comm_monoid) multlist_perm_cong:
 assumes prm: "as <~~> bs"
 and ascarr: "set as ⊆ carrier G"
 shows "foldr (op ⊗) as 1 = foldr (op ⊗) bs 1"

using prm ascarr
apply (induct, simp, clarsimp simp add: m_ac, clarsimp)
proof
 clarsimp
 fix xs ys zs
 assume "xs <~~> ys" "set xs ⊆ carrier G"
 hence "set ys ⊆ carrier G" by (rule perm_closed)
 moreover assume "set ys ⊆ carrier G ⇒ foldr op ⊗ ys 1 = foldr op ⊗ zs 1"
 ultimately show "foldr op ⊗ ys 1 = foldr op ⊗ zs 1" by simp
qed

lemma (in comm_monoid_cancel) multlist_ee_cong:
 assumes "essentially_equal G fs fs’" and "set fs ⊆ carrier G" and "set fs’ ⊆ carrier G"
 shows "foldr (op ⊗) fs 1 ∼ foldr (op ⊗) fs’ 1"

using assms
apply (elim essentially_equalE)
apply (simp add: multlist_perm_cong multlist_listassoc_cong perm_closed)
done

8.5.4 Factorization in irreducible elements

lemma wfactorsI:
 fixes G (structure)
 assumes "∀ f∈set fs. irreducible G f"
 and "foldr (op ⊗) fs 1 ∼ a"
 shows "wfactors G fs a"

using assms
unfolding wfactors_def
by simp

lemma wfactorsE:
 fixes G (structure)
 assumes wf: "wfactors G fs a"
 and e: "[∀ f∈set fs. irreducible G f; foldr (op ⊗) fs 1 ∼ a] ⇒ P" shows "P"

using wf
unfolding wfactors_def
by (fast dest: e)

lemma (in monoid) factorsI:
 assumes "∀f∈set fs. irreducible G f"
 and "foldr (op ⊗) fs 1 = a"
 shows "factors G fs a"
using assms
unfolding factors_def
by simp

lemma factorsE:
 fixes G (structure)
 assumes f: "factors G fs a"
 and e: "[∀f∈set fs. irreducible G f; foldr (op ⊗) fs 1 = a] ⟹ P"
 shows "P"
using f
unfolding factors_def
by (simp add: e)

lemma (in monoid) wfactors_factors:
 assumes "factors G as a" and "set as ⊆ carrier G"
 shows "wfactors G as a"
using assms
by (blast elim: factorsE intro: wfactorsI)

lemma (in monoid) factors_closed [dest]:
 assumes "factors G fs a" and "set fs ⊆ carrier G"
 shows "a ∈ carrier G"
using assms
by (elim factorsE, clarsimp)

lemma (in monoid) nunit_factors:
 assumes anunit: "a ∉ Units G"
 and fs: "factors G as a"
 shows "length as > 0"
proof -
 from anunit Units_one_closed have "a ≠ 1" by auto
 with fs show ?thesis by (auto elim: factorsE)
qed

lemma (in monoid) unit_wfactors [simp]:
 assumes aunit: "a ∈ Units G"
shows "wfactors G [] a"
using aunit
by (intro wfactorsI) (simp, simp add: Units_assoc)

lemma (in comm_monoid_cancel) unit_wfactors_empty:
 assumes aunit: "a ∈ Units G"
 and wf: "wfactors G fs a"
 and carr[simp]: "set fs ⊆ carrier G"
 shows "fs = []"
proof (rule ccontr, cases fs, simp)
 fix f fs'
 assume fs: "fs = f # fs'"
 from carr
 have fcarr[simp]: "f ∈ carrier G"
 and carr'[simp]: "set fs' ⊆ carrier G"
 by (simp add: fs)+
 from fs wf
 have "irreducible G f" by (simp add: wfactors_def)
 hence fnunit: "f ∉ Units G" by (fast elim: irreducibleE)
 from fs wf
 have a: "f ⊗ foldr (op ⊗) fs' 1 ∼ a" by (simp add: wfactors_def)
 note aunit
 also from fs wf
 have a: "f ⊗ foldr (op ⊗) fs' 1 ∼ a" by (simp add: wfactors_def)
 have "a ∼ f ⊗ foldr (op ⊗) fs' 1"
 by (simp add: Units_closed[OF aunit] a[symmetric])
 finally
 have "f ⊗ foldr (op ⊗) fs' 1 ∈ Units G" by simp
 hence "f ∈ Units G" by (intro unit_factor[of f], simp+)
 with fnunit show "False" by simp
qed

Comparing wfactors

lemma (in comm_monoid_cancel) wfactors_listassoc_cong_l:
 assumes fact: "wfactors G fs a"
 and asc: "fs [~] fs'"
 and carr: "a ∈ carrier G" "set fs ⊆ carrier G" "set fs' ⊆ carrier G"
 shows "wfactors G fs' a"
using fact
apply (elim wfactorsE, intro wfactorsI)
apply (metis assms(2) assms(4) assms(5) irrlist_listassoc_cong)
proof -
 from asc[symmetric]
have "foldr op ⊗ fs' 1 ~ foldr op ⊗ fs 1"
 by (simp add: multlist_listassoc_cong carr)
also assume "foldr op ⊗ fs 1 ~ a"
finally
 show "foldr op ⊗ fs' 1 ~ a" by (simp add: carr)
qed

lemma (in comm_monoid) wfactors_perm_cong_l:
 assumes "wfactors G fs a"
 and "fs <~~> fs'"
 and "set fs ⊆ carrier G"
 shows "wfactors G fs' a"
using assms
apply (elim wfactorsE, intro wfactorsI)
apply (rule irrlist_perm_cong, assumption+)
apply (simp add: multlist_perm_cong[symmetric])
done

lemma (in comm_monoid_cancel) wfactors_ee_cong_l [trans]:
 assumes ee: "essentially_equal G as bs"
 and bfs: "wfactors G bs b"
 and carr: "b ∈ carrier G" "set as ⊆ carrier G" "set bs ⊆ carrier G"
 shows "wfactors G as b"
using ee
proof (elim essentially_equalE)
 fix fs
 assume prm: "as <~~> fs"
 with carr
 have fscarr: "set fs ⊆ carrier G" by (simp add: perm_closed)

note bfs
also assume [symmetric]: "fs [~] bs"
also (wfactors_listassoc_cong_l)
note prm[symmetric]
finally (wfactors_perm_cong_l)
 show "wfactors G as b" by (simp add: carr fscarr)
qed

lemma (in monoid) wfactors_cong_r [trans]:
 assumes fac: "wfactors G fs a" and aa': "a ~ a'"
 and carr[simp]: "a ∈ carrier G" "a' ∈ carrier G" "set fs ⊆ carrier G"
 shows "wfactors G fs a'"
using fac
proof (elim wfactorsE, intro wfactorsI)
 assume "foldr op ⊗ fs 1 ~ a" also note aa'
 finally show "foldr op ⊗ fs 1 ~ a'" by simp
qed
8.5.5 Essentially equal factorizations

lemma (in comm_monoid_cancel) unitfactor_ee:
 assumes uunit: "u ∈ Units G"
 and carr: "set as ⊆ carrier G"
 shows "essentially_equal G (as[0 := (as!0 ⊗ u)]) as" (is "essentially_equal G ?as' as")
 using assms
 apply (intro essentially_equalI[of _ ?as'], simp)
 apply (cases as, simp)
 apply (clarsimp, fast intro: associatedI2[of u])
 done

lemma (in comm_monoid_cancel) factors_cong_unit:
 assumes uunit: "u ∈ Units G" and anunit: "a /∈ Units G" and afs: "factors G as a" and ascarr: "set as ⊆ carrier G"
 shows "factors G (as[0 := (as!0 ⊗ u)]) (a ⊗ u)" (is "factors G ?as' ?a'")
 using assms
 apply (elim factorsE, clarify)
 apply (cases as)
 apply (simp add: nunit_factors)
 apply clarsimp
 apply (elim factorsE, intro factorsI)
 apply (clarsimp, fast intro: irreducible_prod_rI)
 apply (simp add: m_ac Units_closed)
 done

lemma (in comm_monoid) perm_wfactorsD:
 assumes prm: "as <~~> bs" and afs: "wfactors G as a" and bfs: "wfactors G bs b" and [simp]: "a ∈ carrier G" "b ∈ carrier G" and ascarr[simp]: "set as ⊆ carrier G"
 shows "a ∼ b"
 using afs bfs
 proof (elim wfactorsE)
 from prm have [simp]: "set bs ⊆ carrier G" by (simp add: perm_closed)
 assume "foldr op ⊗ as 1 ∼ a"
 hence "a ∼ foldr op ⊗ as 1" by (rule associated_sym, simp+)
 also from prm
 have "foldr op ⊗ as 1 = foldr op ⊗ bs 1" by (rule multlist_perm_cong, simp)
 also assume "foldr op ⊗ bs 1 ∼ b"
 finally
 show "a ∼ b" by simp
 qed

lemma (in comm_monoid_cancel) listassoc_wfactorsD:
 assumes assoc: "as [-] bs"
and afs: "wfactors G as a" and bfs: "wfactors G bs b"
and [simp]: "a ∈ carrier G" "b ∈ carrier G"
and [simp]: "set as ⊆ carrier G" "set bs ⊆ carrier G"
shows "a ∼ b"
using afs bfs
proof (elim wfactorsE)
 assume "foldr op ⊗ as 1 ∼ a"
hence "a ∼ foldr op ⊗ as 1" by (rule associated_sym, simp+)
also from assoc
 have "foldr op ⊗ as 1 ∼ foldr op ⊗ bs 1" by (rule multlist_listassoc_cong, simp+)
 also assume "foldr op ⊗ bs 1 ∼ b"
finally
 show "a ∼ b" by simp
qed

lemma (in comm_monoid_cancel) ee_wfactorsD:
 assumes ee: "essentially_equal G as bs"
 and afs: "wfactors G as a" and bfs: "wfactors G bs b"
 and [simp]: "a ∈ carrier G" "b ∈ carrier G"
 and ascarr[simp]: "set as ⊆ carrier G" and bscarr[simp]: "set bs ⊆ carrier G"
 shows "a ∼ b"
using ee
proof (elim essentially_equalE)
 fix fs
 assume prm: "as -=> fs"
hence as'carr[simp]: "set fs ⊆ carrier G" by (simp add: perm_closed)
 from afs prm
 have afs': "wfactors G fs a" by (rule wfactors_perm_cong_l, simp)
 assume "fs [-] bs"
 from this afs' bfs
 show "a ∼ b" by (rule listassoc_wfactorsD, simp+)
qed

lemma (in comm_monoid_cancel) ee_factorsD:
 assumes ee: "essentially_equal G as bs"
 and afs: "factors G as a" and bfs: "factors G bs b"
 and [simp]: "set as ⊆ carrier G" "set bs ⊆ carrier G"
 shows "a ∼ b"
using asms
by (blast intro: factors_wfactors dest: ee_wfactorsD)

lemma (in factorial_monoid) ee_factorsI:
 assumes ab: "a ∼ b"
 and afs: "factors G as a" and anunit: "a ∉ Units G"
 and bfs: "factors G bs b" and bunit: "b ∉ Units G"
 and ascarr: "set as ⊆ carrier G" and bscarr: "set bs ⊆ carrier G"
 shows "essentially_equal G as bs"
proof -
 note carr[simp] = factors_closed[OF afs ascarr] ascarr[THEN subsetD]
 factors_closed[OF bfs bscarr] bscarr[THEN subsetD]

 from ab carr
 have "\exists u \in \text{Units } G. a = b \otimes u" by (fast elim: associatedE2)
 from this obtain u
 where uunit: "u \in \text{Units } G"
 and a: "a = b \otimes u" by auto

 from bscarr uunit
 have ee: "\text{essentially_equal } G (bs[0 := (bs!0 \otimes u)]) bs"
 (is "\text{essentially_equal } G ?bs' bs")
 by (rule unitfactor_ee)

 from bfs bscarr
 have fac: "\text{factors } G ?bs' (b \otimes u)"
 by (rule factors_cong_unit)

 from afs fac[simplified a[symmetric]] ascarr bs'carr anunit
 have "\text{essentially_equal } G as ?bs'"
 by (blast intro: factors_unique)

 also note ee
 finally
 show "\text{essentially_equal } G as bs" by (simp add: ascarr bscarr bs'carr)
qed

lemma (in factorial_monoid) ee_wfactorsI:
 assumes asc: "a \sim b"
 and asf: "\text{wfactors } G as a" and bsf: "\text{wfactors } G bs b"
 and acarr[simp]: "a \in \text{carrier } G" and bcarr[simp]: "b \in \text{carrier } G"
 and ascarr[simp]: "\text{set as } \subseteq \text{carrier } G" and bscarr[simp]: "\text{set bs } \subseteq \text{carrier } G"
 shows "\text{essentially_equal } G as bs"
using assms

proof (cases "a \in \text{Units } G")
 assume aunit: "a \in \text{Units } G"
 also note asc
 finally have bunit: "b \in \text{Units } G" by simp

 from aunit asf ascarr
 have e: "as = []" by (rule unit wfactors_empty)
 from bunit bsf bscarr
 have e': "bs = []" by (rule unit wfactors_empty)
have "essentially_equal G [] []"
 by (fast intro: essentially_equalI)
thus ?thesis by (simp add: e e')
next
assume anunit: "a ∉ Units G"
have bnunit: "b ∉ Units G"
proof clarify
 assume "b ∈ Units G"
 also note asc[symmetric]
 finally have "a ∈ Units G" by simp
 with anunit
 show "False" ..
qed

have "∃a'. factors G as a' ∧ a' ∼ a" by (rule wfactors_factors[OF asf ascarr])
from this obtain a'
 where fa': "factors G as a'"
 and a': "a' ∼ a"
 by auto
from fa' ascarr
 have a'carr[simp]: "a' ∈ carrier G" by fast

have a'nunit: "a' ∉ Units G"
proof (clarify)
 assume "a' ∈ Units G"
 also note a'
 finally have "a ∈ Units G" by simp
 with anunit
 show "False" ..
qed

have "∃b'. factors G bs b' ∧ b' ∼ b" by (rule wfactors_factors[OF bsf bscarr])
from this obtain b'
 where fb': "factors G bs b'"
 and b': "b' ∼ b"
 by auto
from fb' bscarr
 have b'carr[simp]: "b' ∈ carrier G" by fast

have b'nunit: "b' ∉ Units G"
proof (clarify)
 assume "b' ∈ Units G"
 also note b'
 finally have "b ∈ Units G" by simp
 with bnunit
 show "False" ..
qed
note a'
also note asc
also note b'[symmetric]
finally
have "a' ~ b" by simp

from this fa' a'nunit fb' b'nunit ascarr bscarr
show "essentially_equal G as bs"
by (rule ee_factorsI)

qed

lemma (in factorial_monoid) ee_wfactors:
assumes asf: "wfactors G as a"
and bsf: "wfactors G bs b"
and acarr: "a ∈ carrier G" and bcarr: "b ∈ carrier G"
and ascarr: "set as ⊆ carrier G" and bscarr: "set bs ⊆ carrier G"
shows asc: "a ~ b = essentially_equal G as bs"
using assms
by (fast intro: ee_factorsI ee_factorsD)

lemma (in factorial_monoid) wfactors_exist [intro, simp]:
assumes acarr[simp]: "a ∈ carrier G"
shows "∃fs. set fs ⊆ carrier G ∧ wfactors G fs a"
proof (cases "a ∈ Units G")
assume "a ∈ Units G"
hence "wfactors G [] a" by (rule unit_wfactors)
thus ?thesis by (intro exI) force
next
assume "a /∈ Units G"
hence "∃fs. set fs ⊆ carrier G ∧ factors G fs a" by (intro factors_exist acarr)
from this obtain fs
where fscarr: "set fs ⊆ carrier G"
and f: "factors G fs a"
by auto
from f have "wfactors G fs a" by (rule factors_wfactors) fact
from fscarr this
show ?thesis by fast

qed

lemma (in monoid) wfactors_prod_exists [intro, simp]:
assumes "∀a ∈ set as. irreducible G a" and "set as ⊆ carrier G"
shows "∃a. a ∈ carrier G ∧ wfactors G as a"
unfolding wfactors_def
using assms
by blast

lemma (in factorial_monoid) wfactors_unique:
assumes "wfactors G fs a" and "wfactors G fs' a"
and "a ∈ carrier G"
and "set fs ⊆ carrier G" and "set fs' ⊆ carrier G"
shows "essentially_equal G fs fs'"
using assms
by (fast intro: ee_wfactorsI[of a a])

lemma (in monoid) factors_mult_single:
assumes "irreducible G a" and "factors G fb b" and "a ∈ carrier G"
shows "factors G (a # fb) (a ⊗ b)"
using assms
unfolding factors_def
by simp

lemma (in monoid_cancel) wfactors_mult_single:
assumes f: "irreducible G a" "wfactors G fb b"
"a ∈ carrier G" "b ∈ carrier G" "set fb ⊆ carrier G"
shows "wfactors G (a # fb) (a ⊗ b)"
using assms
unfolding wfactors_def
by (simp add: mult_cong_r)

lemma (in monoid) factors_mult:
assumes factors: "factors G fa a" "factors G fb b"
and ascarr: "set fa ⊆ carrier G"
and bscarr: "set fb ⊆ carrier G"
shows "factors G (fa @ fb) (a ⊗ b)"
using assms
unfolding factors_def
apply (safe, force)
apply hypsubst_thin
apply (induct fa)
apply simp
apply (simp add: m_assoc)
done

lemma (in comm_monoid_cancel) wfactors_mult [intro]:
assumes asf: "wfactors G as a" and bsf:"wfactors G bs b"
and acarr: "a ∈ carrier G" and bcarr: "b ∈ carrier G"
and ascarr: "set as ⊆ carrier G" and bscarr:"set bs ⊆ carrier G"
shows "wfactors G (as @ bs) (a ⊗ b)"
apply (insert wfactors_factors[OF asf ascarr])
apply (insert wfactors_factors[OF bsf bscarr])
proof (clarsimp)
fix a' b'
assume asf': "factors G as a'" and a'a: "a' ∼ a"
and bsf': "factors G bs b'" and b'b: "b' ∼ b"
from asf' have a'carr: "a' ∈ carrier G" by (rule factors_closed) fact
from bsf' have b'carr: "b' ∈ carrier G" by (rule factors_closed) fact
note carr = acarr bcarr a'carr b'carr ascarr bscarr

from asf' bsf'
 have "factors G (as @ bs) (a' @ b')" by (rule factors_mult) fact+
with carr
 have abf': "wfactors G (as @ bs) (a' @ b')" by (intro factors_wfactors)
simp+
also from b'b carr
 have trb: "a' @ b' ∼ a' @ b" by (intro mult_cong_r)
also from a'a carr
 have tra: "a' @ b ∼ a @ b" by (intro mult_cong_l)
finally
 show "wfactors G (as @ bs) (a @ b)"
 by (simp add: carr)
qed

lemma (in comm_monoid) factors_dividesI:
 assumes "factors G fs a" and "f ∈ set fs"
 and "set fs ⊆ carrier G"
 shows "f divides a"
using assms
by (fast elim: factorsE intro: multlist_dividesI)

lemma (in comm_monoid) wfactors_dividesI:
 assumes p: "wfactors G fs a"
 and fsca: "set fs ⊆ carrier G" and acarr: "a ∈ carrier G"
 and f: "f ∈ set fs"
 shows "f divides a"
apply (insert wfactors_factors[OF p fsca], clarsimp)
proof -
 fix a'
 assume fsa': "factors G fs a'"
 and a'a: "a' ∼ a"
 with fsca
 have a'carr: "a' ∈ carrier G" by (simp add: factors_closed)

from fsa' fsca f
 have "f divides a'" by (fast intro: factors_dividesI)
also note a'a
finally
 show "f divides a" by (simp add: f fsca[THEN subsetD] acarr a'carr)
qed

8.5.6 Factorial monoids and wfactors

lemma (in comm_monoid_cancel) factorial_monoidI:
 assumes wfactors_exists:
"\(\forall a. \ a \in \text{carrier } G \implies \exists \text{fs. set } \text{fs} \subseteq \text{carrier } G \land \text{wfactors } G \ \text{fs} \ a " \)
and wfactors_unique:
"\(\forall a \ \text{fs} \ \text{fs}'. \ [a \in \text{carrier } G; \ \text{set } \text{fs} \subseteq \text{carrier } G; \ \text{set } \text{fs}' \subseteq \text{carrier } G; \ \text{wfactors } G \ \text{fs} \ a; \ \text{wfactors } G \ \text{fs'} \ a] \implies \text{essentially_equal } G \ \text{fs} \ \text{fs'} " \)
shows "factorial_monoid G"

proof
fix a
assume acarr: "a \in \text{carrier } G" and anunit: "a \notin \text{Units } G"

from wfactors_exists[OF acarr]
obtain as
 where ascarr: "set as \subseteq \text{carrier } G"
 and afs: "\text{wfactors } G \ \text{as} \ a"
 by auto
from afs ascarr
 have "\exists \text{a'. factors } G \ \text{as} \ a' \land a' \sim a" by (rule wfactors_factors)
from this obtain a'
 where afs': "\text{factors } G \ \text{as} \ a'"
 and a'a: "a' \sim a"
 by auto
from afs' ascarr
 have a'carr: "a' \in \text{carrier } G" by fast
have a'nunit: "a' \notin \text{Units } G"
proof clarify
 assume "a' \in \text{Units } G"
 also note a'a
 finally have "a \in \text{Units } G" by (simp add: acarr)
 with anunit
 show "False" ..
qed

from a'carr acarr a'a
 have "\exists \text{u. u} \in \text{Units } G \land a' = a \otimes u" by (blast elim: associatedE2)
from this obtain u
 where uunit: "u \in \text{Units } G"
 and a': "a' = a \otimes u"
 by auto

note [simp] = acarr Units_closed[OF uunit] Units_inv_closed[OF uunit]

have "a = a \otimes 1" by simp
also have "... = a \otimes (u \otimes \text{inv } u)" by (simp add: uunit)
also have "... = a' \otimes \text{inv } u" by (simp add: m_assoc[symmetric] a'[symmetric])
finally
 have a: "a = a' \otimes \text{inv } u" .
from ascarr uunit
 have cr: "set (as[0:=(as!0 ⊗ inv u))] ⊆ carrier G"
 by (cases as, clarsimp+)

from afs' uunit a'nunit acarr ascarr
 have "factors G (as[0:=(as!0 ⊗ inv u))] a"
 by (simp add: a factors_cong_unit)

with cr
 show "∃fs. set fs ⊆ carrier G ∧ factors G fs a" by fast
qed (blast intro: factors_wfactors wfactors_unique)

8.6 Factorizations as Multisets

Gives useful operations like intersection

abbreviation
 "assocs G x == eq_closure_of (division_rel G) {x}"

definition
 "fmset G as = multiset_of (map (λa. assocs G a) as)"

Helper lemmas

lemma (in monoid) assocs_repr_independence:
 assumes "y ∈ assocs G x"
 and "x ∈ carrier G"
 shows "assocs G x = assocs G y"
using assms
apply safe
apply (elim closure_ofE2, intro closure_ofI2[of _ _ y])
apply (clarsimp, iprover intro: associated_trans associated_sym, simp+)
apply (elim closure_ofE2, intro closure_ofI2[of _ _ x])
apply (clarsimp, iprover intro: associated_trans, simp+)
done

lemma (in monoid) assocs_self:
 assumes "x ∈ carrier G"
 shows "x ∈ assocs G x"
using assms
by (fastforce intro: closure_ofI2)

lemma (in monoid) assocs_repr_independenceD:
 assumes repr: "assocs G x = assocs G y"
 and ycarr: "y ∈ carrier G"
 shows "y ∈ assocs G x"
unfolding repr
using ycarr
by (intro assocs_self)

lemma (in comm_monoid) assocs_assoc:
assumes "a ∈ assocs G b"
and "b ∈ carrier G"
shows "a ∼ b"
using assms
by (elim closure_ofE2, simp)

lemmas (in comm_monoid) assocs_eqD =
 assocs_repr_independenceD[THEN assocs_assoc]

8.6.1 Comparing multisets

lemma (in monoid) fmset_perm_cong:
 assumes prm: "as <~~> bs"
 shows "fmset G as = fmset G bs"
using perm_map[of prm]
by (simp add: multiset_of_eq_perm fmset_def)

lemma (in comm_monoid_cancel) eqc_listassoc_cong:
 assumes "as [~] bs"
 and "set as ⊆ carrier G" and "set bs ⊆ carrier G"
 shows "map (assocs G) as = map (assocs G) bs"
using assms
apply (induct as arbitrary: bs, simp)
apply (clarsimp simp add: Cons_eq_map_conv list_all2_Cons1, safe)
apply (clarsimp elim!: closure_ofE2) defer 1
apply (clarsimp elim!: closure_ofE2) defer 1
proof -
 fix a x z
 assume carr[simp]: "a ∈ carrier G" "x ∈ carrier G" "z ∈ carrier G"
 assume "x ∼ a"
 also assume "a ∼ z"
 finally have "x ∼ z" by simp
 with carr
 show "x ∈ assocs G z"
 by (intro closure_ofI2) simp+
next
 fix a x z
 assume carr[simp]: "a ∈ carrier G" "x ∈ carrier G" "z ∈ carrier G"
 assume "x ∼ z"
 also assume [symmetric]: "a ∼ z"
 finally have "x ∼ a" by simp
 with carr
 show "x ∈ assocs G a"
 by (intro closure_ofI2) simp+
qed

lemma (in comm_monoid_cancel) fmset_listassoc_cong:
assumes "as [~] bs"
and "set as ⊆ carrier G" and "set bs ⊆ carrier G"

shows "fmset G as = fmset G bs"

using assms

unfolding fmset_def
by (simp add: eqc_listassoc_cong)

lemma (in comm_monoid_cancel) ee_fmset:
assumes ee: "essentially_equal G as bs"
and ascarr: "set as ⊆ carrier G" and bscarr: "set bs ⊆ carrier G"

shows "fmset G as = fmset G bs"

using ee

proof (elim essentially_equalE)
fix as'
assume prm: "as <~~> as'"
from prm ascarr
have as'carr: "set as' ⊆ carrier G" by (rule perm_closed)

from prm
have "fmset G as = fmset G as'" by (rule fmset_perm_cong)
also assume "as' [~] bs"
with as'carr bscarr
have "fmset G as' = fmset G bs" by (simp add: fmset_listassoc_cong)
finally
show "fmset G as = fmset G bs".

qed

lemma (in monoid_cancel) fmset_ee__hlp_induct:
assumes prm: "cas <~~> cbs"
and cdef: "cas = map (assocs G) as" "cbs = map (assocs G) bs"

shows "∀ as bs. (cas <~~> cbs ∧ cas = map (assocs G) as ∧
cbs = map (assocs G) bs) −→ (∃ as'. as <~~> as' ∧ map (assocs G) as' = cbs)"

apply (rule perm.induct[of cas cbs], rule prm)
apply safe
apply (simp add: map_eq_Cons_conv, blast)
apply force
proof -
fix ys as bs
assume p1: "map (assocs G) as <~~> ys"
and r1[rule_format]:
"∀ asa bs. map (assocs G) as = map (assocs G) asa ∧
ys = map (assocs G) bs
−→ (∃ as'. as <~~> as' ∧ map (assocs G) as' = map (assocs G) bs)"

and p2: "ys <~~> map (assocs G) bs"
and r2[rule_format]:
"∀ as bsa. ys = map (assocs G) as ∧
map (assocs G) bs = map (assocs G) bsa"
→ (∃as'. as <--> as' ∧ map (assocs G) as' = map (assocs G) bsa)"

and p3: "map (assocs G) as <--> map (assocs G) bs"

from p1
 have "multiset_of (map (assocs G) as) = multiset_of ys"
 by (simp add: multiset_of_eq_perm)
hence setys: "set (map (assocs G) as) = set ys" by (rule multiset_of_eq_setD)

have "set (map (assocs G) as) = { assocs G x | x. x ∈ set as}" by clarsimp
fast
with setys have "set ys ⊆ { assocs G x | x. x ∈ set as}" by simp
hence "∃yy. ys = map (assocs G) yy"
 apply (induct ys, simp, clarsimp)
proof -
 fix yy x
 show "∃yya. (assocs G x) # map (assocs G) yy = map (assocs G) yya"
 by (rule exI[of _ "x#yy"], simp)
qed
from this obtain yy
 where ys: "ys = map (assocs G) yy"
 by auto

from p1 ys
 have "∃as'. as <--> as' ∧ map (assocs G) as' = map (assocs G) yy"
 by (intro r1, simp)
from this obtain as' where asas': "as <--> as'"
 and as'yy: "map (assocs G) as' = map (assocs G) yy"
 by auto

from p2 ys
 have "∃as'. yy <--> as' ∧ map (assocs G) as' = map (assocs G) bs"
 by (intro r2, simp)
from this obtain as'' where yyas'': "yy <--> as''"
 and as''bs: "map (assocs G) as'' = map (assocs G) bs"
 by auto
from as''yy and yyas''
 have "∃cs. as' <--> cs ∧ map (assocs G) cs = map (assocs G) as''"
 by (rule perm_map_switch)
from this obtain cs
 where as'cs: "as' <--> cs"
 and csas'': "map (assocs G) cs = map (assocs G) as''"
 by auto
from asas' and as'cs
have ascs: "as <-> cs" by fast
from csas' and as' 'bs
have "map (assocs G) cs = map (assocs G) bs" by simp
from ascs and this
show "\exists as'. as <-> as' \land map (assocs G) as' = map (assocs G) bs" by fast
qed

lemma (in comm_monoid_cancel) fmset_ee:
assumes mset: "fmset G as = fmset G bs"
and ascarr: "set as \subseteq carrier G" and bscarr: "set bs \subseteq carrier G"
shows "essentially_equal G as bs"
proof -
from mset
have mpp: "map (assocs G) as <-> map (assocs G) bs"
by (simp add: fmset_def multiset_of_eq_perm)

have "\exists cas. cas = map (assocs G) as" by simp
from this obtain cas where cas: "cas = map (assocs G) as" by simp

have "\exists cbs. cbs = map (assocs G) bs" by simp
from this obtain cbs where cbs: "cbs = map (assocs G) bs" by simp

from cas cbs mpp
have [rule_format]:
"\forall as bs. (cas <-> cbs \land cas = map (assocs G) as \land cbs = map (assocs G) bs)\rightarrow (\exists as'. as <-> as' \land map (assocs G) as' = cbs)"
by (intro fmset_ee__hlp_induct, simp+)
with mpp cas cbs
have "\exists as'. as <-> as' \land map (assocs G) as' = map (assocs G) bs" by simp

from this obtain as'
where tp: "as <-> as'"
and tm: "map (assocs G) as' = map (assocs G) bs"
by auto
from tm have lene: "length as' = length bs" by (rule map_eq_imp_length_eq)
from tp have "set as = set as'" by (simp add: multiset_of_eq_perm multiset_of_eq_setD)
with ascarr
have as' carr: "set as' \subseteq carrier G" by simp

from tm as' carr [THEN subsetD] bscarr [THEN subsetD]
have "as' [-] bs"
by (induct as' arbitrary: bs) (simp, fastforce dest: assocs_eqD [THEN associated_sym])

from tp and this
show "essentially_equal G as bs" by (fast intro: essentially_equalI)
lemma (in comm_monoid_cancel) ee_is_fmset:
 assumes "set as ⊆ carrier G" and "set bs ⊆ carrier G"
 shows "essentially_equal G as bs = (fmset G as = fmset G bs)"
using assms
by (fast intro: ee_fmset fmset_ee)

8.6.2 Interpreting multisets as factorizations

lemma (in monoid) mset_fmsetEx:
 assumes elems: "∀ X. X ∈ set_of Cs =⇒ ∃ x. P x ∧ X = assocs G x"
 shows "∃ cs. (∀ c ∈ set cs. P c) ∧ fmset G cs = Cs"
proof -
 have "∃ Cs'. Cs = multiset_of Cs'" by (rule surjE[OF surj_multiset_of], fast)
 from this obtain Cs'
 where Cs: "Cs = multiset_of Cs'"
 by auto
 have "∃ cs. (∀ c ∈ set cs. P c) ∧ multiset_of (map (assocs G) cs) = Cs"
 using elems
 unfolding Cs
 apply (induct Cs', simp)
 apply clarsimp
 apply (subgoal_tac "∃ cs. (∀ x ∈ set cs. P x) ∧ multiset_of (map (assocs G) cs) = multiset_of Cs'"
 Cs'")
 proof clarsimp
 fix a Cs' cs
 assume ih: "∀ X. X = a ∨ X ∈ set Cs' =⇒ ∃ x. P x ∧ X = assocs G x"
 and csP: "∀ x ∈ set cs. P x"
 and mset: "multiset_of (map (assocs G) cs) = multiset_of Cs'"
 from ih
 have "∃ x. P x ∧ a = assocs G x" by fast
 from this obtain c
 where cP: "P c"
 and a: "a = assocs G c"
 by auto
 from cP csP
 have tP: "∀ x ∈ set (c#cs). P x" by simp
 from mset a
 have "multiset_of (map (assocs G) (c#cs)) = multiset_of Cs' + {#a#}" by simp
 from tP this
 show "∃ cs. (∀ x ∈ set cs. P x) ∧ multiset_of (map (assocs G) cs) ="
lemma (in monoid) mset_wfactorsEx:
 assumes elems: "∀ X. X ∈ set_of Cs
 ⇒ ∃ x. (x ∈ carrier G ∧ irreducible G x) ∧ X = assocs G x"
 shows "∃ cs. (∀ c ∈ carrier G ∧ set cs ⊆ carrier G ∧ wfactors G cs c ∧ fmset G cs = Cs"
proof -
 have "∃ cs. (∀ c ∈ carrier G ∧ set cs ⊆ carrier G ∧ irreducible G c) ∧ fmset G cs = Cs"
 by (intro mset_fmsetEx, rule elems)
 from this obtain cs
 where p[rule_format]: "∀ c ∈ set cs. c ∈ carrier G ∧ irreducible G c"
 and Cs[symmetric]: "fmset G cs = Cs"
 by auto
 from p
 have cscarr: "set cs ⊆ carrier G" by fast
 from p
 have "∃ c. c ∈ carrier G ∧ wfactors G cs c"
 by (intro wfactors_prod_exists) fast+
 from this obtain c
 where ccarr: "c ∈ carrier G"
 and cfs: "wfactors G cs c"
 by auto
 with cscarr Cs
 show ?thesis by fast
qed

8.6.3 Multiplication on multisets

lemma (in factorial_monoid) mult_wfactors_fmset:
 assumes afs: "wfactors G a as" and bfs: "wfactors G bs b" and cfs:
 "wfactors G cs (a ⊗ b)"
 and carr: "a ∈ carrier G" "b ∈ carrier G"
 "set as ⊆ carrier G" "set bs ⊆ carrier G" "set cs ⊆ carrier G"
 shows "fmset G cs = fmset G as + fmset G bs"
proof -
 from assms
 have "wfactors G (as @ bs) (a ⊗ b)" by (intro wfactors_mult)
 with carr cfs
have "essentially_equal G cs (as@bs)" by (intro ee_wfactorsI[of "a⊗b" "a⊗b"], simp+)
 with carr
 have "fmset G cs = fmset G (as@bs)" by (intro ee_fmset, simp+)
 also have "fmset G (as@bs) = fmset G as + fmset G bs" by (simp add: fmset_def)
 finally show "fmset G cs = fmset G as + fmset G bs".
qed

lemma (in factorial_monoid) mult_factors_fmset:
assumes afs: "factors G as a" and bfs: "factors G bs b" and cfs: "factors G cs (a ⊗ b)"
 and "set as ⊆ carrier G" "set bs ⊆ carrier G" "set cs ⊆ carrier G"
shows "fmset G cs = fmset G as + fmset G bs"
using assms by (blast intro: factors_wfactors mult_wfactors_fmset)

lemma (in comm_monoid_cancel) fmset_wfactors_mult:
assumes mset: "fmset G cs = fmset G as + fmset G bs" and carr: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"
 "set as ⊆ carrier G" "set bs ⊆ carrier G" "set cs ⊆ carrier G"
 and fs: "wfactors G as a" "wfactors G bs b" "wfactors G cs c"
shows "c ∼ a ⊗ b"
proof -
 from carr fs
 have m: "wfactors G (as @ bs) (a ⊗ b)" by (intro wfactors_mult)
 from mset
 have "fmset G cs = fmset G (as@bs)" by (simp add: fmset_def)
 then have "essentially_equal G cs (as@bs)" by (rule fmset_ee) (simp add: carr)+
 then show "c ∼ a ⊗ b" by (rule ee_wfactorsD[of "cs" "as@bs"]) (simp add: asms m)+
 qed

8.6.4 Divisibility on multisets

lemma (in factorial_monoid) divides_fmsubset:
assumes ab: "a divides b" and afs: "wfactors G as a" and bfs: "wfactors G bs b"
 and carr: "a ∈ carrier G" "b ∈ carrier G" "set as ⊆ carrier G"
"set bs ⊆ carrier G"
shows "fmset G as ≤ fmset G bs"
using ab
proof (elim dividesE)
 fix c
 assume ccarr: "c ∈ carrier G"
hence "∃cs. set cs ⊆ carrier G ∧ wfactors G cs c" by (rule wfactors_exist)
from this obtain cs
 where cscarr: "set cs ⊆ carrier G"
 and cfs: "wfactors G cs c" by auto
note carr = carr ccarr cscarr

assume "b = a ⊗ c"
with afs bfs cfs carr
 have "fmset G bs = fmset G as + fmset G cs"
 by (intro mult_wfactors_fmset[OF afs cfs]) simp+

thus ?thesis by simp
qed

lemma (in comm_monoid_cancel) fmsubset_divides:
 assumes msubset: "fmset G as ⊆ fmset G bs"
 and afs: "wfactors G as a" and bfs: "wfactors G bs b"
 and acarr: "a ∈ carrier G" and bcarr: "b ∈ carrier G"
 and ascarr: "set as ⊆ carrier G" and bscarr: "set bs ⊆ carrier G"
 shows "a divides b"
proof -
 from afs have airr: "∀a ∈ set as. irreducible G a" by (fast elim: wfactorsE)
 from bfs have birr: "∀b ∈ set bs. irreducible G b" by (fast elim: wfactorsE)

 have "∃c cs. c ∈ carrier G ∧ set cs ⊆ carrier G ∧ wfactors G cs c ∧ fmset G cs = fmset G bs - fmset G as"
proof (intro mset_wfactorsEx, simp)
 fix X
 assume "count (fmset G as) X < count (fmset G bs) X"
 hence "0 < count (fmset G bs) X" by simp
 hence "X ∈ set.of (fmset G bs)" by simp
 hence "X ∈ set (map (assocs G) bs)" by (simp add: fmset_def)
 hence "∃x. x ∈ set bs ∧ X = assocs G x" by (induct bs) auto
 from this obtain x
 where xbs: "x ∈ set bs"
 and X: "X = assocs G x"
 by auto

 with bscarr have xcarr: "x ∈ carrier G" by fast
 from xbs birr have xirr: "irreducible G x" by simp

 from xcarr and xirr and X
 show "∃x. x ∈ carrier G ∧ irreducible G x ∧ X = assocs G x"
 by fast
qed
from this obtain c cs
 where ccarr: "c ∈ carrier G"
and cscarr: "set cs ⊆ carrier G"
and csf: "wfactors G cs c"
and csmset: "fmset G cs = fmset G bs - fmset G as" by auto

from csmset msubset
 have "fmset G bs = fmset G as + fmset G cs"
 by (simp add: multiset_eq_iff mset_le_def)
hence basc: "b ∼ a ⊗ c"
 by (rule fmset wfactors_mult) fact+

thus ?thesis
proof (elim associatedE2)
 fix u
 assume "u ∈ Units G" "b = a ⊗ c ⊗ u"
 with acarr ccarr
 show "a divides b" by (fast intro: dividesI[of "c ⊗ u"] m_assoc)
qed (simp add: acarr bcarr ccarr)+

qed

lemma (in factorial_monoid) divides_as_fmsubset:
 assumes "wfactors G as a" and "wfactors G bs b"
 and "a ∈ carrier G" and "b ∈ carrier G"
 and "set as ⊆ carrier G" and "set bs ⊆ carrier G"
 shows "a divides b = (fmset G as ≤ fmset G bs)"
using assms
by (blast intro: divides_fmsubset fmsubset_divides)

Proper factors on multisets

lemma (in factorial_monoid) fmset_properfactor:
 assumes asubb: "fmset G as ≤ fmset G bs"
 and anb: "fmset G as ≠ fmset G bs"
 and "wfactors G as a" and "wfactors G bs b"
 and "a ∈ carrier G" and "b ∈ carrier G"
 and "set as ⊆ carrier G" and "set bs ⊆ carrier G"
 shows "properfactor G a b"
apply (rule properfactorI)
apply (rule fmsubset_divides[of as bs], fact+)
proof
 assume "b divides a"
 hence "fmset G bs ≤ fmset G as"
 by (rule divides_fmsubset) fact+
 with asubb
 have "fmset G as = fmset G bs" by (rule order_antisym)
 with anb
 show "False" ..
qed

lemma (in factorial_monoid) properfactor_fmset:
 assumes pf: "properfactor G a b"
and "wfactors G as a" and "wfactors G bs b"
and "a ∈ carrier G" and "b ∈ carrier G"
and "set as ⊆ carrier G" and "set bs ⊆ carrier G"
shows "fmset G as ⊆ fmset G bs ∧ fmset G as ≠ fmset G bs"

using pf
apply (elim properfactorE)
apply rule
apply (intro divides_fmsubset, assumption)
apply (rule assms)+
apply (metis assms divides_fmsubset fmsubset_divides)
done

8.7 Irreducible Elements are Prime

lemma (in factorial_monoid) irreducible_is_prime:
 assumes pirr: "irreducible G p"
 and pcarr: "p ∈ carrier G"
 shows "prime G p"
using pirr
proof (elim irreducibleE, intro primeI)
 fix a b
 assume acarr: "a ∈ carrier G" and bcarr: "b ∈ carrier G"
 and pdvdab: "p divides (a ⊗ b)"
 and pnunit: "p /∈ Units G"
 assume irreduc[rule_format]: "∀ b. b ∈ carrier G ∧ properfactor G b p → b ∈ Units G"
 from pdvdab
 have "∃ c∈carrier G. a ⊗ b = p ⊗ c" by (rule dividesD)
 from this obtain c
 where ccarr: "c ∈ carrier G"
 and abpc: "a ⊗ b = p ⊗ c"
 by auto

 from acarr have "∃ fs. set fs ⊆ carrier G ∧ wfactors G fs a" by (rule wfactors_exist)
 from this obtain as where ascarr: "set as ⊆ carrier G" and afs: "wfactors G as a" by auto

 from bcarr have "∃ fs. set fs ⊆ carrier G ∧ wfactors G fs b" by (rule wfactors_exist)
 from this obtain bs where bscarr: "set bs ⊆ carrier G" and bfs: "wfactors G bs b" by auto

 from ccarr have "∃ fs. set fs ⊆ carrier G ∧ wfactors G fs c" by (rule wfactors_exist)
 from this obtain cs where cscarr: "set cs ⊆ carrier G" and cfs: "wfactors G cs c" by auto

 note carr[simp] = pcarr acarr bcarr ccarr ascarr bscarr cscarr
from afs and bfs
 have abfs: \"\text{wfactors } G \ (\text{as } @ \text{ bs}) \ (a \otimes b)\" by (rule wfactors_mult)
 fact+

from pirr cfs
 have pcfs: \"\text{wfactors } G \ (p \ # \ cs) \ (p \otimes c)\" by (rule wfactors_mult_single)
 fact+
 with abpc
 have abfs': \"\text{wfactors } G \ (p \ # \ cs) \ (a \otimes b)\" by simp

from abfs' abfs
 have \"\text{essentially_equal } G \ (p \ # \ cs) \ (\text{as } @ \text{ bs})\" by (rule wfactors_unique)
 simp+

hence \"\exists ds. \ p \ # \ cs <~~> ds \wedge ds \ [\sim] \ (\text{as } @ \text{ bs})\" by (fast elim: essentially_equalE)
from this obtain ds
 where \"\ p \ # \ cs <~~> ds\"
 and dsassoc: \"ds \ [\sim] \ (\text{as } @ \text{ bs})\" by auto

then have \"p \in \text{set ds}\" by (simp add: perm_set_eq[symmetric])
with dsassoc
 have \"\exists p'. \ p' \in \text{set (as@bs)} \wedge p \sim p'\"
 unfolding list_all2_conv_all_nth set_conv_nth by force
from this obtain p'
 where \"p' \in \text{set (as@bs)}\"
 and pp': \"p \sim p'\" by auto

hence \"p' \in \text{set as} \lor p' \in \text{set bs}\" by simp
moreover

assume p'elem: \"p' \in \text{set as}\" by fast
with ascarr have [simp]: \"p' \in \text{carrier } G\" by fast
note pp'
also from afs
 have \"p' \text{ divides } a\" by (rule wfactors_dividesI)
 fact+
finally
 have \"p \text{ divides } a\" by simp

moreover

assume p'elem: \"p' \in \text{set bs}\"
with bscarr have [simp]: "p' ∈ carrier G" by fast

note pp'
also from bfs
have "p' divides b" by (rule wfa factors_dividesI) fact+
finally
have "p divides b" by simp

ultimately
show "p divides a ∨ p divides b" by fast

qed

— A version using factors, more complicated

lemma (in factorial_monoid) factors_irreducible_is_prime:
 assumes p irr: "irreducible G p"
 and pcarr: "p ∈ carrier G"
 shows "prime G p"
using p irr
apply (elim irreducibleE, intro primeI)
apply assumption
proof -
 fix a b
 assume acarr: "a ∈ carrier G"
 and bcarr: "b ∈ carrier G"
 and pdvdab: "p divides (a ⊗ b)"
 assume irreduc[rule_format]:
 "∀b. b ∈ carrier G ∧ properfactor G b p ⟷ b ∈ Units G"
 from pdvdab
 have "∃c∈carrier G. a ⊗ b = p ⊗ c" by (rule dividesD)
 from this obtain c
 where ccarr: "c ∈ carrier G"
 and abpc: "a ⊗ b = p ⊗ c"
 by auto
 note [simp] = pcarr acarr bcarr ccarr
 show "p divides a ∨ p divides b"
proof (cases "a ∈ Units G")
 assume aunit: "a ∈ Units G"
 note pdvdab
 also have "a ⊗ b = b ⊗ a" by (simp add: m_comm)
 also from aunit
 have bab: "b ⊗ a ∼ b"
 by (intro associatedI2[of "a"], simp+)
 finally
 have "p divides b" by simp
 thus "p divides a ∨ p divides b" ..
 next
assume anunit: "a \notin \text{Units } G"

show "p \text{ divides } a \lor p \text{ divides } b"
proof (cases "b \in \text{Units } G")
 assume bunit: "b \in \text{Units } G"

 note pdvdab
 also from bunit
 have baa: "a \otimes b \sim a"
 by (intro associatedI2[of "b"], simp+)
 finally
 have "p \text{ divides } a" by simp
 thus "p \text{ divides } a \lor p \text{ divides } b" ..
next
 assume bnunit: "b \notin \text{Units } G"

 have cnunit: "c \notin \text{Units } G"
proof (rule ccontr, simp)
 assume cunit: "c \in \text{Units } G"
 from bnunit
 have "\text{properfactor } G \ a \ (a \otimes b)"
 by (intro properfactorI3[of _ _ b], simp+)
 also note abpc
 also from cunit
 have "p \otimes c \sim p"
 by (intro associatedI2[of c], simp+)
 finally
 have "\text{properfactor } G \ a \ p" by simp

 with acarr
 have "a \in \text{Units } G" by (fast intro: irreduc)
 with anunit
 show "False" ..
qed

have abnunit: "a \otimes b \notin \text{Units } G"
proof clarsimp
 assume abunit: "a \otimes b \in \text{Units } G"
 hence "a \in \text{Units } G" by (rule unit_factor) fact+
 with anunit
 show "False" ..
qed

from acarr anunit have "\exists \text{fs. set } \text{fs } \subseteq \text{carrier } G \land \text{factors } G \ \text{fs } a" by (rule factors_exist)
 then obtain as where ascarr: "\text{set } \text{as } \subseteq \text{carrier } G" and afac: "\text{factors } G \text{ as } a" by auto

from bcarr bnunit have "\exists \text{fs. set } \text{fs } \subseteq \text{carrier } G \land \text{factors } G \ \text{fs}"
b" by \(\text{rule factors_exist}\)
then obtain bs where bscarr: "set bs \subseteq\text{ carrier } G" and bfac: "factors G bs b" by auto

from ccarr cnunit have "\(\exists fs. \text{ set } fs \subseteq\text{ carrier } G \land\text{ factors } G fs\) c" by \(\text{rule factors_exist}\)
then obtain cs where cscarr: "set cs \subseteq\text{ carrier } G" and cfac: "factors G cs c" by auto

\text{note [simp] = ascarr bscarr cscarr}

from afac and bfac
\begin{align*}
\text{have abfac: "factors } G (\text{as } @ \text{ bs}) (a \otimes b))" \text{ by \(\text{rule factors_mult}\)}
\end{align*}

\text{fact+}

from pirm cfac
\begin{align*}
\text{have pcfac: "factors } G (p \# \text{ cs}) (p \otimes c)" \text{ by \(\text{rule factors_mult_single}\)}
\end{align*}

\text{fact+}

with abpc
\begin{align*}
\text{have abfac': "factors } G (p \# \text{ cs}) (a \otimes b)" \text{ by simp}
\end{align*}

from abfac' abfac
\begin{align*}
\text{have "essentially_equal } G (p \# \text{ cs}) (\text{as } @ \text{ bs})" \text{ by \(\text{rule factors_unique}\) (fact | simp)+}
\end{align*}

hence "\(\exists ds. p \# \text{ cs } \sim\sim \text{ ds } \land\text{ ds } \sim\sim\text{ (as } @ \text{ bs)}\)"
by \(\text{fast elim: essentially_equalE}\)

from this obtain ds
\begin{align*}
\text{where } "p \# \text{ cs } \sim\sim \text{ ds}"
\end{align*}
and dsassoc: "ds \sim\sim (\text{as } @ \text{ bs})"
by auto

then have "p \in\text{ set } ds"
by \(\text{simp add: perm_set_eq[symmetric]}\)
with dsassoc
\begin{align*}
\text{have "}\exists p'. p' \in\text{ set } (\text{as}@bs) \land p \sim p'\text{"}
\end{align*}
unfolding list_all2_conv_all_nth set_conv_nth
by force

from this obtain p'
\begin{align*}
\text{where } "p' \in\text{ set } (\text{as@bs})"
\end{align*}
and pp': "p \sim p'" by auto

hence "p' \in\text{ set as } \lor p' \in\text{ set bs}" by simp

moreover
\begin{align*}
\text{assume p'elem: "p' \in\text{ set as}"
\end{align*}
with ascarr have [simp]: "p' \in\text{ carrier } G" by fast
\[p' \text{ divides } a \] by (rule factors_dividesI) fact+

finally
\[p \text{ divides } a \] by simp

\}

moreover \{
\begin{align*}
\text{assume } p' \in \text{set bs} \\
\text{with } bscarr \text{ have } [\text{simpl}]: "p' \in \text{carrier } G" \text{ by fast}
\end{align*}
\}

ultimately
\begin{align*}
\text{show } "p \text{ divides } a \lor p \text{ divides } b" \text{ by fast}
\end{align*}
\begin{align*}
\text{qed} \\
\text{qed} \\
\text{qed}
\end{align*}

8.8 Greatest Common Divisors and Lowest Common Multiples

8.8.1 Definitions

definition
\text{isgcd} :: "[(_ ,_) monoid_scheme, _ , _ , _] \Rightarrow \text{bool}" ("_ gcdof _ _ \") [81,81,81] 80
where
\[x \text{ gcdof } G a b \leftrightarrow x \text{ divides } G a \land x \text{ divides } G b \land \\
(\forall y \in \text{carrier } G. (y \text{ divides } G a \land y \text{ divides } G b \rightarrow y \text{ divides } G x))"\]

definition
\text{islcm} :: "[_, _ , _ , _] \Rightarrow \text{bool}" ("_ lcmof _ _" [81,81,81] 80)
where
\[x \text{ lcmof } G a b \leftrightarrow a \text{ divides } G x \land b \text{ divides } G x \land \\
(\forall y \in \text{carrier } G. (a \text{ divides } G y \land b \text{ divides } G y \rightarrow x \text{ divides } G y))"\]

definition
\text{somegcd} :: "[(_ ,_) monoid_scheme \Rightarrow _ \Rightarrow _ \Rightarrow _]" [81,81,81] 80
where
\["\text{somegcd } G a b = (\text{SOME } x. x \in \text{carrier } G \land x \text{ gcdof } G a b)"\]

definition
\text{somelcm} :: "[(_ ,_) monoid_scheme \Rightarrow _ \Rightarrow _ \Rightarrow _]" [81,81,81] 80
where
\["\text{somelcm } G a b = (\text{SOME } x. x \in \text{carrier } G \land x \text{ lcmof } G a b)"\]

definition
\["\text{SomeGcd } G A = \text{inf } (\text{division}_\text{rel } G) A"\]
locale gcd_condition_monoid = comm_monoid_cancel +
 assumes gcdof_exists:
 "[a ∈ carrier G; b ∈ carrier G] ⇒ ∃ c ∈ carrier G ∧ c gcdof a b"

locale primeness_condition_monoid = comm_monoid_cancel +
 assumes irreducible_prime:
 "[a ∈ carrier G; irreducible G a] ⇒ prime G a"

locale divisor_chain_condition_monoid = comm_monoid_cancel +
 assumes division_wellfounded:
 "wf {(x, y). x ∈ carrier G ∧ y ∈ carrier G ∧ properfactor G x y}"

8.8.2 Connections to Lattice.thy

lemma gcdof_greatestLower:
 fixes G (structure)
 assumes carr[simp]: "a ∈ carrier G" "b ∈ carrier G"
 shows "(x ∈ carrier G ∧ x gcdof a b) =
 greatest (division_rel G) x (Lower (division_rel G) {a, b})"
unfolding isgcd_def greatest_def Lower_def elem_def
by auto

lemma lcmof_leastUpper:
 fixes G (structure)
 assumes carr[simp]: "a ∈ carrier G" "b ∈ carrier G"
 shows "(x ∈ carrier G ∧ x lcmof a b) =
 least (division_rel G) x (Upper (division_rel G) {a, b})"
unfolding islcm_def least_def Upper_def elem_def
by auto

lemma somegcd_meet:
 fixes G (structure)
 assumes carr: "a ∈ carrier G" "b ∈ carrier G"
 shows "somegcd G a b = meet (division_rel G) a b"
unfolding somegcd_def meet_def inf_def
by (simp add: gcdof_greatestLower[OF carr])

lemma (in monoid) isgcd_divides_l:
 assumes "a divides b"
 and "a ∈ carrier G" "b ∈ carrier G"
 shows "a gcdof a b"
using assms
unfolding isgcd_def
by fast

lemma (in monoid) isgcd_divides_r:
 assumes "b divides a"
and "a ∈ carrier G" "b ∈ carrier G" shows "b gcdof a b"
using assms
unfolding isgcd_def
by fast

8.8.3 Existence of gcd and lcm

lemma (in factorial_monoid) gcdof_exists:
 assumes acarr: "a ∈ carrier G" and bcarr: "b ∈ carrier G"
 shows "∃ c. c ∈ carrier G ∧ c gcdof a b"
proof -
 from acarr have "∃ as. set as ⊆ carrier G ∧ wfactors G as a" by (rule wfactors_exist)
 from this obtain as
 where ascarr: "set as ⊆ carrier G"
 and afs: "wfactors G as a"
 by auto
 from afs have airr: "∀ a ∈ set as. irreducible G a" by (fast elim: wfactorsE)
 from bcarr have "∃ bs. set bs ⊆ carrier G ∧ wfactors G bs b" by (rule wfactors_exist)
 from this obtain bs
 where bscarr: "set bs ⊆ carrier G"
 and bfs: "wfactors G bs b"
 by auto
 from bfs have birr: "∀ b ∈ set bs. irreducible G b" by (fast elim: wfactorsE)
 have "∃ cs. c ∈ carrier G ∧ set cs ⊆ carrier G ∧ wfactors G cs c ∧ fmset G cs = fmset G as #∩ fmset G bs"
 proof (intro mset_wfactorsEx)
 fix X
 assume "X ∈ set_of (fmset G as #∩ fmset G bs)"
 hence "X ∈ set_of (fmset G as)" by (simp add: multiset_inter_def)
 hence "X ∈ set (map (assocs G) as)" by (simp add: fmset_def)
 hence "∃ x. X = assocs G x ∧ x ∈ set as" by (induct as) auto
 from this obtain x
 where xas: "x ∈ set as"
 by auto
 with ascarr have xcarr: "x ∈ carrier G" by fast
 from xas xirr have xirr: "irreducible G x" by simp
 from xcarr and xirr and X
 show "∃ x. (x ∈ carrier G ∧ irreducible G x) ∧ X = assocs G x" by fast
qed

from this obtain c cs
where ccarr: "$c \in \text{carrier } G$"
and cscarr: "$\text{set } cs \subseteq \text{carrier } G$"
and csirr: "$\text{wfactors } G \text{ cs } c$"
and csmsset: "$\text{fmset } G \text{ cs } = \text{fmset } G \text{ as } \cap \text{fmset } G \text{ bs}$" by auto

have "$c \text{ gcdof } a \ b$"
proof (simp add: isgcd_def, safe)
from csmsset
have "$\text{fmset } G \text{ cs } \leq \text{fmset } G \text{ as}$" by (simp add: multiset_inter_def mset_le_def)
thus "$c \text{ divides } a$" by (rule fmsubset_divides) fact+
next
from csmsset
have "$\text{fmset } G \text{ cs } \leq \text{fmset } G \text{ bs}$" by (simp add: multiset_inter_def mset_le_def, force)
thus "$c \text{ divides } b$" by (rule fmsubset_divides) fact+
next
fix y
assume ycarr: "$y \in \text{carrier } G$"
hence "$\exists ys. \text{set } ys \subseteq \text{carrier } G \land \text{wfactors } G \text{ ys } y$" by (rule wfactors_exist)
from this obtain ys
where yscarr: "$\text{set } ys \subseteq \text{carrier } G$"
and yfs: "$\text{wfactors } G \text{ ys } y$" by auto

assume "$y \text{ divides } a$"
hence ya: "$\text{fmset } G \text{ ys } \leq \text{fmset } G \text{ as}$" by (rule divides_fmsubset) fact+
assume "$y \text{ divides } b$"
hence yb: "$\text{fmset } G \text{ ys } \leq \text{fmset } G \text{ bs}$" by (rule divides_fmsubset) fact+
from ya yb csmsset
have "$\text{fmset } G \text{ ys } \leq \text{fmset } G \text{ cs}$" by (simp add: mset_le_def)
thus "$y \text{ divides } c$" by (rule fmsubset_divides) fact+
qed

with ccarr
show "$\exists c. c \in \text{carrier } G \land c \text{ gcdof } a \ b$" by fast
qed

lemma (in factorial_monoid) lcmof_exists:
assumes acarr: "$a \in \text{carrier } G$" and bcarr: "$b \in \text{carrier } G$"
shows "$\exists c. c \in \text{carrier } G \land c \text{ lcmof } a \ b$"
proof -
from acarr have "$\exists as. \text{set } as \subseteq \text{carrier } G \land \text{wfactors } G \text{ as } a$" by (rule wfactors_exist)
from this obtain as
 where ascarr: "set as ⊆ carrier G"
 and afs: "wfactors G as a"
 by auto
from afs have airr: "∀a ∈ set as. irreducible G a" by (fast elim: wfactorsE)

from bcarr have "∃bs. set bs ⊆ carrier G ∧ wfactors G bs b" by (rule wfactors_exist)
from this obtain bs
 where bscarr: "set bs ⊆ carrier G"
 and bfs: "wfactors G bs b"
 by auto
from bfs have birr: "∀b ∈ set bs. irreducible G b" by (fast elim: wfactorsE)

have "∃c cs. c ∈ carrier G ∧ set cs ⊆ carrier G ∧ wfactors G cs c ∧
 fmset G cs = (fmset G as - fmset G bs) + fmset G bs"
proof (intro mset_wfactorsEx)
fix X
assume "X ∈ set_of ((fmset G as - fmset G bs) + fmset G bs)"
hence "∃x ∈ set as ∧ X = assocs G x" by simp
 (cases "X :# fmset G bs", simp, simp)
moreover
{ assume "X ∈ set_of (fmset G as)"
hence "∃x ∈ set (map (assocs G) as)" by simp
 (add: fmset_def)
hence "∃x. x ∈ set as ∧ X = assocs G x" by (induct as) auto
from this obtain x
 where xas: "x ∈ set as"
 and X: "X = assocs G x" by auto
with ascarr have xcarr: "x ∈ carrier G" by fast
from xas airr have xirr: "irreducible G x" by simp

from xcarr and xirr and X
 have "∃x. (x ∈ carrier G ∧ irreducible G x) ∧ X = assocs G x" by fast
} moreover
{ assume "X ∈ set_of (fmset G bs)"
hence "∃x ∈ set (map (assocs G) bs)" by simp
 (add: fmset_def)
hence "∃x. x ∈ set bs ∧ X = assocs G x" by (induct as) auto
from this obtain x
 where xbs: "x ∈ set bs"
 and X: "X = assocs G x" by auto
with bscarr have xcarr: "x ∈ carrier G" by fast
from xbs birr have xirr: "irreducible G x" by simp

from xcarr and xirr and X
have "∃x. (x ∈ carrier G ∧ irreducible G x) ∧ X = assocs G x" by fast

ultimately
show "∃x. (x ∈ carrier G ∧ irreducible G x) ∧ X = assocs G x" by fast
qed

from this obtain c cs
where ccarr: "c ∈ carrier G"
and csccarr: "set cs ⊆ carrier G"
and csirr: "wfactors G cs c"
and csmsset: "fmset G cs = fmset G as - fmset G bs + fmset G bs"
by auto

have "c lcmof a b"
proof (simp add: islcm_def, safe)
from csmsset have "fmset G as ≤ fmset G cs" by (simp add: mset_le_def, force)
thus "a divides c" by (rule fmsubset_divides) fact+
next
from csmsset have "fmset G bs ≤ fmset G cs" by (simp add: mset_le_def)
thus "b divides c" by (rule fmsubset_divides) fact+
next
fix y
assume ycarr: "y ∈ carrier G"
hence "∃ys. set ys ⊆ carrier G ∧ wfactors G ys y" by (rule wfactors_exist)
from this obtain ys
where yscarr: "set ys ⊆ carrier G"
and yfs: "wfactors G ys y"
by auto

assume "a divides y"
hence ya: "fmset G as ≤ fmset G ys" by (rule divides_fmsubset) fact+

assume "b divides y"
hence yb: "fmset G bs ≤ fmset G ys" by (rule divides_fmsubset) fact+

from ya yb csmsset
have "fmset G cs ≤ fmset G ys"
apply (simp add: mset_le_def, clarify)
apply (case_tac "count (fmset G as) a < count (fmset G bs) a")
apply simp
apply simp
done
thus "c divides y" by (rule fmsubset_divides) fact+
qed

with ccarr
 show "∃c. c ∈ carrier G ∧ c lcmof a b" by fast
qed

8.9 Conditions for Factoriality

8.9.1 Gcd condition

lemma (in gcd_condition_monoid) division_weak_lower_semilattice [simp]:
 shows "weak_lower_semilattice (division_rel G)"
proof -
 interpret weak_partial_order "division_rel G" ..
 show ?thesis
 apply (unfold_locales, simp_all)
 proof -
 fix x y
 assume carr: "x ∈ carrier G" "y ∈ carrier G"
 hence "∃z. z ∈ carrier G ∧ z gcdof x y" by (rule gcdof_exists)
 from this obtain z
 where zcarr: "z ∈ carrier G"
 and isgcd: "z gcdof x y"
 by auto
 with carr
 have "greatest (division_rel G) z (Lower (division_rel G) {x, y})"
 by (subst gcdof_greatestLower[symmetric], simp+)
 thus "∃z. greatest (division_rel G) z (Lower (division_rel G) {x, y})" by fast
 qed
qed

lemma (in gcd_condition_monoid) gcdof_cong_l:
 assumes a'a: "a' ∼ a"
 and agcd: "a gcdof b c"
 and a'carr: "a' ∈ carrier G" and carr': "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"
 shows "a' gcdof b c"
proof -
 note carr = a'carr carr'
 interpret weak_lower_semilattice "division_rel G" by simp
 have "a' ∈ carrier G ∧ a' gcdof b c"
 apply (simp add: gcdof_greatestLower carr')
 apply (subst greatest_Lower_cong_l[of _ a])
 apply (simp add: a'a)
 apply (simp add: carr)
 apply (simp add: carr)
 apply (simp add: carr)
 apply (simp add: gcdof_greatestLower[symmetric] agcd carr)

lemma (in gcd_condition_monoid) gcd_closed [simp]:
 assumes carr: "a ∈ carrier G" "b ∈ carrier G"
 shows "somegcd G a b ∈ carrier G"
proof -
 interpret weak_lower_semilattice "division_rel G" by simp
 show ?thesis
 apply (simp add: somegcd_meet[OF carr])
 apply (rule meet_closed[simplified], fact+)
 done
qed

lemma (in gcd_condition_monoid) gcd_isgcd:
 assumes carr: "a ∈ carrier G" "b ∈ carrier G"
 shows "(somegcd G a b) gcdof a b"
proof -
 interpret weak_lower_semilattice "division_rel G" by simp
 from carr have "somegcd G a b ∈ carrier G ∧ (somegcd G a b) gcdof a b"
 apply (subst gcdof_greatestLower, simp, simp)
 apply (simp add: somegcd_meet[OF carr] meet_def)
 apply (rule inf_of_two_greatest[simplified], assumption+)
 done
 thus "(somegcd G a b) gcdof a b" by simp
qed

lemma (in gcd_condition_monoid) gcd_exists:
 assumes carr: "a ∈ carrier G" "b ∈ carrier G"
 shows "∃x ∈ carrier G. x = somegcd G a b"
proof -
 interpret weak_lower_semilattice "division_rel G" by simp
 show ?thesis
 by (metis carr(1) carr(2) gcd_closed)
qed

lemma (in gcd_condition_monoid) gcd_divides_l:
 assumes carr: "a ∈ carrier G" "b ∈ carrier G"
 shows "(somegcd G a b) divides a"
proof -
 interpret weak_lower_semilattice "division_rel G" by simp
 show ?thesis
 by (metis carr(1) carr(2) gcd_isgcd isgcd_def)
qed

lemma (in gcd_condition_monoid) gcd_divides_r:
 assumes carr: "a ∈ carrier G" "b ∈ carrier G"
shows "(somegcd G a b) divides b"
proof -
 interpret weak_lower_semilattice "division_rel G" by simp
 show ?thesis
 by (metis carr gcd_isgcd isgcd_def)
qed

lemma (in gcd_condition_monoid) gcd_divides:
 assumes sub: "z divides x" "z divides y"
 and L: "x ∈ carrier G" "y ∈ carrier G" "z ∈ carrier G"
 shows "z divides (somegcd G x y)"
proof -
 interpret weak_lower_semilattice "division_rel G" by simp
 show ?thesis
 by (metis gcd_isgcd isgcd_def assms)
qed

lemma (in gcd_condition_monoid) gcd_cong_l:
 assumes xxx': "x ∼ x'"
 and carr: "x ∈ carrier G" "x' ∈ carrier G" "y ∈ carrier G"
 shows "somegcd G x y ∼ somegcd G x' y"
proof -
 interpret weak_lower_semilattice "division_rel G" by simp
 show ?thesis
 apply (simp add: somegcd_meet carr)
 apply (rule meet_cong_l[simplified], fact+)
 done
qed

lemma (in gcd_condition_monoid) gcd_cong_r:
 assumes carr: "x ∈ carrier G" "y ∈ carrier G" "y' ∈ carrier G"
 and yyy': "y ∼ y'"
 shows "somegcd G x y ∼ somegcd G x y'"
proof -
 interpret weak_lower_semilattice "division_rel G" by simp
 show ?thesis
 apply (simp add: somegcd_meet carr)
 apply (rule meet_cong_r[simplified], fact+)
 done
qed

lemma (in gcd_condition_monoid) gcdI:
 assumes dvd: "a divides b" "a divides c"
 and others: "∀y ∈ carrier G. y divides b ∧ y divides c → y divides a"
 and acarr: "a ∈ carrier G" and bcarr: "b ∈ carrier G" and ccarr: "c ∈ carrier G"
shows \[a \sim \text{somegcd } G \ b \ c\]
apply (simp add: somegcd_def)
apply (rule someI2_ex)
apply (rule exI[of _ _ a], simp add: isgcd_def)
apply (simp add: assms)
apply (simp add: isgcd_def assms, clarify)
apply (insert assms, blast intro: associatedI)
done

lemma (in gcd_condition_monoid) gcdI2:
assumes "a \text{gcdof } b \ c"
and "a \in \text{carrier } G" and \(bcarr: \ "b \in \text{carrier } G" \text{ and } ccarr: \ "c \in \text{carrier } G\"
shows "a \sim \text{somegcd } G \ b \ c"
using assms
unfolding isgcd_def
by (blast intro: gcdI)

lemma (in gcd_condition_monoid) SomeGcd_ex:
assumes "finite A" "A \subseteq \text{carrier } G" "A \neq \{}"
shows "\exists x \in \text{carrier } G. x = \text{SomeGcd } G \ A"
proof -
interpret weak_lower_semilattice "\text{division_rel } G" by simp
show ?thesis
apply (simp add: SomeGcd_def)
apply (finite_inf_closed[simplified], fact+)
done
qed

lemma (in gcd_condition_monoid) gcd_assoc:
assumes carr: "a \in \text{carrier } G" "b \in \text{carrier } G" "c \in \text{carrier } G"
shows "\text{somegcd } G \ (\text{somegcd } G \ a \ b) \ c \sim \text{somegcd } G \ a \ (\text{somegcd } G \ b \ c)"
proof -
interpret weak_lower_semilattice "\text{division_rel } G" by simp
show ?thesis
apply (subst (2 3) somegcd_meet, (simp add: carr)+)
apply (simp add: somegcd_meet carr)
apply (rule weak_meet_assoc[simplified], fact+)
done
qed

lemma (in gcd_condition_monoid) gcd_mult:
assumes acarr: "a \in \text{carrier } G" and bcarr: "b \in \text{carrier } G" and ccarr: "c \in \text{carrier } G"
shows "c \otimes \text{somegcd } G \ a \ b \sim \text{somegcd } G \ (c \otimes a) \ (c \otimes b)"
proof -
let ?d = "\text{somegcd } G \ a \ b"
let ?e = "\text{somegcd } G \ (c \otimes a) \ (c \otimes b)"
note carr[simp] = acarr bcarr ccarr
have \(dcarr: \ ?d \in \text{carrier } G \) by simp
have \(ecarr: \ ?e \in \text{carrier } G \) by simp
note \(carr = carr \ dcarr \ ecarr \)

have \(?d \text{ divides } a \) by (simp add: gcd_divides_l)
 hence \(cd'ca: \ c \otimes ?d \text{ divides } (c \otimes a)\) by (simp add: divides_mult_lI)

have \(?d \text{ divides } b \) by (simp add: gcd_divides_r)
 hence \(cd'cb: \ c \otimes ?d \text{ divides } (c \otimes b)\) by (simp add: divides_mult_lI)

from \(cd'ca \ cd'cb \)
 have \(cd'e: \ c \otimes ?d \text{ divides } ?e \) by (rule gcd_divides) simp+
 hence \(\exists \ u. \ u \in \text{carrier } G \land ?e = c \otimes ?d \otimes u \) by (elim dividesE, fast)
from this obtain \(u \)
 where \(ucarr[\text{simp}]: \ u \in \text{carrier } G \)
 and \(e_cdu: \ ?e = c \otimes ?d \otimes u \) by auto

note \(carr = carr \ ucarr \)

have \(?e \text{ divides } c \otimes a \) by (rule gcd_divides_l) simp+
 hence \(\exists x. \ x \in \text{carrier } G \land c \otimes a = ?e \otimes x \)
 by (elim dividesE, fast)
from this obtain \(x \)
 where \(xcarr: \ x \in \text{carrier } G \)
 and \(ca_ex: \ c \otimes a = ?e \otimes x \)
 by auto
with \(e_cdu \)
 have \(ca_cdux: \ c \otimes a = c \otimes ?d \otimes u \otimes x \) by simp

from \(ca_cdux \ xcarr \)
 have \(c \otimes a = c \otimes (?d \otimes u \otimes x) \) by (simp add: m_assoc)
then have \("a = ?d \otimes u \otimes x" \) by (rule l-cancel[of c a]) (simp add: xcarr)+
 hence \(du'a: \ ?d \otimes u \text{ divides } a \) by (rule dividesI[OF xcarr])

have \(?e \text{ divides } c \otimes b \) by (intro gcd_divides_r, simp+)
 hence \(\exists x. \ x \in \text{carrier } G \land c \otimes b = ?e \otimes x \)
 by (elim dividesE, fast)
from this obtain \(x \)
 where \(xcarr: \ x \in \text{carrier } G \)
 and \(cb_ex: \ c \otimes b = ?e \otimes x \)
 by auto
with \(e_cdu \)
 have \(cb_cdux: \ c \otimes b = c \otimes ?d \otimes u \otimes x \) by simp

from \(cb_cdux \ xcarr \)
have "c ⊗ b = c ⊗ (?d ⊗ u ⊗ x)" by (simp add: m_assoc)
with xcarr
have "b = ?d ⊗ u ⊗ x" by (intro l_cancel[of c b], simp+)

hence du'b: "?d ⊗ u divides b" by (intro dividesI[OF xcarr])

from du'a du'b carr
have du'd: "?d ⊗ u divides ?d"
by (intro gcd_divides, simp+)

hence uunit: "u ∈ Units G"

proof (elim dividesE)
fix v
assume vcarr[simp]: "v ∈ carrier G"
assume d: "?d = ?d ⊗ u ⊗ v"

have "?d ⊗ 1 = ?d ⊗ u ⊗ v" by simp fact
also have "?d ⊗ u ⊗ v = ?d ⊗ (u ⊗ v)" by (simp add: m_assoc)
finally have "?d ⊗ 1 = ?d ⊗ (u ⊗ v)".

hence i2: "1 = u ⊗ v" by (rule l_cancel) simp+

hence i1: "1 = v ⊗ u" by (simp add: m_comm)

from vcarr i1[symmetric] i2[symmetric]
show "u ∈ Units G"
 by (unfold Units_def, simp, fast)

qed

from e_cdu uunit
have "somegcd G (c ⊗ a) (c ⊗ b) ∼ c ⊗ somegcd G a b"
 by (intro associatedI2[of u], simp+)

from this[symmetric]
show "c ⊗ somegcd G a b ∼ somegcd G (c ⊗ a) (c ⊗ b)" by simp

qed

lemma (in monoid) assoc_subst:
 assumes ab: "a ∼ b"
 and cP: "ALL a b. a : carrier G & b : carrier G & a ∼ b
 --> f a : carrier G & f b : carrier G & f a ∼ f b"
 and carr: "a ∈ carrier G" "b ∈ carrier G"
 shows "f a ∼ f b"

using assms by auto

lemma (in gcd_condition_monoid) relprime_mult:
 assumes abrelprime: "somegcd G a b ∼ 1" and acrelprime: "somegcd G a c ∼ 1"
 and carr[simp]: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"
 shows "somegcd G a (b ⊗ c) ∼ 1"

proof -
 have "c = c ⊗ 1" by simp
 also from abrelprime[symmetric]
 have "... ∼ c ⊗ somegcd G a b"
 by (rule assoc_subst) (simp add: mult_cong_r)+
 also have "... ∼ somegcd G (c ⊗ a) (c ⊗ b)" by (rule gcd_mult) fact+
finally
have c: "c ∼ somegcd G (c ⊗ a) (c ⊗ b)" by simp
from carr
have a: "a ∼ somegcd G a (c ⊗ a)"
 by (fast intro: gcdI divides_prod_l)
have "somegcd G a (b ⊗ c) ∼ somegcd G a (c ⊗ b)" by (simp add: m_comm)
also from a
have "... ∼ somegcd G (somegcd G a (c ⊗ a)) (c ⊗ b)"
 by (rule assoc_subst) (simp add: gcd_cong_l)+
also from gcd_assoc
have "... ∼ somegcd G a (somegcd G (c ⊗ a) (c ⊗ b))"
 by (rule assoc_subst) simp+
also from c[symmetric]
have "... ∼ somegcd G a c"
 by (rule assoc_subst) (simp add: gcd_cong_r)+
also note acr
finally
show "somegcd G a (b ⊗ c) ∼ 1" by simp
qed

lemma (in gcd_condition_monoid) primeness_condition:
"primeness_condition_monoid G"
apply unfoldlocales
apply (rule primeI)
apply (elim irreducibleE, assumption)
proof -
fix p a b
assume pcarr: "p ∈ carrier G" and acarr: "a ∈ carrier G" and bcarr:
 "b ∈ carrier G"
 and pirr: "irreducible G p"
 and pdvdab: "p divides a ⊗ b"
from pirr
have pnunit: "p ∉ Units G"
 and r[rule format]: "∀ b. b ∈ carrier G ∧ properfactor G b p → b ∈ Units G"
 by - (fast elim: irreducibleE)+
show "p divides a ∨ p divides b"
proof (rule ccontr, clar)
assume npdva: "¬ p divides a"
with pcarr acarr
have "1 ∼ somegcd G p a"
apply (intro gcdI, simp, simp, simp)
apply (fast intro: unit_divides)
apply (fast intro: unit_divides)
apply (clar simp add: Unit_eq_dividesone[symmetric])
apply (rule r, rule, assumption)
apply (rule properfactorI, assumption)
proof (rule ccontr, simp)
 fix y
 assume ycarr: "y ∈ carrier G"
 assume "p divides y"
 also assume "y divides a"
 finally
 have "p divides a" by (simp add: pcarr ycarr acarr)
 with npdvda
 show "False" ..
 qed simp+
with pcarr acarr
 have pa: "somegcd G p a ∼ 1" by (fast intro: associated_sym[of "1"] gcd_closed)
assume npdvdb: "¬ p divides b"
with pcarr bcarr
have "1 ∼ somegcd G p b"
apply (intro gcdI, simp, simp, simp)
apply (fast intro: unit_divides)
apply (fast intro: unit_divides)
apply (clarsimp simp add: Unit_eq_dividesone[symmetric])
apply (rule r, rule, assumption)
apply (rule properfactorI, assumption)
proof (rule ccontr, simp)
 fix y
 assume ycarr: "y ∈ carrier G"
 assume "p divides y"
 also assume "y divides b"
 finally have "p divides b" by (simp add: pcarr ycarr bcarr)
 with npdvdb
 show "False" ..
 qed simp+
with pcarr bcarr
 have pb: "somegcd G p b ∼ 1" by (fast intro: associated_sym[of "1"] gcd_closed)
from pcarr acarr bcarr pdvdab
 have "p gcdof p (a ⊗ b)" by (fast intro: isgcd_divides_l)
with pcarr acarr bcarr
 have "p ∼ somegcd G p (a ⊗ b)" by (fast intro: gcdI2)
also from pa pb pcarr acarr bcarr
 have "somegcd G p (a ⊗ b) ∼ 1" by (rule relprime_mult)
finally have "p ∼ 1" by (simp add: pcarr acarr bcarr)
with pcarr
 have "p ∈ Units G" by (fast intro: assoc_unit_l)
with pnunit
show "False" ..
qed
qed

sublocale gcd_condition_monoid ≤ primeness_condition_monoid
 by (rule primeness_condition)

8.9.2 Divisor chain condition

lemma (in divisor_chain_condition_monoid) wfactors_exist:
 assumes acarr: "a ∈ carrier G"
 shows "∃as. set as ⊆ carrier G ∧ wfactors G as a"
proof -
 have r[rule_format]: "a ∈ carrier G → (∃as. set as ⊆ carrier G ∧
 wfactors G as a)"
 apply (rule wf_induct[OF division_wellfounded])
 proof -
 fix x
 assume ih: "∀y. (y, x) ∈ {(x, y). x ∈ carrier G ∧ y ∈ carrier G ∧
 properfactor G x y} → y ∈ carrier G → (∃as. set as ⊆ carrier G ∧
 wfactors G as y)"
 show "x ∈ carrier G → (∃as. set as ⊆ carrier G ∧
 wfactors G as x)"
 apply clarify
 apply (cases "x ∈ Units G")
 apply (rule exI[of _ "[]"], simp)
 apply (cases "irreducible G x")
 apply (rule exI[of _ "[x]"], simp add: wfactors_def)
 proof -
 assume xcarr: "x ∈ carrier G"
 and xnunit: "x /∈ Units G"
 and xirr: "¬ irreducible G x"
 hence "∃y. y ∈ carrier G ∧ properfactor G y x ∧ y /∈ Units G"
 apply -
 apply (rule ccontr, simp)
 apply (rule irreducibleI, simp, simp)
 done
 from this obtain y
 where ycarr: "y ∈ carrier G"
 and ynunit: "y /∈ Units G"
 and pfyx: "properfactor G y x"
 by auto
 have ih': "∀y. [y ∈ carrier G; properfactor G y x] →
 (∃as. set as ⊆ carrier G ∧
 wfactors G as y)"
 by (rule ih[rule_format, simplified]) (simp add: xcarr)+
from ycarr pfyx
 have "∃ as. set as ⊆ carrier G ∧ wfactors G as y"
 by (rule ih')
from this obtain ys
 where yscarr: "set ys ⊆ carrier G"
 and yfs: "wfactors G ys y"
 by auto

from pfyx
 have "y divides x"
 and nyx: "¬ y ∼ x"
 by -(fast elim: properfactorE2)+
hence "∃ z. z ∈ carrier G ∧ x = y ⊗ z"
 by fast
from this obtain z
 where zcarr: "z ∈ carrier G"
 and x: "x = y ⊗ z"
 by auto

from zcarr ycarr
have "properfactor G z x"
 apply (subst x)
 apply (intro properfactorI3[of _ _ y])
 apply (simp add: m_comm)
 apply (simp add: ynunit)+
done
with zcarr
 have "∃ as. set as ⊆ carrier G ∧ wfactors G as z"
 by (rule ih')
from this obtain zs
 where zscarr: "set zs ⊆ carrier G"
 and zfs: "wfactors G zs z"
 by auto

from yscarr zscarr
 have xscarr: "set (ys@zs) ⊆ carrier G" by simp
from yfs zfs ycarr zcarr yscarr zscarr
 have "wfactors G (ys@zs) (y⊗z)" by (rule wfactors_mult)
hence "wfactors G (ys@zs) x" by (simp add: x)

from xscarr this
 show "∃ xs. set xs ⊆ carrier G ∧ wfactors G xs x" by fast
qed
qed

from scarr
 show ?thesis by (rule r)
8.9.3 Primeness condition

lemma (in comm_monoid_cancel) multlist_prime_pos:
 assumes carr: "a ∈ carrier G" "set as ⊆ carrier G"
 and aprime: "prime G a"
 and "a divides (foldr (op ⊗) as 1)"
 shows "∃i<length as. a divides (as!i)"
proof -
 have r[rule_format]:
 "set as ⊆ carrier G ∧ a divides (foldr (op ⊗) as 1)
 −→ (∃i. i < length as ∧ a divides (as!i))"
 apply (induct as)
 apply clarsimp defer 1
 apply clarsimp defer 1
 proof -
 assume "a divides 1"
 with carr
 have "a ∈ Units G"
 by (fast intro: divides_unit[of a 1])
 with aprime
 show "False" by (elim primeE, simp)
 next
 fix aa as
 assume ih[rule_format]: "a divides foldr op as 1 −→ (∃i<length as. a divides ! i)"
 and carr': "aa ∈ carrier G" "set as ⊆ carrier G"
 and "a divides aa ⊗ foldr op as 1"
 with carr aprime
 have "a divides aa ∨ a divides foldr op as 1"
 by (intro prime divides) simp+
 moreover {
 assume "a divides aa"
 hence p1: "a divides (aa#as)!0" by simp
 have "0 < Suc (length as)" by simp
 with p1 have "∃i<Suc (length as). a divides (aa # as) ! i" by fast }
 moreover {
 assume "a divides aa" hence p1: "a divides (aa#as)!0" by simp
 have "0 < Suc (length as)" by simp
 with p1 have "∃i<Suc (length as). a divides (aa # as) ! i" by fast
 }
 ultimately
 show "∃i<Suc (length as). a divides (aa # as) ! i" by fast
from assms
 show ?thesis
 by (intro r, safe)
qed

lemma (in primeness_condition_monoid) wfactors_unique__hlp_induct:
 "\forall a a'. a \in \text{carrier } G \land \text{set } a \subseteq \text{carrier } G \land a' \subseteq \text{carrier } G \land \text{wfactors } G \text{ as } a \land \text{wfactors } G \text{ as' } a' \rightarrow \text{essentially_equal } G \text{ as as'}"
proof (induct as)
 case Nil show ?case apply auto
 proof -
 fix a as'
 assume a: "a \in \text{carrier } G"
 assume "\text{wfactors } G \text{ as } a"
 then obtain "1 \sim a" by (auto elim: wfactorsE)
 with a have "a \in \text{Units } G" by (auto intro: assoc_unit_r)
 moreover assume "\text{wfactors } G \text{ as' } a"
 moreover assume "\text{set } as' \subseteq \text{carrier } G"
 ultimately have "as' = []" by (rule unit_wfactors_empty)
 then show "\text{essentially_equal } G \text{ as as'}" by simp
 qed
 next
 case (Cons ah as)
 show ?case apply clarsimp
 proof -
 fix a as'
 assume ih [rule_format]:
 "\forall a a'. a \in \text{carrier } G \land \text{set } a' \subseteq \text{carrier } G \land \text{wfactors } G \text{ as } a\land \text{wfactors } G \text{ as' } a' \rightarrow \text{essentially_equal } G \text{ as as'}"
 and acarr: "a \in \text{carrier } G" and ahcarr: "ah \in \text{carrier } G"
 and ascarr: "\text{set } as \subseteq \text{carrier } G"
 and as'carr: "\text{set } as' \subseteq \text{carrier } G"
 and afs: "\text{wfactors } G \text{ (ah # as) } a"
 and afs': "\text{wfactors } G \text{ as' } a"
 hence ahdiva: "ah \text{ divides } a"
 by (intro wfactors_dividesI[of "ah as" "a"], simp+)
 hence "\exists a' \in \text{carrier } G. a = ah \otimes a'" by fast
 from this obtain a'
 where a'carr: "a' \in \text{carrier } G"
 and a: "a = ah \otimes a'"
 by auto
 have a'fs: "\text{wfactors } G \text{ as a'}"
 apply (rule wfactorsE[OF afs], rule wfactorsI, simp)
 apply (simp add: a, insert ascarr a'carr)
 apply (intro assoc_l_cancel[of ah a'] multlist_closed ahcarr,
assumption+)

from afs have ahirr: "irreducible G ah" by (elim wfactorsE, simp)
with ascarr have ahprime: "prime G ah" by (intro irreducible_prime ahcarr)

note carr [simp] = acarr ahcarr ascarr as'carr a'carr

note ahdvda
also from afs'
 have "a divides (foldr (op ⊗) as' 1)"
 by (elim wfactorsE associatedE, simp)
finally have "ah divides (foldr (op ⊗) as' 1)" by simp

with ahprime
 have "∃ i<length as'. ah divides as'!i"
 by (intro multlist_prime_pos, simp+)
from this obtain i
 where len: "i<length as'" and ahdvd: "ah divides as'!i"
 by auto
from afs' carr have irrasi: "irreducible G (as'!i)"
 by (fast intro: nth_mem[OF len] elim: wfactorsE)
from len carr
 have asicarr[simp]: "as'!i ∈ carrier G" by (unfold set_conv_nth,
 force)
 note carr = carr asicarr

from ahdvda have "∃ x ∈ carrier G. as'!i = ah ⊗ x" by fast
from this obtain x where "x ∈ carrier G" and asi: "as'!i = ah ⊗ x" by auto

with carr irrasi[simplified asi]
 have asiah: "as'!i ~ ah" apply -
 apply (elim irreducible_prodE[of "ah" "x"], assumption+)
 apply (rule associatedI2[of x], assumption+)
 apply (rule irreducibleE[OF ahirr], simp)
done

note setparts = set_take_subset[of i as'] set_drop_subset[of "Suc i" as']
note partscarr [simp] = setparts[THEN subset_trans[OF _ as'carr]]
note carr = carr partscarr

have "∃ aa_1. aa_1 ∈ carrier G ∧ wfactors G (take i as') aa_1"
 apply (intro wfactors_prod_exists)
 using setparts afs' by (fast elim: wfactorsE, simp)
from this obtain aa_1
 where aalicarr: "aa_1 ∈ carrier G"
 and aalfs: "wfactors G (take i as') aa_1"
by auto

have "\(\exists aa_2. aa_2 \in \text{carrier } G \land \text{wfactors } G (\text{drop } (\text{Suc } i) \text{ as'}) aa_2 \)"
apply (intro wfactors_prod_exists)
using setparts afs' by (fast elim: wfactorsE, simp)
from this obtain aa_2
 where aa2carr: "aa_2 \in \text{carrier } G"
 and aa2fs: "\text{wfactors } G (\text{drop } (\text{Suc } i) \text{ as'}) aa_2"
by auto

note carr = carr aa1carr[simp] aa2carr[simp]

from a1fs aa2fs
 have v1: "\text{wfactors } G (\text{take } i \text{ as'} @ \text{drop } (\text{Suc } i) \text{ as'}) (aa_1 \otimes aa_2)"
by (intro wfactors_mult, simp+)
 hence v1’: "\text{wfactors } G (\text{as'}!i # \text{take } i \text{ as'} @ \text{drop } (\text{Suc } i) \text{ as'}) (\text{as'}!i \otimes (aa_1 \otimes aa_2))"
apply (intro wfactors_mult_single)
using setparts afs'
 by (fast intro: nth_mem[OF len] elim: wfactorsE, simp+)

from aa2carr carr a1fs aa2fs
 have "\text{wfactors } G (\text{as'}!i # \text{drop } (\text{Suc } i) \text{ as'}) (\text{as'}!i \otimes aa_2)"
 by (metis irrasi wfactors_mult_single)
 with len carr aaicarr aa2carr a1fs
 have v2: "\text{wfactors } G (\text{take } i \text{ as'} @ \text{as'}!i \# \text{drop } (\text{Suc } i) \text{ as'}) (aa_1 \otimes (\text{as'}!i \otimes aa_2))"
 apply (intro wfactors_mult)
 apply fast
 apply (simp, (fast intro: nth_mem[OF len])?)+
done

from len
 have as’: "as’ = (\text{take } i \text{ as'} @ \text{as'}!i \# \text{drop } (\text{Suc } i) \text{ as'})"
 by (simp add: drop_Suc_conv_tl)
 with carr
 have eer: "essentially_equal G (\text{take } i \text{ as'} @ \text{as'}!i \# \text{drop } (\text{Suc } i) \text{ as'}) as’"
 by simp
 with v2 afs’ carr aaicarr aa2carr nth_mem[OF len]
 have "aa_1 \otimes (\text{as'}!i \otimes aa_2) \sim a"
 by (metis as’ ee_wfactorsD m_closed)
then
 have t1: "aa’!i \otimes (aa_1 \otimes aa_2) \sim a"
 by (metis a1carr aa2carr asicarr m_lcomm)
from carr asiah
 have "\text{aa } \otimes (aa_1 \otimes aa_2) \sim \text{as'}!i \otimes (aa_1 \otimes aa_2)"
 by (metis associated_sym m_closed mult_cong_l)
also note t1
finally
have "ah ⊗ (aa_1 ⊗ aa_2) ∼ a" by simp

with carr aa1carr aa2carr a'carr nth_mem[OF len]
have a': "aa_1 ⊗ aa_2 ∼ a'"
by (simp add: a, fast intro: assoc_l_cancel[of ah _ a'])

note v1
also note a'
finally have "wfactors G (take i as' @ drop (Suc i) as') a''" by simp

from a'fs this carr
have "essentially_equal G as (take i as' @ drop (Suc i) as')"
by (intro ih[of a']) simp

hence ee1: "essentially_equal G (ah # as) (ah # take i as' @ drop (Suc i) as')"
apply (elim essentially_equalE) apply (fastforce intro: essentially_equalI)
done

from carr
have ee2: "essentially_equal G (ah # take i as' @ drop (Suc i) as')"
(as'! i # take i as' @ drop (Suc i) as')"
proof (intro essentially_equalI)
show "ah # take i as' @ drop (Suc i) as' <~~> ah # take i as' @ drop (Suc i) as'"
by simp
next
show "ah # take i as' @ drop (Suc i) as' [~] as' ! i # take i as' @ drop (Suc i) as'"
apply (simp add: list_all2_append)
apply (simp add: asiah[symmetric])
done
qed

note ee1
also note ee2
also have "essentially_equal G (as'! i # take i as' @ drop (Suc i) as')"
(take i as' @ as'! i # drop (Suc i) as')"
apply (intro essentially_equalI)
apPLY (subgoal_tac "as'! i # take i as' @ drop (Suc i) as' <~~>
 take i as' @ as'! i # drop (Suc i) as'"
 apply simp
 apply (rule perm_append_Cons)
done
finally
have "essentially_equal G (ah # as) (take i as' @ as' ! i # drop (Suc i) as')" by simp
then show "essentially_equal G (ah # as) as'" by (subst as', assumption)
qed

lemma (in primeness_condition_monoid) wfactors_unique:
assumes "wfactors G as a" "wfactors G as' a"
and "a ∈ carrier G" "set as ⊆ carrier G" "set as' ⊆ carrier G"
shows "essentially_equal G as as'"
apply (rule wfactors_unique__hlp_induct[rule_format, of a])
apply (simp add: assms)
done

8.9.4 Application to factorial monoids

Number of factors for wellfoundedness

definition
 factorcount :: "_ ⇒ 'a ⇒ nat" where
 "factorcount G a = (THE c. (ALL as. set as ⊆ carrier G ∧ wfactors G as a → c = length as))"

lemma (in monoid) ee_length:
assumes ee: "essentially_equal G as bs"
shows "length as = length bs"
apply (rule essentially_equalE[OF ee])
apply (metis list_all2_conv_all_nth perm_length)
done

lemma (in factorial_monoid) factorcount_exists:
assumes carr[simp]: "a ∈ carrier G"
shows "EX c. ALL as. set as ⊆ carrier G ∧ wfactors G as a → c = length as"
proof -
 have "∃ as. set as ⊆ carrier G ∧ wfactors G as a" by (intro wfactors_exist, simp)
from this obtain as
 where ascarr[simp]: "set as ⊆ carrier G"
 and afs: "wfactors G as a"
 by (auto simp del: carr)
have "ALL as'. set as' ⊆ carrier G ∧ wfactors G as' a → length as = length as'"
 by (metis afs ascarr assms ee_length wfactors_unique)
 thus "EX c. ALL as'. set as' ⊆ carrier G ∧ wfactors G as' a → c = length as'" ..
qed

lemma (in factorial_monoid) factorcount_unique:
assumes afs: "wfactors G as a"
and acarr[simp]: "a ∈ carrier G" and ascarr[simp]: "set as ⊆ carrier G"
shows "factorcount G a = length as"
proof -
 have "EX ac. ALL as. set as ⊆ carrier G ∧ wfactors G as a → ac = length as" by (rule factorcount_exists, simp)
 from this obtain ac where
 alen: "ALL as. set as ⊆ carrier G ∧ wfactors G as a → ac = length as"
 by auto
 have ac: "ac = factorcount G a"
 apply (simp add: factorcount_def)
 apply (rule theI2)
 apply (rule alen)
 apply (metis afs alen ascarr)+
 done

from ascarr afs have "ac = length as" by (iprover intro: alen[rule_format])
with ac show ?thesis by simp
qed

lemma (in factorial_monoid) divides_fcount:
assumes dvd: "a divides b"
and acarr: "a ∈ carrier G" and bcarr:"b ∈ carrier G"
shows "factorcount G a ≤ factorcount G b"
proof -
 fix c
 from assms have "∃as. set as ⊆ carrier G ∧ wfactors G as a" by fast
 from this obtain as
 where ascarr: "set as ⊆ carrier G"
 and afs: "wfactors G as a"
 by auto
 with acarr have fca: "factorcount G a = length as" by (intro factorcount_unique)

 assume ccarr: "c ∈ carrier G"
 hence "∃cs. set cs ⊆ carrier G ∧ wfactors G cs c" by fast
 from this obtain cs
 where cscarr: "set cs ⊆ carrier G"
 and cfs: "wfactors G cs c"
 by auto

 note [simp] = acarr bcarr ccarr ascarr cscarr

 assume b: "b = a ⊗ c"
 from afs cfs
 have "wfactors G (as@cs) (a ⊗ c)" by (intro wfactors_mult, simp+)
with b have "wfactors G (as@cs) b" by simp
hence "factorcount G b = length (as@cs)" by (intro factorcount_unique, simp+)
hence "factorcount G b = length as + length cs" by simp
with fca show thesis by simp
qed

lemma (in factorial_monoid) associated_fcount:
 assumes acarr: "a ∈ carrier G" and bcarr:"b ∈ carrier G"
 and asc: "a ∼ b"
 shows "factorcount G a = factorcount G b"
apply (rule associatedE[OF asc])
apply (drule divides_fcount[OF _ acarr bcarr])
apply (drule divides_fcount[OF _ bcarr acarr])
apply simp
done

lemma (in factorial_monoid) properfactor_fcount:
 assumes acarr: "a ∈ carrier G" and bcarr:"b ∈ carrier G"
 and pf: "properfactor G a b"
 shows "factorcount G a < factorcount G b"
apply (rule properfactorE[OF pf], elim dividesE)
proof -
 fix c
 from assms have "∃ as. set as ⊆ carrier G ∧ wfactors G as a" by fast
 from this obtain as
 where ascarr: "set as ⊆ carrier G"
 and afs: "wfactors G as a"
 by auto
 with acarr have fca: "factorcount G a = length as" by (intro factorcount_unique)
assume ccarr: "c ∈ carrier G"
 hence "∃ cs. set cs ⊆ carrier G ∧ wfactors G cs c" by fast
 from this obtain cs
 where cscarr: "set cs ⊆ carrier G"
 and cfs: "wfactors G cs c"
 by auto
assume b: "b = a ⊗ c"
 have "wfactors G (as@cs) (a ⊗ c)" by (rule wfactors_mult) fact+
 with b have "wfactors G (as@cs) b" by simp
 with ascarr cscarr bcarr
 have "factorcount G b = length (as@cs)" by (simp add: factorcount_unique)
 hence fcb: "factorcount G b = length as + length cs" by simp
assume nbdvda: "¬ b divides a"
have "c /∈ Units G"
proof (rule ccontr, simp)
 assume cunit:"c ∈ Units G"
 have "b ⊗ inv c = a ⊗ c ⊗ inv c" by (simp add: b)
 also from ccarr acarr cunit
 have "... = a ⊗ (c ⊗ inv c)" by (fast intro: m_assoc)
 also from ccarr cunit
 have "... = a ⊗ 1" by simp
 also from acarr
 have "... = a" by simp
 finally have "b divides a" by (fast intro: dividesI[of "inv c"])
 with nbvdva show False by simp
qed

with cfs have "length cs > 0"
apply (rule ccontr, simp)
apply (metis Units_one_closed ccarr cscarr l_one one_closed properfactorI3 properfactor_fmset unit_wfactors)
done

with fca fcb show ?thesis by simp
qed

sublocale factorial_monoid ⊆ divisor_chain_condition_monoid
apply unfold_locales
apply (rule wfUNIVI)
apply (rule measure_induct[of "factorcount G"])
apply simp
apply (metis properfactor_fcount)
done

sublocale factorial_monoid ⊆ primeness_condition_monoid
 by default (rule irreducible_is_prime)

lemma (in factorial_monoid) primeness_condition:
 shows "primeness_condition_monoid G"
..

lemma (in factorial_monoid) gcd_condition [simp]:
 shows "gcd_condition_monoid G"
 by default (rule gcdof_exists)

sublocale factorial_monoid ⊆ gcd_condition_monoid
 by default (rule gcdof_exists)
lemma (in factorial_monoid) division_weak_lattice [simp]:
 shows "weak_lattice (division_rel G)"
proof -
 interpret weak_lower_semilattice "division_rel G" by simp

 show "weak_lattice (division_rel G)"
 apply (unfold_locales, simp_all)
 proof -
 fix x y
 assume carr: "x ∈ carrier G" "y ∈ carrier G"

 hence "∃ z. z ∈ carrier G ∧ z lcmof x y" by (rule lcmof_exists)
 from this obtain z
 where zcarr: "z ∈ carrier G"
 and isgcd: "z lcmof x y"
 by auto

 with carr have "least (division_rel G) z (Upper (division_rel G) {x, y})"
 by (simp add: lcmof_leastUpper[symmetric])
 thus "∃ z. least (division_rel G) z (Upper (division_rel G) {x, y})"
 by fast
 qed

qed

8.10 Factoriality Theorems

theorem factorial_condition_one:
 shows "(divisor_chain_condition_monoid G ∧ primeness_condition_monoid G) = factorial_monoid G"
apply rule
proof clarify
 assume dcc: "divisor_chain_condition_monoid G"
 and pc: "primeness_condition_monoid G"
 interpret divisor_chain_condition_monoid "G" by (rule dcc)
 interpret primeness_condition_monoid "G" by (rule pc)

 show "factorial_monoid G"
 by (fast intro: factorial_monoidI wfactors_exist wfactors_unique)
next
 assume fm: "factorial_monoid G"
 interpret factorial_monoid "G" by (rule fm)
 show "divisor_chain_condition_monoid G ∧ primeness_condition_monoid G"
 by rule unfold_locales
qed

theorem factorial_condition_two:
 shows "(divisor_chain_condition_monoid G ∧ gcd_condition_monoid G)"
= factorial_monoid G
apply rule
proof clarify
 assume dcc: "divisor_chain_condition_monoid G"
 and gc: "gcd_condition_monoid G"
 interpret divisor_chain_condition_monoid "G" by (rule dcc)
 interpret gcd_condition_monoid "G" by (rule gc)
 show "factorial_monoid G"
 by (simp add: factorial_condition_one[symmetric], rule, unfold_locales)
next
 assume fm: "factorial_monoid G"
 interpret factorial_monoid "G" by (rule fm)
 show "divisor_chain_condition_monoid G ∧ gcd_condition_monoid G"
 by rule unfold_locales
qed
end

theory Ring
imports FiniteProduct
begin

9 The Algebraic Hierarchy of Rings
9.1 Abelian Groups

record 'a ring = "'a monoid" +
 zero :: 'a ("0")
 add :: "['a, 'a] => 'a" (infixl "⊕" 65)

Derived operations.

definition a_inv :: "[('a, 'm) ring_scheme, 'a] => 'a" ("⊖")
 where "a_inv R = m_inv (| carrier = carrier R, mult = add R, one = zero R |)"

definition a_minus :: "[('a, 'm) ring_scheme, 'a, 'a] => 'a" (infixl "⊖" 65)
 where "[| x ∈ carrier R; y ∈ carrier R |] ==> x ⊖ R y = x ⊕ R (⊖ R y)"

locale abelian_monoid =
 fixes G (structure)
 assumes a_comm_monoid:
 "comm_monoid (|carrier = carrier G, mult = add G, one = zero G|)"

definition finsum :: "[('b, 'm) ring_scheme, 'a => 'b, 'a set] => 'b"
 where "finsum G = finprod (|carrier = carrier G, mult = add G, one = zero G|)"
locale abelian_group = abelian_monoid +
 assumes a_comm_group: "comm_group (carrier = carrier G, mult = add G, one = zero G)"

9.2 Basic Properties

lemma abelian_monoidI:
 fixes R (structure)
 assumes a_closed: "!!x y. [| x ∈ carrier R; y ∈ carrier R |] ==> x ⊕ y ∈ carrier R"
and zero_closed: "0 ∈ carrier R"
and a_assoc: "!!x y z. [| x ∈ carrier R; y ∈ carrier R; z ∈ carrier R |] ==> (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z)"
and l_zero: "!!x. x ∈ carrier R ==> 0 ⊕ x = x"
and a_comm: "!!x y. [| x ∈ carrier R; y ∈ carrier R |] ==> x ⊕ y = y ⊕ x"
shows "abelian_monoid R"
by (auto intro!: abelian_monoid.intro comm_monoidI intro: assms)

lemma abelian_groupI:
 fixes R (structure)
 assumes a_closed: "!!x y. [| x ∈ carrier R; y ∈ carrier R |] ==> x ⊕ y ∈ carrier R"
and zero_closed: "zero R ∈ carrier R"
and a_assoc: "!!x y z. [| x ∈ carrier R; y ∈ carrier R; z ∈ carrier R |] ==> (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z)"
and l_zero: "!!x. x ∈ carrier R ==> 0 ⊕ x = x"
and a_comm: "!!x y. [| x ∈ carrier R; y ∈ carrier R |] ==> x ⊕ y = y ⊕ x"
and l_inv_ex: "!!x. x ∈ carrier R ==> EX y : carrier R. y ⊕ x = 0"
shows "abelian_group R"
by (auto intro!: abelian_group.intro abelian_monoidI
 abelian_group_axioms.intro comm_monoidI comm_groupI
 intro: assms)

lemma (in abelian_monoid) a_monoid:
 "monoid (\{carrier = carrier G, mult = add G, one = zero G\})"
by (rule comm_monoid.axioms, rule a_comm_monoid)

lemma (in abelian_group) a_group:
 "group (\{carrier = carrier G, mult = add G, one = zero G\})"
by (simp add: group_def a_monoid)
 (simp add: comm_group.axioms group.axioms a_comm_group)

lemmas monoid_record_simps = partial_object.simps monoid.simps
Transfer facts from multiplicative structures via interpretation.

sublocale abelian_monoid <
 add!: monoid "\{carrier = carrier G, mult = add G, one = zero G\}"
 where "carrier (\{carrier = carrier G, mult = add G, one = zero G\}) = carrier G"
 and "mult (\{carrier = carrier G, mult = add G, one = zero G\}) = add G"
 and "one (\{carrier = carrier G, mult = add G, one = zero G\}) = zero G"
by (rule a_monoid) auto

context abelian_monoid begin

lemmas a_closed = add.m_closed
lemmas zero_closed = add.one_closed
lemmas a_assoc = add.m_assoc
lemmas l_zero = add.l_one
lemmas r_zero = add.r_one
lemmas minus_unique = add.inv_unique

end

sublocale abelian_monoid <
 add!: comm_monoid "\{carrier = carrier G, mult = add G, one = zero G\}"
 where "carrier (\{carrier = carrier G, mult = add G, one = zero G\}) = carrier G"
 and "mult (\{carrier = carrier G, mult = add G, one = zero G\}) = add G"
 and "one (\{carrier = carrier G, mult = add G, one = zero G\}) = zero G"
 and "finprod (\{carrier = carrier G, mult = add G, one = zero G\}) = finsum G"
by (rule a_comm_monoid) (auto simp: finsum_def)
context abelian_monoid begin

lemmas a_comm = add.m_comm
lemmas a_lcomm = add.m_lcomm
lemmas a_ac = a_assoc a_comm a_lcomm

lemmas finsum_empty = add.finprod_empty
lemmas finsum_insert = add.finprod_insert
lemmas finsum_zero = add.finprod_one
lemmas finsum_closed = add.finprod_closed
lemmas finsum_Un_Int = add.finprod_Un_Int
lemmas finsum_Un_disjoint = add.finprod_Un_disjoint
lemmas finsum_addf = add.finprod_multf
lemmas finsum_cong' = add.finprod_cong'
lemmas finsum_0 = add.finprod_0
lemmas finsum_Suc = add.finprod_Suc
lemmas finsum_Suc2 = add.finprod_Suc2
lemmas finsum_add = add.finprod_mult

lemmas finsum_cong = add.finprod_cong

Usually, if this rule causes a failed congruence proof error, the reason is that
the premise $g \in B \rightarrow carrier \ G$ cannot be shown. Adding Pi_def to the
simpset is often useful.

lemmas finsum_reindex = add.finprod_reindex

lemmas finsum_singleton = add.finprod_singleton

end

sublocale abelian_group <
 add!: group "(carrier = carrier \ G, mult = add \ G, one = zero \ G)"
 where "carrier (carrier = carrier \ G, mult = add \ G, one = zero \ G) =
carrier \ G"
 and "mult (carrier = carrier \ G, mult = add \ G, one = zero \ G) = add
G"
 and "one (carrier = carrier \ G, mult = add \ G, one = zero \ G) = zero
G"
 and "m_inv (carrier = carrier \ G, mult = add \ G, one = zero \ G) = a_inv
G"
 by (rule a_group) (auto simp: m_inv_def a_inv_def)

context abelian_group
begin

lemmas a_inv_closed = add.inv_closed

end
lemma minus_closed [intro, simp]:
 "[| x ∈ carrier G; y ∈ carrier G |] ==> x ⊖ y ∈ carrier G"
 by (simp add: a_minus_def)

lemmas a_l_cancel = add.l_cancel
lemmas a_r_cancel = add.r_cancel
lemmas l_neg = add.l_inv [simp del]
lemmas r_neg = add.r_inv [simp del]
lemmas minus_zero = add.inv_one
lemmas minus_minus = add.inv_inv
lemmas a_inv_inj = add.inv_inj
lemmas minus_equality = add.inv_equality
end

sublocale abelian_group <
 add!: comm_group "{|carrier = carrier G, mult = add G, one = zero G|}"
 where "carrier "{|carrier = carrier G, mult = add G, one = zero G|} =
 carrier G"
 and "mult "{|carrier = carrier G, mult = add G, one = zero G|} = add G"
 and "one "{|carrier = carrier G, mult = add G, one = zero G|} = zero G"
 and "m_inv "{|carrier = carrier G, mult = add G, one = zero G|} = a_inv G"
 and "finprod "{|carrier = carrier G, mult = add G, one = zero G|} = finsum G"
 by (rule a_comm_group) (auto simp: m_inv_def a_inv_def finsum_def)

lemmas (in abelian_group) minus_add = add.inv_mult

Derive an abelian_group from a comm_group

lemma comm_group_abelian_groupI:
 fixes G (structure)
 assumes cg: "comm_group "{|carrier = carrier G, mult = add G, one = zero G|}"
 shows "abelian_group G"
 proof -
 interpret comm_group "{|carrier = carrier G, mult = add G, one = zero G|}"
 by (rule cg)
 show "abelian_group G" ..
 qed

9.3 Rings: Basic Definitions

locale ring = abelian_group R + monoid R for R (structure) +
 assumes l_distr: "[| x ∈ carrier R; y ∈ carrier R; z ∈ carrier R |]
==>(x ⊕ y) ⊗ z = x ⊗ z ⊕ y ⊗ z
and r_distr: "[| x ∈ carrier R; y ∈ carrier R; z ∈ carrier R |]
==>(z ⊗ (x ⊕ y) = z ⊗ x ⊕ z ⊗ y"

locale cring = ring + comm_monoid R

locale "domain" = cring +
 assumes one_not_zero [simp]: "1 ≠ 0"
 and integral: "[| a ⊗ b = 0; a ∈ carrier R; b ∈ carrier R |] ==> a = 0 | b = 0"

locale field = "domain" +
 assumes field_Units: "Units R = carrier R - {0}"

9.4 Rings

lemma ringI:
 fixes R (structure)
 assumes abelian_group: "abelian_group R"
 and monoid: "monoid R"
 and l_distr: "!!x y z. [| x ∈ carrier R; y ∈ carrier R; z ∈ carrier R |]
 ==> (x ⊕ y) ⊗ z = x ⊗ z ⊕ y ⊗ z"
 and r_distr: "!!x y z. [| x ∈ carrier R; y ∈ carrier R; z ∈ carrier R |]
 ==> z ⊗ (x ⊕ y) = z ⊗ x ⊕ z ⊗ y"
 shows "ring R"
 by (auto intro: ring.intro
 abelian_group.axioms ring_axioms.intro assms)

context ring begin

lemma is_abelian_group: "abelian_group R" ..

lemma is_monoid: "monoid R"
 by (auto intro!: monoidI m_assoc)

lemma is_ring: "ring R"
 by (rule ring_axioms)

end

lemmas ring_record_simps = monoid_record_simps ring.simps

lemma cringI:
 fixes R (structure)
 assumes abelian_group: "abelian_group R"
 and comm_monoid: "comm_monoid R"
 and l_distr: "!!x y z. [| x ∈ carrier R; y ∈ carrier R; z ∈ carrier R |]
 ==> (x ⊕ y) ⊗ z = x ⊗ z ⊕ y ⊗ z"
 and r_distr: "!!x y z. [| x ∈ carrier R; y ∈ carrier R; z ∈ carrier R |]
 ==> z ⊗ (x ⊕ y) = z ⊗ x ⊕ z ⊗ y"
 shows "cring R"
 by (intro: ring.intro
 abelian_group.axioms ring_axioms.intro assms)
R [1]

$$\implies (x \oplus y) \odot z = x \odot z \oplus y \odot z$$

shows "cring R"

proof (intro cring.intro ring.intro)

show "ring_axioms R"

— Right-distributivity follows from left-distributivity and commutativity.

proof (rule ring_axioms.intro)

fix x y z

assume R: "x \in carrier R" "y \in carrier R" "z \in carrier R"

note [simp] = comm_monoid.axioms [OF comm_monoid]

abelian_group.axioms [OF abelian_group]

abelian_monoid.a_closed

from R have "z \odot (x \oplus y) = (x \oplus y) \odot z"

by (simp add: comm_monoid.m_comm [OF comm_monoid.intro])

also from R have "... = x \odot z \oplus y \odot z" by (simp add: l_distr)

also from R have "... = z \odot x \oplus z \odot y"

by (simp add: comm_monoid.m_comm [OF comm_monoid.intro])

finally show "z \odot (x \oplus y) = z \odot x \oplus z \odot y".

qed (rule l_distr)

qed (auto intro: cring.intro

abelian_group.axioms comm_monoid.axioms ring_axioms.intro assms)

lemma (in cring) is_cring:
"cring R" by (rule cring_axioms)

9.4.1 Normaliser for Rings

lemma (in abelian_group) r_neg2:
"[| x \in carrier G; y \in carrier G |] \implies x \oplus (\ominus x \oplus y) = y"

proof -

assume G: "x \in carrier G" "y \in carrier G"

then have "(x \ominus x) \oplus y = y"

by (simp only: r_neg l_zero)

with G show \?thesis

by (simp add: a_ac)

qed

lemma (in abelian_group) r_neg1:
"[| x \in carrier G; y \in carrier G |] \implies \ominus x \oplus (x \oplus y) = y"

proof -

assume G: "x \in carrier G" "y \in carrier G"

then have "(\ominus x \oplus x) \oplus y = y"

by (simp only: l_neg l_zero)

with G show \?thesis by (simp add: a_ac)

qed
context ring begin

The following proofs are from Jacobson, Basic Algebra I, pp. 88–89.

lemma l_null [simp]:
"x ∈ carrier R ==> 0 ⊗ x = 0"
proof -
 assume R: "x ∈ carrier R"
 then have "0 ⊗ x ⊕ 0 ⊗ x = (0 ⊕ 0) ⊗ x"
 by (simp add: l_distr del: l_zero r_zero)
 also from R have "... = 0 ⊗ x ⊕ 0" by simp
 finally have "0 ⊗ x ⊕ 0 ⊗ x = 0 ⊗ x ⊕ 0".
 with R show ?thesis by (simp del: r_zero)
qed

lemma r_null [simp]:
"x ∈ carrier R ==> x ⊗ 0 = 0"
proof -
 assume R: "x ∈ carrier R"
 then have "x ⊗ 0 ⊕ x ⊗ 0 = x ⊗ (0 ⊕ 0)"
 by (simp add: r_distr del: l_zero r_zero)
 also from R have "... = x ⊗ 0 ⊕ 0" by simp
 finally have "x ⊗ 0 ⊕ x ⊗ 0 = x ⊗ 0 ⊕ 0".
 with R show ?thesis by (simp del: r_zero)
qed

lemma l_minus:
"[| x ∈ carrier R; y ∈ carrier R |] ==> ⊖ x ⊗ y = ⊖ (x ⊗ y)"
proof -
 assume R: "x ∈ carrier R" "y ∈ carrier R"
 then have "(⊖ x) ⊗ y ⊕ x ⊗ y = (⊖ x ⊕ x) ⊗ y" by (simp add: l_distr)
 also from R have "... = 0" by (simp add: l_neg)
 finally have "(⊖ x) ⊗ y ⊕ x ⊗ y = 0".
 with R have "(⊖ x) ⊗ y ⊕ x ⊗ y ⊕ ⊖ (x ⊗ y) = 0 ⊕ ⊖ (x ⊗ y)" by simp
 with R show ?thesis by (simp add: a_assoc r_neg)
qed

lemma r_minus:
"[| x ∈ carrier R; y ∈ carrier R |] ==> x ⊗ ⊖ y = ⊖ (x ⊗ y)"
proof -
 assume R: "x ∈ carrier R" "y ∈ carrier R"
 then have "x ⊗ (⊖ y) ⊕ x ⊗ y = x ⊗ (⊖ y ⊕ y)" by (simp add: r_distr)
 also from R have "... = 0" by (simp add: l_neg)
 finally have "x ⊗ (⊖ y) ⊕ x ⊗ y = 0".
 with R have "x ⊗ (⊖ y) ⊕ x ⊗ y ⊕ ⊖ (x ⊗ y) = 0 ⊕ ⊖ (x ⊗ y)" by simp
 with R show ?thesis by (simp add: a_assoc r_neg)
qed
lemma (in abelian_group) minus_eq:
 "[| x ∈ carrier G; y ∈ carrier G |] ==> x ⊖ y = x ⊕ ⊖ y"
by (simp only: a_minus_def)

Setup algebra method: compute distributive normal form in locale contexts
ML_file "ringsimp.ML"

setup Algebra.attrib_setup

method_setup algebra = {*
 Scan.succeed (SIMPLE_METHOD' o Algebra.algebra_tac)
}* "normalisation of algebraic structure"

lemmas (in ring) ring_simprules
 [algebra ring "zero R" "add R" "a_inv R" "a_minus R" "one R" "mult R"]
 =
 a_closed zero_closed a_inv_closed minus_closed m_closed one_closed
 a_assoc l_zero l_neg a_comm m_assoc l_one l_distr minus_eq
 r_zero r_neg r_neg2 r_neg1 minus_add minus_minus minus_zero
 a_lcomm r_distr l_null r_null l_minus r_minus

lemmas (in cring)
 [algebra del: ring "zero R" "add R" "a_inv R" "a_minus R" "one R" "mult R"] =

lemmas (in cring) cring_simprules
 [algebra add: cring "zero R" "add R" "a_inv R" "a_minus R" "one R" "mult R"] =
 a_closed zero_closed a_inv_closed minus_closed m_closed one_closed
 a_assoc l_zero l_neg a_comm m_assoc l_one l_distr m_comm minus_eq
 r_zero r_neg r_neg2 r_neg1 minus_add minus_minus minus_zero
 a_lcomm m_lcomm r_distr l_null r_null l_minus r_minus

lemma (in cring) nat_pow_zero:
 "(n::nat) ~= 0 ==> 0 (^) n = 0"
by (induct n) simp_all

context ring begin

lemma one_zeroD:
 assumes onezero: "1 = 0"
 shows "carrier R = {0}"
proof (rule, rule)
 fix x
 assume xcarr: "x ∈ carrier R"
 from xcarr have "x = x ⊗ 1" by simp
with onezero have "x = x ⊗ 0" by simp
with xcarr have "x = 0" by simp
then show "x ∈ {0}" by fast
qed fast

lemma one_zeroI:
 assumes carrzero: "carrier R = {0}"
 shows "1 = 0"
proof -
 from one_closed and carrzero
 show "1 = 0" by simp
qed

lemma carrier_one_zero: "(carrier R = {0}) = (1 = 0)"
apply rule
apply (erule one_zeroI)
apply (erule one_zeroD)
done

lemma carrier_one_not_zero: "(carrier R ≠ {0}) = (1 ≠ 0)"
 by (simp add: carrier_one_zero)

end

Two examples for use of method algebra

lemma
 fixes R (structure) and S (structure)
 assumes "ring R" "cring S"
 assumes RS: "a ∈ carrier R" "b ∈ carrier R" "c ∈ carrier S" "d ∈ carrier S"
 shows "a ⊕ ⊖ (a ⊕ ⊖ b) = b & c ⊗ₜ S d = d ⊗ₜ S c"
proof -
 interpret ring R by fact
 interpret cring S by fact
 from RS show ?thesis by algebra
qed

lemma
 fixes R (structure)
 assumes "ring R"
 assumes R: "a ∈ carrier R" "b ∈ carrier R"
 shows "a ⊖ (a ⊖ b) = b"
proof -
 interpret ring R by fact
 from R show ?thesis by algebra
qed
9.4.2 Sums over Finite Sets

lemma (in ring) finsum_ldistr:
 "[| finite A; a ∈ carrier R; f ∈ A -> carrier R |] ==>
 finsum R f A ⊗ a = finsum R (%i. f i ⊗ a) A"
proof (induct set: finite)
 case empty then show ?case by simp
next
 case (insert x F) then show ?case by (simp add: Pi_def l_distr)
qed

lemma (in ring) finsum_rdistr:
 "[| finite A; a ∈ carrier R; f ∈ A -> carrier R |] ==>
 a ⊗ finsum R f A = finsum R (%i. a ⊗ f i) A"
proof (induct set: finite)
 case empty then show ?case by simp
next
 case (insert x F) then show ?case by (simp add: Pi_def r_distr)
qed

9.5 Integral Domains

category "domain" begin

lemma zero_not_one [simp]:
 "0 ≠ 1"
 by (rule not_sym) simp

lemma integral_iff:
 "[| a ∈ carrier R; b ∈ carrier R |] ==> (a ⊗ b = 0) = (a = 0 | b = 0)"
proof
 assume "a ∈ carrier R" "b ∈ carrier R" "a ⊗ b = 0"
 then show "a = 0 | b = 0" by (simp add: integral)
next
 assume "a ∈ carrier R" "b ∈ carrier R" "a = 0 | b = 0"
 then show "a ⊗ b = 0" by auto
qed

lemma m_lcancel:
 assumes prem: "a ≠ 0"
 and R: "a ∈ carrier R" "b ∈ carrier R" "c ∈ carrier R"
 shows "(a ⊗ b = a ⊗ c) = (b = c)"
proof
 assume eq: "a ⊗ b = a ⊗ c"
 with R have "a ⊗ (b ⊕ c) = 0" by algebra
 with R have "a = 0 | (b ⊕ c) = 0" by (simp add: integral_iff)
 with prem and R have "b ⊕ c = 0" by auto
 with R have "b = (b ⊕ c)" by algebra
 also from R have "b ⊕ (b ⊕ c) = c" by algebra
finally show "b = c".

next
assume "b = c" then show "a ⊗ b = a ⊗ c" by simp
qed

lemma m_rcancel:
 assumes prem: "a ~= 0"
 and R: "a ∈ carrier R" "b ∈ carrier R" "c ∈ carrier R"
 shows conc: "(b ⊗ a = c ⊗ a) = (b = c)"
proof -
 from prem and R have "(a ⊗ b = a ⊗ c) = (b = c)" by (rule m_lcancel)
 with R show ?thesis by algebra
qed

end

9.6 Fields

Field would not need to be derived from domain, the properties for domain
follow from the assumptions of field

lemma (in cring) cring_fieldI:
 assumes field_Units: "Units R = carrier R - {0}"*
 shows "field R"
proof
 from field_Units have "0 /∈ Units R" by fast
 moreover have "1 ∈ Units R" by fast
 ultimately show "1 ≠ 0" by force
next
 fix a b
 assume acarr: "a ∈ carrier R"
 and bcarr: "b ∈ carrier R"
 and ab: "a ⊗ b = 0"
 show "a = 0 ∨ b = 0"
proof (cases "a = 0", simp)
 assume "a ≠ 0"
 with field_Units and acarr have aUnit: "a ∈ Units R" by fast
 from bcarr have "b = 1 ⊗ b" by algebra
 also from aUnit acarr have "... = (inv a ⊗ a) ⊗ b" by simp
 also from acarr bcarr aUnit[THEN Units_inv_closed]
 have "... = (inv a) ⊗ (a ⊗ b)" by algebra
 also from ab and acarr bcarr aUnit have "... = (inv a) ⊗ 0" by simp
 also from aUnit[THEN Units_inv_closed] have "... = 0" by algebra
 finally have "b = 0".
 then show "a = 0 ∨ b = 0" by simp
qed

qed (rule field_Units)

Another variant to show that something is a field

lemma (in cring) cring_fieldI2:
assumes notzero: "0 ≠ 1"
and invex: "∀a. [a ∈ carrier R; a ≠ 0] −→ ∃b∈carrier R. a ⊗ b = 1"

shows "field R"
apply (rule cring_fieldI, simp add: Units_def)
apply (rule, clarsimp)
apply (simp add: notzero)
proof (clarsimp)
fix x
assume xcarr: "x ∈ carrier R"
and "x ≠ 0"
then have "∃y∈carrier R. x ⊗ y = 1" by (rule invex)
then obtain y where ycarr: "y ∈ carrier R" and xy: "x ⊗ y = 1" by fast
from xy xcarr ycarr have "y ⊗ x = 1" by (simp add: m_comm)
with ycarr and xy show "∃y∈carrier R. y ⊗ x = 1 ∧ x ⊗ y = 1" by fast
qed

9.7 Morphisms
definition ring_hom :: "[(‘a, ‘m) ring_scheme, (’b, ‘n) ring_scheme] => (‘a => ‘b) set"
where "ring_hom R S =
{h. h ∈ carrier R -> carrier S &
(∀ x y. x ∈ carrier R & y ∈ carrier R -->
h (x ⊗ R y) = h x ⊗ S h y & h (x ⊕ R y) = h x ⊕ S h y) &
h 1_R = 1_S}"

lemma ring_hom_memI:
fixes R (structure) and S (structure)
asumes hom_closed: "!!x. x ∈ carrier R ==> h x ∈ carrier S"
and hom_mult: "!!x y. [| x ∈ carrier R; y ∈ carrier R |] ==>
h (x ⊗ y) = h x ⊗ S h y"
and hom_add: "!!x y. [| x ∈ carrier R; y ∈ carrier R |] ==>
h (x ⊕ y) = h x ⊕ S h y"
and hom_one: "h 1_R = 1_S"
shows "h ∈ ring_hom R S"
by (auto simp add: ring_hom_def assms Pi_def)

lemma ring_hom_closed:
"[| h ∈ ring_hom R S; x ∈ carrier R |] ==> h x ∈ carrier S"
by (auto simp add: ring_hom_def funcset_mem)

lemma ring_hom_mult:
fixes R (structure) and S (structure)
shows "[| h ∈ ring_hom R S; x ∈ carrier R; y ∈ carrier R |] ==>"
lemma ring_hom_add:
fixes R (structure) and S (structure)
shows "[| h ∈ ring_hom R S; x ∈ carrier R; y ∈ carrier R |] ==>
h (x ⊕ y) = h x ⊕ S h y"
by (simp add: ring_hom_def)

lemma ring_hom_one:
fixes R (structure) and S (structure)
shows "h ∈ ring_hom R S ==> h 1 = 1_S"
by (simp add: ring_hom_def)

locale ring_hom_cring = R: cring R + S: cring S
for R (structure) and S (structure) +
fixes h
assumes homh [simp, intro]: "h ∈ ring_hom R S"

notes hom_closed [simp, intro] = ring_hom_closed [OF homh]
and hom_mult [simp] = ring_hom_mult [OF homh]
and hom_add [simp] = ring_hom_add [OF homh]
and hom_one [simp] = ring_hom_one [OF homh]

lemma (in ring_hom_cring) hom_zero [simp]: "h 0 = 0_S"
proof -
 have "h 0 ⊕ S h 0 = h 0 ⊕ S 0_S"
 by (simp add: hom_add [symmetric] del: hom_add)
 then show ?thesis by (simp del: S.r_zero)
qed

lemma (in ring_hom_cring) hom_a_inv [simp]: "x ∈ carrier R ==>> h (⊖ x) = ⊖ S h x"
proof -
 assume R: "x ∈ carrier R"
 then have "h x ⊕ S h (⊖ x) = h x ⊕ S (⊖ S h x)"
 with R show ?thesis by simp
qed

lemma (in ring_hom_cring) hom_finsum [simp]: "[| finite A; f ∈ A -> carrier R |] ==>
h (finsum R f A) = finsum S (h o f) A"
proof (induct set: finite)
 case empty then show ?case by simp
next
 case insert then show ?case by (simp add: Pi_def)
qed
lemma (in ring_hom_cring) hom_finprod:
 "[| finite A; f \in A -> carrier R |] ==>
 h (finprod R f A) = finprod S (h o f) A"
proof (induct set: finite)
 case empty then show ?case by simp
next
 case insert then show ?case by (simp add: Pi_def)
qed
declare ring_hom_cring.hom_finprod [simp]

lemma id_ring_hom [simp]:
 "id \in ring_hom R R"
 by (auto intro!: ring_hom_memI)
end

theory AbelCoset
imports Coset Ring
begin

9.8 More Lifting from Groups to Abelian Groups
9.8.1 Definitions

Hiding <-> from Sum_Type until I come up with better syntax here

no_notation Sum_Type.Plus (infixr "<+>" 65)
definition
 a_r_coset :: "[_, 'a set, 'a] \rightarrow 'a set" (infixl ">+ı" 60)
 where "a_r_coset G = r_coset (carrier = carrier G, mult = add G, one = zero G)"
definition
 a_l_coset :: "[_, 'a, 'a set] \rightarrow 'a set" (infixl "<+ı" 60)
 where "a_l_coset G = l_coset (carrier = carrier G, mult = add G, one = zero G)"
definition
 A_RCOSETS :: "[_, 'a set] \rightarrow ('a set)set" ("a'_rcosetsı" [81] 80)
 where "A_RCOSETS G H = RCOSETS (carrier = carrier G, mult = add G, one = zero G) H"
definition
 set_add :: "[_, 'a set ,'a set] \rightarrow 'a set" (infixl "<+>ı" 60)
 where "set_add G = set_mult (carrier = carrier G, mult = add G, one = zero G)"
definition
\[A_SET_INV :: (\text{a set} \Rightarrow \text{a set}) \text{ where } A_SET_INV G H = \text{SET_INV} \{\text{carrier} = \text{carrier} G, \text{mult} = \text{add} G, \text{one} = \text{zero} G\} \]

definition
\[a_r_congruent :: ((\text{a, b})\text{ring_scheme} \Rightarrow \text{a set}) \Rightarrow (\text{a}^*\text{a})\text{set} \text{ where } a_r_congruent G = \text{r_congruent} \{\text{carrier} = \text{carrier} G, \text{mult} = \text{add} G, \text{one} = \text{zero} G\} \]

definition
\[A_FactGroup :: ((\text{a, b})\text{ring_scheme} \Rightarrow \text{a set}) \Rightarrow (\text{a set})\text{monoid} \text{ where } A_FactGroup G H = \text{FactGroup} \{\text{carrier} = \text{carrier} G, \text{mult} = \text{add} G, \text{one} = \text{zero} G\} \]

locale abelian_group_hom = G: abelian_group G + H: abelian_group H
for G (structure) and H (structure) +
fixes h
assumes a_group_hom: "group_hom \{\text{carrier} = \text{carrier} G, \text{mult} = \text{add} G, \text{one} = \text{zero} G\} \{\text{carrier} = \text{carrier} H, \text{mult} = \text{add} H, \text{one} = \text{zero} H\} h"
unfolding \(a_1 \)_coset_defs
by simp

lemmas A_RCOSETS_defs =
A_RCOSETS_def RCOSETS_def

lemma A_RCOSETS_def':
fixes G (structure)
shows "a_rcosets H \(\equiv \bigcup \{H +> a\} \)"
unfolding A_RCDSETS_defs
by (fold a_r_coset_def, simp)

lemmas set_add_defs =
set_add_def set_mult_def

lemma set_add_def':
fixes G (structure)
shows "H <+> K \(\equiv \bigcup \{h + k\} \)"
unfolding set_add_defs
by simp

lemmas A_SET_INV_defs =
A_SET_INV_def SET_INV_def

lemma A_SET_INV_def':
fixes G (structure)
shows "a_set_inv H \(\equiv \bigcup \{\ominus h\} \)"
unfolding A_SET_INV_defs
by (fold a_inv_def)

\textbf{9.8.2 Cosets}

\textbf{lemma} (in abelian_group) a_coset_add_assoc:
\[\begin{align*}
& "[| M \subseteq \text{carrier G}; g \in \text{carrier G}; h \in \text{carrier G} |] \\
& \Rightarrow (M +> g) +> h = M +> (g + h)"
\end{align*}\]
by (rule group.coset_mult_assoc \[OF \ a_group, \\
folded a_r_coset_def, simplified monoid_record_simps\])

\textbf{lemma} (in abelian_group) a_coset_add_zero [simp]:
\[\begin{align*}
& "M \subseteq \text{carrier G} \Rightarrow M +> 0 = M"
\end{align*}\]
by (rule group.coset_mult_one \[OF \ a_group, \\
folded a_r_coset_def, simplified monoid_record_simps\])

\textbf{lemma} (in abelian_group) a_coset_add_inv1:
\[\begin{align*}
& "[| M \Rightarrow (x \ominus (\ominus y)) = M; x \in \text{carrier G}; y \in \text{carrier G} |] \\
& \Rightarrow M +> x = M +> y"
\end{align*}\]
by (rule group.coset_mult_inv1 \[OF \ a_group, \\
folded a_r_coset_def a_inv_def, simplified monoid_record_simps\])
lemma (in abelian_group) a_coset_add_inv2:
"[| M +> x = M +> y; x ∈ carrier G; y ∈ carrier G; M ⊆ carrier G |
===> M +> (x ⊕ (⊖ y)) = M"
by (rule group.coset_mult_inv2 [OF a_group,
folded a_r_coset_def a_inv_def, simplified monoid_record_simps])

lemma (in abelian_group) a_coset_join1:
"[| H +> x = H; x ∈ carrier G; subgroup H (carrier = carrier G,
mult = add G, one = zero G) |] ==> x ∈ H"
by (rule group.coset_join1 [OF a_group,
folded a_r_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_solve_equation:
"[subgroup H (carrier = carrier G, mult = add G, one = zero G); x ∈ H; y ∈ H]
⇒ ∃ h ∈ H. y = h ⊕ x"
by (rule group.solve_equation [OF a_group,
folded a_r_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_repr_independence:
"[y ∈ H +> x; x ∈ carrier G; subgroup H (carrier = carrier G, mult = add G, one = zero G)]
⇒ H +> x = H +> y"
by (rule group.repr_independence [OF a_group,
folded a_r_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_coset_join2:
"[x ∈ carrier G; subgroup H (carrier = carrier G, mult = add G, one = zero G); x ∈ H]
⇒ H +> x = H"
by (rule group.coset_join2 [OF a_group,
folded a_r_coset_def, simplified monoid_record_simps])

lemma (in abelian_monoid) a_r_coset_subset_G:
"[| H ⊆ carrier G; x ∈ carrier G |
===> H +> x ⊆ carrier G"
by (rule monoid.r_coset_subset_G [OF a_monoid,
folded a_r_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_rcosI:
"[h ∈ H; H ⊆ carrier G; x ∈ carrier G]
⇒ h ⊕ x ∈ H +> x"
by (rule group.rcosI [OF a_group,
folded a_r_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_rcosetsI:
"[H ⊆ carrier G; x ∈ carrier G]
⇒ H +> x ∈ a_rcosets H"
by (rule group.rcosetsI [OF a_group,
folded a_r_coset_def A_RCOSETS_def, simplified monoid_record_simps])

Really needed?

lemma (in abelian_group) a_transpose_inv:
"[x ⊕ y = z; x ∈ carrier G; y ∈ carrier G; z ∈ carrier G]"
200

===> (⊖ x) ⊕ z = y"
by (rule group.transpose_inv[OF a_group,
 folded a_r_coset_def a_inv_def, simplified monoid_record_simps])

9.8.3 Subgroups
locale additive_subgroup =
 fixes H and G (structure)
 assumes a_subgroup: "subgroup H (carrier = carrier G, mult = add G,
 one = zero G)"
lemma (in additive_subgroup) is_additive_subgroup:
 shows "additive_subgroup H G"
by (rule additive_subgroup_axioms)

lemma additive_subgroupI:
 fixes G (structure)
 assumes a_subgroup: "subgroup H (carrier = carrier G, mult = add G,
 one = zero G)"
 shows "additive_subgroup H G"
by (rule additive_subgroup.intro) (rule a_subgroup)

lemma (in additive_subgroup) a_subset:
 "H \subseteq carrier G"
by (rule subgroup.subset[OF a_subgroup,
 simplified monoid_record_simps])

lemma (in additive_subgroup) a_closed [intro, simp]:
 "\[x \in H; y \in H \] \implies x \oplus y \in H"
by (rule subgroup.m_closed[OF a_subgroup,
 simplified monoid_record_simps])

lemma (in additive_subgroup) zero_closed [simp]:
 "0 \in H"
by (rule subgroup.one_closed[OF a_subgroup,
 simplified monoid_record_simps])

lemma (in additive_subgroup) a_inv_closed [intro,simp]:
 "x \in H \implies \ominus x \in H"
by (rule subgroup.m_inv_closed[OF a_subgroup,
 folded a_inv_def, simplified monoid_record_simps])

9.8.4 Additive subgroups are normal
Every subgroup of an abelian_group is normal
locale abelian_subgroup = additive_subgroup + abelian_group G +
 assumes a_normal: "normal H (carrier = carrier G, mult = add G, one = zero G)"
lemma (in abelian_subgroup) is_abelian_subgroup:
 shows "abelian_subgroup H G"
by (rule abelian_subgroup_axioms)

lemma abelian_subgroupI:
 assumes a_normal: "normal H (carrier G, mult = add G, one = zero G)"
 and a_comm: "!!x y. [| x ∈ carrier G; y ∈ carrier G |] ==> x ⊕ G y = y ⊕ G x"
 shows "abelian_subgroup H G"
proof -
 interpret normal "H" "carrier G, mult = add G, one = zero G"
 by (rule a_normal)
 show "abelian_subgroup H G"
 by default (simp add: a_comm)
qed

lemma abelian_subgroupI2:
 fixes G (structure)
 assumes a_comm_group: "comm_group (carrier G, mult = add G, one = zero G)"
 and a_subgroup: "subgroup H (carrier G, mult = add G, one = zero G)"
 shows "abelian_subgroup H G"
proof -
 interpret comm_group "carrier G, mult = add G, one = zero G"
 by (rule a_comm_group)
 interpret subgroup "H" "carrier G, mult = add G, one = zero G"
 by (rule a_subgroup)
 show "abelian_subgroup H G"
 apply unfold_locales
 proof (simp add: r_coset_def l_coset_def, clarsimp)
 fix x
 assume xcarr: "x ∈ carrier G"
 from a_subgroup have Hcarr: "H ⊆ carrier G"
 unfolding subgroup_def by simp
 from xcarr Hcarr show "(⋃h∈H. {h ⊕ G x}) = (⋃h∈H. {x ⊕ G h})"
 using m_comm [simplified] by fast
 qed
 qed

lemma abelian_subgroupI3:
 fixes G (structure)
 assumes asg: "additive_subgroup H G"
and ag: "abelian_group G"
shows "abelian_subgroup H G"
apply (rule abelian_subgroupI2)
apply (rule abelian_group.a_comm_group[OF ag])
apply (rule additive_subgroup.a_subgroup[OF asg])
done

lemma (in abelian_subgroup) a_coset_eq:
"(∀x ∈ carrier G. H -> x = x <+ H)"
by (rule normal.coset_eq[OF a_normal,
 folded a_r_coset_def a_l_coset_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_inv_op_closed1:
shows "[|x ∈ carrier G; h ∈ H|] ==> (~x)⊕ h ⊕ x ∈ H"
by (rule normal.inv_op_closed1 [OF a_normal,
 folded a_inv_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_inv_op_closed2:
shows "[|x ∈ carrier G; h ∈ H|] ==> x ⊕ h ⊕ (~x) ∈ H"
by (rule normal.inv_op_closed2 [OF a_normal,
 folded a_inv_def, simplified monoid_record_simps])

Alternative characterization of normal subgroups

lemma (in abelian_group) a_normal_inv_iff:
"(N ▷ (carrier = carrier G, mult = add G, one = zero G)) =
(subgroup N (carrier = carrier G, mult = add G, one = zero G) &
(∀x ∈ carrier G. ∀h ∈ N. x ⊕ h ⊕ (~x) ∈ N))"
(is "_ = ?rhs")
by (rule group.normal_inv_iff [OF a_group,
 folded a_inv_def, simplified monoid_record_simps])

lemma (in abelian_group) a_lcos_m_assoc:
"[| M ⊆ carrier G; g ∈ carrier G; h ∈ carrier G |
===> g <+ (h <+ M) = (g <+ h) <+ M"
by (rule group.lcos_m_assoc [OF a_group,
 folded a_l_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_lcos_mult_one:
"M ⊆ carrier G ==> 0 <+ M = M"
by (rule group.lcos_mult_one [OF a_group,
 folded a_l_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_l_coset_subset_G:
"[| H ⊆ carrier G; x ∈ carrier G |
===> x <+ H ⊆ carrier G"
by (rule group.l_coset_subset_G [OF a_group,
 folded a_l_coset_def, simplified monoid_record_simps])
lemma (in abelian_group) a_l_coset_swap:
 "[\[y \in x <+ H; x \in \text{carrier } G; \text{subgroup } H | (\text{carrier } = \text{carrier } G, \text{mult } = \text{add } G, \text{one } = \text{zero } G)] \Rightarrow x \in y <+ H"
by (rule group.l_coset_swap [OF a_group,
 folded a_l_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_l_coset_carrier:
 "[| y \in x <+ H; x \in \text{carrier } G; \text{subgroup } H | (\text{carrier } = \text{carrier } G, \text{mult } = \text{add } G, \text{one } = \text{zero } G) |] \Longrightarrow y \in \text{carrier } G"
by (rule group.l_coset_carrier [OF a_group,
 folded a_l_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_l_repr_imp_subset:
 assumes y: "y \in x <+ H" and x: "x \in \text{carrier } G" and sb: "\text{subgroup } H | (\text{carrier } = \text{carrier } G, \text{mult } = \text{add } G, \text{one } = \text{zero } G) |
 shows "y <+ H \subseteq x <+ H"
apply (rule group.l_repr_imp_subset [OF a_group,
 folded a_l_coset_def, simplified monoid_record_simps])
apply (rule y)
apply (rule x)
apply (rule sb)
done

lemma (in abelian_group) setadd_subset_G:
 "[\[H \subseteq \text{carrier } G; K \subseteq \text{carrier } G] \Rightarrow H <+> K \subseteq \text{carrier } G"
by (rule group.setmult_subset_G [OF a_group,
 folded set_add_def, simplified monoid_record_simps])

lemma (in abelian_group) subgroup_add_id: "\text{subgroup } H | (\text{carrier } = \text{carrier } G, \text{mult } = \text{add } G, \text{one } = \text{zero } G) \Rightarrow H <+> H = H"
by (rule group.subgroup_mult_id [OF a_group,
 folded set_add_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_rcos_inv:
 assumes x: "x \in \text{carrier } G"
 shows "\text{a_set_inv } (H <+> x) = H <+> (\ominus x)"
by (rule normal.rcos_inv [OF a_normal,
 folded a_r_coset_def a_inv_def A_SET_INV_def, simplified monoid_record_simps])
(rule x)

lemma (in abelian_group) a_setmult_rcos_assoc:
"[H ⊆ carrier G; K ⊆ carrier G; x ∈ carrier G]
 H <+> (K <+> x) = (H <+> K) <+> x"
by (rule group.setmult_rcos_assoc [OF a_group,
 folded set_add_def a_r_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_rcos_assoc_lcos:
"[H ⊆ carrier G; K ⊆ carrier G; x ∈ carrier G]
 (H <+> x) <+> K = H <+> (x <+ K)"
by (rule group.rcos_assoc_lcos [OF a_group,
 folded set_add_def a_r_coset_def a_l_coset_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_rcos_sum:
"[x ∈ carrier G; y ∈ carrier G]
 (H <+> x) <+> (H <+> y) = H <+> (x ⊕ y)"
by (rule normal.rcos_sum [OF a_normal,
 folded set_add_def a_r_coset_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) rcosets_add_eq:
"M ∈ a_rcosets H =⇒ H <+> M = M"
— generalizes subgroup_mult_id
by (rule normal.rcosets_mult_eq [OF a_normal,
 folded set_add_def A_RCOSETS_def, simplified monoid_record_simps])

9.8.5 Congruence Relation

lemma (in abelian_subgroup) a_equiv_rcong:
 shows "equiv (carrier G) (racong H)"
by (rule subgroup.equiv_rcong [OF a_subgroup a_group,
 folded a_r_congruent_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_l_coset_eq_rcong:
 assumes a: "a ∈ carrier G"
 shows "a <+ H = racong H '' {a}"
by (rule subgroup.l_coset_eq_rcong [OF a_subgroup a_group,
 folded a_r_congruent_def a_l_coset_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_rcos_equation:
 shows "[h ⊕ a = h ⊕ b; a ∈ carrier G; b ∈ carrier G;
 h ∈ H; ha ∈ H; hb ∈ H]
 hb ⊕ a ∈ (∪h∈H. {h ⊕ b})"
by (rule group.rcos_equation [OF a_group a_subgroup,
 folded a_r_congruent_def a_l_coset_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_rcos_disjoint:
shows "[a ∈ a_rcosets H; b ∈ a_rcosets H; a ≠ b] ⇒ a ∩ b = {}"
by (rule group.rcos_disjoint [OF a_group _ a_subgroup,
folded A_RCOSETS_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_rcos_self:
shows "x ∈ carrier G ⇒ x ∈ H x"
by (rule group.rcos_self [OF a_group _ a_subgroup,
folded a_r_coset_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_rcosets_part_G:
shows "⋃ (a_rcosets H) = carrier G"
by (rule group.rcosets_part_G [OF a_group a_subgroup,
folded A_RCOSETS_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_cosets_finite:
"[c ∈ a_rcosets H; H ⊆ carrier G; finite (carrier G)] = finite c"
by (rule group.cosets_finite [OF a_group,
folded A_RCOSETS_def, simplified monoid_record_simps])

lemma (in abelian_group) a_card_cosets_equal:
"[c ∈ a_rcosets H; H ⊆ carrier G; finite(carrier G)] = card c = card H"
by (rule group.card_cosets_equal [OF a_group,
folded A_RCOSETS_def, simplified monoid_record_simps])

lemma (in abelian_group) rcosets_subset_PowG:
"additive_subgroup H G = a_rcosets H ⊆ Pow(carrier G)"
by (rule group.rcosets_subset_PowG [OF a_group,
folded A_RCOSETS_def, simplified monoid_record_simps],
rule additive_subgroup.a_subgroup)

theorem (in abelian_group) a_lagrange:
"[finite(carrier G); additive_subgroup H G] = card(a_rcosets H) * card(H) = order(G)"
by (rule group.lagrange [OF a_group,
folded A_RCOSETS_def, simplified monoid_record_simps order_def, folded
order_def])
(fast intro!: additive_subgroup.a_subgroup)

9.8.6 Factorization

lemmas A_FactGroup_defs = A_FactGroup_def FactGroup_def

lemma A_FactGroup_def':
fixes G (structure)
shows "G A_Mod H ≡ (carrier = a_rcosets G H, mult = set_add G, one = H)"
unfolding A_FactGroup_defs
by (fold A_RCOSETS_def set_add_def)

lemma (in abelian_subgroup) a_setmult_closed:

 "\[K_1 \in a_{rcosets} H; K_2 \in a_{rcosets} H \] \implies K_1 <+> K_2 \in a_{rcosets} H"
by (rule normal.setmult_closed [OF a_normal, folded A_RCOSETS_def set_add_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_setinv_closed:

 "K \in a_{rcosets} H \implies a_{set_inv} K \in a_{rcosets} H"
by (rule normal.setinv_closed [OF a_normal, folded A_RCOSETS_def A_SET_INV_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_rcosets_assoc:

 "[M_1 \in a_{rcosets} H; M_2 \in a_{rcosets} H; M_3 \in a_{rcosets} H] \implies M_1 <+> M_2 <+> M_3 = M_1 <+> (M_2 <+> M_3)"
by (rule normal.rcosets_assoc [OF a_normal, folded A_RCOSETS_def set_add_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_subgroup_in_rcosets:

 "H \in a_{rcosets} H"
by (rule subgroup.subgroup_in_rcosets [OF a_subgroup a_group, folded A_RCOSETS_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_rcosets_inv_mult_group_eq:

 "M \in a_{rcosets} H \implies a_{set_inv} M <+> M = H"
by (rule normal.rcosets_inv_mult_group_eq [OF a_normal, folded A_RCOSETS_def A_SET_INV_def set_add_def, simplified monoid_record_simps])

theorem (in abelian_subgroup) a_factorgroup_is_group:

 "group (G A_Mod H)"
by (rule normal.factorgroup_is_group [OF a_normal, folded A_FactGroup_def, simplified monoid_record_simps])

Since the Factorization is based on an abelian subgroup, is results in a commutative group

theorem (in abelian_subgroup) a_factorgroup_is_comm_group:

 "comm_group (G A_Mod H)"
apply (intro comm_group.intro comm_monoid.intro) prefer 3
 apply (rule a_factorgroup_is_group)
 apply (rule group.axioms[OF a_factorgroup_is_group])
 apply (rule comm_monoid_axioms.intro)
 apply (unfold A_FactGroup_def FactGroup_def RCOSETS_def, fold set_add_def a_r_coset_def, clarsimp)
 apply (simp add: a_rcos_sum a_comm)
done

lemma add_A_FactGroup [simp]: "X \otimes (G A_Mod H) X' = X <+> G X'"
by (simp add: A_FactGroup_def set_add_def)
The coset map is a homomorphism from G to the quotient group $G \text{ Mod } H$

The isomorphism theorems have been omitted from lifting, at least for now

9.8.7 The First Isomorphism Theorem

The quotient by the kernel of a homomorphism is isomorphic to the range of that homomorphism.

9.8.8 Homomorphisms

The coset map is a homomorphism from G to the quotient group $G \text{ Mod } H$
lemma (in abelian_group_hom) hom_add [simp]:
"[| x : carrier G; y : carrier G |]
==> h (x ⊕_G y) = h x ⊕_H h y"
by (rule group_hom.hom_mult[OF a_group_hom, simplified ring_record_simps])

lemma (in abelian_group_hom) hom_closed [simp]:
"x ∈ carrier G ==> h x ∈ carrier H"
by (rule group_hom.hom_closed[OF a_group_hom, simplified ring_record_simps])

lemma (in abelian_group_hom) zero_closed [simp]:
"h 0 ∈ carrier H"
by (rule group_hom.one_closed[OF a_group_hom, simplified ring_record_simps])

lemma (in abelian_group_hom) hom_zero [simp]:
"h 0 = 0_H"
by (rule group_hom.hom_one[OF a_group_hom, simplified ring_record_simps])

lemma (in abelian_group_hom) a_inv_closed [simp]:
"x ∈ carrier G ==> h (⊖_x) ∈ carrier H"
by (rule group_hom.inv_closed[OF a_group_hom, folded a_inv_def, simplified ring_record_simps])

lemma (in abelian_group_hom) hom_a_inv [simp]:
"x ∈ carrier G ==> h (⊖_x) = ⊖_H (h x)"
by (rule group_hom.hom_inv[OF a_group_hom, folded a_inv_def, simplified ring_record_simps])

lemma (in abelian_group_hom) additive_subgroup_a_kernel:
"additive_subgroup (a_kernel G H h) G"
apply (rule additive_subgroup.intro)
apply (rule group_hom.subgroup_kernel[OF a_group_hom, folded a_kernel_def, simplified ring_record_simps])
done

The kernel of a homomorphism is an abelian subgroup

lemma (in abelian_group_hom) abelian_subgroup_a_kernel:
"abelian_subgroup (a_kernel G H h) G"
apply (rule abelian_subgroupI)
apply (rule group_hom.normal_kernel[OF a_group_hom, folded a_kernel_def, simplified ring_record_simps])
apply (simp add: G.a_comm)
done
lemma (in abelian_group_hom) A_FactGroup_nonempty:
 assumes X: "X ∈ carrier (G A_Mod a_kernel G H h)"
 shows "X ≠ {}"
 by (rule group_hom.FactGroup_nonempty[OF a_group_hom,
 folded a_kernel_def A_FactGroup_def, simplified ring_record_simps])
 (rule X)

lemma (in abelian_group_hom) FactGroup_the_elem_mem:
 assumes X: "X ∈ carrier (G A_Mod (a_kernel G H h))"
 shows "the_elem (h'X) ∈ carrier H"
 by (rule group_hom.FactGroup_the_elem_mem[OF a_group_hom,
 folded a_kernel_def A_FactGroup_def, simplified ring_record_simps])
 (rule X)

lemma (in abelian_group_hom) A_FactGroup_hom:
 "(λX. the_elem (h'X)) ∈ hom (G A_Mod (a_kernel G H h)) /
 (carrier = carrier H, mult = add H, one = zero H)"
 by (rule group_hom.FactGroup_hom[OF a_group_hom,
 folded a_kernel_def A_FactGroup_def, simplified ring_record_simps])

lemma (in abelian_group_hom) A_FactGroup_inj_on:
 "inj_on (λX. the_elem (h'X)) (carrier (G A_Mod (a_kernel G H h)))"
 by (rule group_hom.FactGroup_inj_on[OF a_group_hom,
 folded a_kernel_def A_FactGroup_def, simplified ring_record_simps])
 (rule X)

If the homomorphism h is onto H, then so is the homomorphism from the quotient group.

lemma (in abelian_group_hom) A_FactGroup_onto:
 assumes h: "h ' carrier G = carrier H"
 shows "(λX. the_elem (h'X)) ' carrier (G A_Mod (a_kernel G H h)) = carrier H"
 by (rule group_hom.FactGroup_onto[OF a_group_hom,
 folded a_kernel_def A_FactGroup_def, simplified ring_record_simps])
 (rule h)

If h is a homomorphism from G onto H, then the quotient group G Mod kernel G H h is isomorphic to H.

theorem (in abelian_group_hom) A_FactGroup_iso:
 "h ' carrier G = carrier H
 ⊨ (λX. the_elem (h'X)) ∈ (G A_Mod (a_kernel G H h)) ∼
 (carrier = carrier H, mult = add H, one = zero H)"
 by (rule group_hom.FactGroup_iso[OF a_group_hom,
 folded a_kernel_def A_FactGroup_def, simplified ring_record_simps])

9.8.9 Cosets

Not everything from CosetExt.thy is lifted here.
lemma (in additive_subgroup) a_Hcarr [simp]:
 assumes hh: "h ∈ H"
 shows "h ∈ carrier G"
by (rule subgroup.mem_carrier [OF a_subgroup,
 simplified monoid_record_simps]) (rule hh)

lemma (in abelian_subgroup) a_elemrcos_carrier:
 assumes acarr: "a ∈ carrier G"
 and a': "a' ∈ H +> a"
 shows "a' ∈ carrier G"
by (rule subgroup.elemrcos_carrier [OF a_subgroup a_group,
 folded a_r_coset_def, simplified monoid_record_simps]) (rule acarr,
 rule a')

lemma (in abelian_subgroup) a_rcos_const:
 assumes hh: "h ∈ H"
 shows "H +> h = H"
by (rule subgroup.rcos_const [OF a_subgroup a_group,
 folded a_r_coset_def, simplified monoid_record_simps]) (rule hh)

lemma (in abelian_subgroup) a_rcos_module_imp:
 assumes xcarr: "x ∈ carrier G"
 and x'cos: "x' ∈ H +> x"
 shows "(x' ⊕ ⊖ x) ∈ H"
by (rule subgroup.rcos_module_imp [OF a_subgroup a_group,
 folded a_r_coset_def a_inv_def, simplified monoid_record_simps]) (rule xcarr,
 rule x'cos)

lemma (in abelian_subgroup) a_rcos_module_rev:
 assumes "x ∈ carrier G" "x' ∈ carrier G"
 and "(x' ⊕ ⊖ x) ∈ H"
 shows "x' ∈ H +> x"
using assms
by (rule subgroup.rcos_module_rev [OF a_subgroup a_group,
 folded a_r_coset_def a_inv_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_rcos_module:
 assumes "x ∈ carrier G" "x' ∈ carrier G"
 shows "(x' ∈ H +> x) = (x' ⊕ ⊖ x ∈ H)"
using assms
by (rule subgroup.rcos_module [OF a_subgroup a_group,
 folded a_r_coset_def a_inv_def, simplified monoid_record_simps])

variant lemma (in abelian_subgroup) a_rcos_module_minus:
 assumes "ring G"
 assumes carr: "x ∈ carrier G" "x' ∈ carrier G"
 shows "(x' ∈ H +> x) = (x' ⊕ x ∈ H)"
proof -
 interpret G: ring G by fact
 from carr
 have "(x' ∈ H +> x) = (x' ⊕ x ∈ H)" by (rule a_rcos_module)
 with carr
 show "(x' ∈ H +> x) = (x' ⊖ x ∈ H)"
 by (simp add: minus_eq)
qed

lemma (in abelian_subgroup) a_repr_independence':
 assumes y: "y ∈ H +> x"
 and xcarr: "x ∈ carrier G"
 shows "H +> x = H +> y"
 apply (rule a_repr_independence)
 apply (rule y)
 apply (rule xcarr)
 apply (rule a_subgroup)
 done

lemma (in abelian_subgroup) a_repr_independenceD:
 assumes ycarr: "y ∈ carrier G"
 and repr: "H +> x = H +> y"
 shows "y ∈ H +> x"
 by (rule group.repr_independenceD [OF a_group a_subgroup, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_rcosets_carrier:
 "X ∈ a_rcosets H =⇒ X ⊆ carrier G"
by (rule subgroup.rcosets_carrier [OF a_subgroup a_group, simplified monoid_record_simps])

9.8.10 Addition of Subgroups

lemma (in abelian_monoid) set_add_closed:
 assumes Acarr: "A ⊆ carrier G"
 and Bcarr: "B ⊆ carrier G"
 shows "A <+> B ⊆ carrier G"
by (rule monoid.set_mult_closed [OF a_monoid, simplified monoid_record_simps])

lemma (in abelian_group) add_additive_subgroups:
 assumes subH: "additive_subgroup H G"
 and subK: "additive_subgroup K G"
 shows "additive_subgroup (H <+> K) G"
apply (rule additive_subgroup.intro)
apply (unfold set_add_def)
apply (intro comm_group.mult_subgroups)
apply (rule a_comm_group)
apply (rule additive_subgroup.a_subgroup[OF subH])
apply (rule additive_subgroup.a_subgroup[OF subK])
done

end

theory Ideal
imports Ring AbelCoset
begin

10 Ideals

10.1 Definitions

10.1.1 General definition

locale ideal = additive_subgroup I R + ring R +
 assumes I_l_closed: "[\[a \in I; x \in carrier R\] \Rightarrow x \otimes a \in I"
 and I_r_closed: "[\[a \in I; x \in carrier R\] \Rightarrow a \otimes x \in I"

sublocale ideal \subseteq abelian_subgroup I R
 apply (intro abelian_subgroupI3 abelian_group.intro)
 apply (rule ideal.axioms, rule ideal_axioms)
 apply (rule abelian_group.axioms, rule ring.axioms, rule ideal.axioms,
 rule ideal_axioms)
 apply (rule abelian_group.axioms, rule ring.axioms, rule ideal.axioms,
 rule ideal_axioms)
done

lemma (in ideal) is_ideal: "ideal I R"
 by (rule ideal_axioms)

lemma idealI:
 fixes R (structure)
 assumes "ring R"
 assumes a_subgroup: "subgroup I (\carrier = carrier R, mult = add R,
 one = zero R)"
 and I_l_closed: "\a x. [a \in I; x \in carrier R] \Rightarrow x \otimes a \in I"
 and I_r_closed: "\a x. [a \in I; x \in carrier R] \Rightarrow a \otimes x \in I"
 shows "ideal I R"
proof -
 interpret ring R by fact
 show ?thesis apply (intro ideal.intro ideal_axioms.intro additive_subgroupI)
 apply (rule a_subgroup)
 apply (rule is_ring)
 apply (erule (1) I_l_closed)
apply (erule (1) I_r_closed)
done
qed

10.1.2 Ideals Generated by a Subset of carrier R
definition genideal :: "_ ⇒ 'a set ⇒ 'a set" ("Idl_ _" [80] 79)
 where "genideal R S = Inter {I. ideal I R ∧ S ⊆ I}"

10.1.3 Principal Ideals
locale principalideal = ideal +
 assumes generate: "∃i ∈ carrier R. I = Idl {i}"
lemma (in principalideal) is_principalideal: "principalideal I R"
 by (rule principalideal_axioms)

lemma principalidealI:
 fixes R (structure)
 assumes "ideal I R"
 and generate: "∃i ∈ carrier R. I = Idl {i}"
 shows "principalideal I R"
proof -
 interpret ideal I R by fact
 show ?thesis
 by (intro principalideal.intro principalideal_axioms.intro)
 (rule is_ideal, rule generate)
qed

10.1.4 Maximal Ideals
locale maximalideal = ideal +
 assumes I_notcarr: "carrier R ≠ I"
 and I_maximal: "⋀J. [ideal J R; I ⊆ J; J ⊆ carrier R] ⇒ J = I ∨ J = carrier R"
lemma (in maximalideal) is_maximalideal: "maximalideal I R"
 by (rule maximalideal_axioms)

lemma maximalidealI:
 fixes R
 assumes "ideal I R"
 and I_notcarr: "carrier R ≠ I"
 and I_maximal: "⋀J. [ideal J R; I ⊆ J; J ⊆ carrier R] ⇒ J = I ∨ J = carrier R"
 shows "maximalideal I R"
proof -
 interpret ideal I R by fact
 show ?thesis
 by (intro maximalideal.intro maximalideal_axioms.intro)
(rule is_ideal, rule I_notcarr, rule I_maximal)

qed

10.1.5 Prime Ideals

locale primeideal = ideal + cring +
 assumes I_notcarr: "carrier R \neq I"
 and I_prime: "[a \in carrier R; b \in carrier R; a \otimes b \in I] \implies a \in I \lor b \in I"

lemma (in primeideal) is_primeideal: "primeideal I R"
 by (rule primeideal_axioms)

lemma primeidealI:
 fixes R (structure)
 assumes "ideal I R"
 and "cring R"
 and I_notcarr: "carrier R \neq I"
 and I_prime: "\forall a b. \[a \in carrier R; b \in carrier R; a \otimes b \in I\] \implies a \in I \lor b \in I"
 shows "primeideal I R"
proof -
 interpret ideal I R by fact
 interpret cring R by fact
 show \?thesis
 apply (intro_locales)
 apply (intro ideal_axioms.intro)
 apply (erule (1) I_l_closed)
 apply (erule (1) I_r_closed)
 apply (intro primeideal_axioms.intro)
 apply (rule I_notcarr)
 apply (erule (2) I_prime)
 qed

lemma primeidealI2:
 fixes R (structure)
 assumes "additive_subgroup I R"
 and "cring R"
 and I_l_closed: "\forall a x. \[a \in I; x \in carrier R\] \implies x \otimes a \in I"
 and I_r_closed: "\forall a x. \[a \in I; x \in carrier R\] \implies a \otimes x \in I"
 and I_notcarr: "carrier R \neq I"
 and I_prime: "\forall a b. \[a \in carrier R; b \in carrier R; a \otimes b \in I\] \implies a \in I \lor b \in I"
 shows "primeideal I R"
proof -
 interpret additive_subgroup I R by fact
 interpret cring R by fact
 show ?thesis apply (intro_locales)
 apply (intro ideal_axioms.intro)
 apply (erule (1) I_l_closed)
 apply (erule (1) I_r_closed)
 apply (intro primeideal_axioms.intro)
 apply (rule I_notcarr)
 apply (erule (2) I_prime)
10.2 Special Ideals

lemma (in ring) zeroideal: "ideal \{0\} R"
apply (intro idealI subgroup.intro)
apply (rule is_ring)
apply simp+
apply (fold a_inv_def, simp)
apply simp+
done

lemma (in ring) oneideal: "ideal (carrier R) R"
by (rule idealI) (auto intro: is_ring add.subgroupI)

lemma (in "domain") zeroprimeideal: "primeideal \{0\} R"
apply (intro primeidealI)
apply (rule zeroideal)
apply (rule domain.axioms, rule domain_axioms)
def 1
apply (simp add: integral)
proof (rule ccontr, simp)
assume "carrier R = \{0\}"
then have "1 = 0" by (rule one_zeroI)
with one_not_zero show False by simp
qed

10.3 General Ideal Properties

lemma (in ideal) one_imp_carrier:
assumes I_one_closed: "1 \in I"
shows "I = carrier R"
apply (rule)
apply (rule)
apply (rule a_Hcarr, simp)
proof
fix x
assume xcarr: "x \in carrier R"
with I_one_closed have "x \otimes 1 \in I" by (intro I_l_closed)
with xcarr show "x \in I" by simp
qed

lemma (in ideal) Icarr:
assumes iI: "i \in I"
shows "i \in carrier R"
using iI by (rule a_Hcarr)
10.4 Intersection of Ideals

Intersection of two ideals The intersection of any two ideals is again an ideal in \(R \)

lemma (in ring) i_intersect:
 assumes "ideal I R"
 assumes "ideal J R"
 shows "ideal (I \cap J) R"
proof -
 interpret ideal I R by fact
 interpret ideal J R by fact
 show ?thesis
 apply (intro idealI subgroup.intro)
 apply (rule is_ring)
 apply (force simp add: a_subset)
 apply (simp add: a_inv_def[symmetric])
 apply simp
 apply (simp add: a_inv_def[symmetric])
 apply (clarsimp, rule)
 apply (clarsimp, rule)
 apply (fast intro: ideal.I_l_closed ideal.intro assms)+
 apply (clarsimp, rule)
 apply (fast intro: ideal.I_r_closed ideal.intro assms)+
done
qed

The intersection of any Number of Ideals is again an Ideal in \(R \)

lemma (in ring) i_intersect: assumes Sideals: "\(\forall I. I \in S \implies \text{ideal } I \) \(R \)"
 and notempty: "\(S \neq \{\} \)"
 shows "ideal (\text{Inter } S) R"
proof (unfold_locales)
 apply (simp_all add: Inter_eq)
 apply rule unfolding mem_Collect_eq defer 1
 apply rule defer 1
 apply rule defer 1
 apply (fold a_inv_def, rule) defer 1
 apply rule defer 1
 apply rule defer 1
proof -
 fix x y
 assume "\(\forall I \in S. x \in I \)"
 then have xI: "\(\forall I. I \in S \implies x \in I \)" by simp
 assume "\(\forall I \in S. y \in I \)"
 then have yI: "\(\forall I. I \in S \implies y \in I \)" by simp

 fix J
 assume JS: "J \in S"
 interpret ideal J R by (rule Sideals[OF JS])
 from xI[OF JS] and yI[OF JS] show "x \oplus y \in J" by (rule a_closed)
next
fix J
assume JS: "J ∈ S"
interpret ideal J R by (rule Sideals[OF JS])
show "0 ∈ J" by simp

next
fix x
assume "∀I∈S. x ∈ I"
then have xI: "∀I. I ∈ S → x ∈ I" by simp

fix J
assume JS: "J ∈ S"
interpret ideal J R by (rule Sideals[OF JS])
from xI[OF JS] show "¬ x ∈ J" by (rule a_inv_closed)

next
fix x y
assume "∀I∈S. x ∈ I"
then have xI: "∀I. I ∈ S → x ∈ I" by simp
assume ycarr: "y ∈ carrier R"

fix J
assume JS: "J ∈ S"
interpret ideal J R by (rule Sideals[OF JS])
from xI[OF JS] and ycarr show "y ⊗ x ∈ J" by (rule I_l_closed)

next
fix x y
assume "∀I∈S. x ∈ I"
then have xI: "∀I. I ∈ S → x ∈ I" by simp
assume ycarr: "y ∈ carrier R"

fix J
assume JS: "J ∈ S"
interpret ideal J R by (rule Sideals[OF JS])
from xI[OF JS] and ycarr show "x ⊗ y ∈ J" by (rule I_r_closed)

next
fix x
assume "∀I∈S. x ∈ I"
then have xI: "∀I. I ∈ S → x ∈ I" by simp
from notempty have "∃I0. I0 ∈ S" by blast
then obtain I0 where IOS: "I0 ∈ S" by auto
interpret ideal I0 R by (rule Sideals[OF IOS])
from xI[OF IOS] have "x ∈ I0".
with a_subset show "x ∈ carrier R" by fast
10.5 Addition of Ideals

lemma (in ring) add_ideals:
assumes ideall: "ideal I R"
and ideallJ: "ideal J R"
shows "ideal (I <+> J) R"
apply (rule ideal.intro)
apply (rule add_additive_subgroups)
apply (intro ideal.axioms[OF ideall])
apply (intro ideal.axioms[OF ideallJ])
apply (rule is_ring)
apply (rule ideal_axioms.intro)
apply (simp add: set_add_defs, clarsimp)
def er 1
apply (simp add: set_add_defs, clarsimp)
def er 1
proof -
fix x i j
assume xcarr: "x \in carrier R"
and iI: "i \in I"
and jJ: "j \in J"
from xcarr ideal.Icarr[OF ideall iI] ideal.Icarr[OF ideallJ jJ]
have c: "(i \oplus j) \otimes x = (i \otimes x) \oplus (j \otimes x)"
by algebra
from xcarr and iI have a: "i \otimes x \in I"
by (simp add: ideal.I_r_closed[OF ideall])
from xcarr and jJ have b: "j \otimes x \in J"
by (simp add: ideal.I_r_closed[OF ideallJ])
from a b c show "\exists ha \in I. \exists ka \in J. (i \oplus j) \otimes x = ha \oplus ka"
by fast
next
fix x i j
assume xcarr: "x \in carrier R"
and iI: "i \in I"
and jJ: "j \in J"
from xcarr ideal.Icarr[OF ideall iI] ideal.Icarr[OF ideallJ jJ]
have c: "x \otimes (i \oplus j) = (x \otimes i) \oplus (x \otimes j)" by algebra
from xcarr and iI have a: "x \otimes i \in I"
by (simp add: ideal.I_l_closed[OF ideall])
from xcarr and jJ have b: "x \otimes j \in J"
by (simp add: ideal.I_l_closed[OF ideallJ])
from a b c show "\exists ha \in I. \exists ka \in J. x \otimes (i \oplus j) = ha \oplus ka"
by fast
qed
10.6 Ideals generated by a subset of carrier R

genideal generates an ideal

lemmas ((in ring) genideal_ideal):
 assumes Scarr: "$S \subseteq \text{carrier } R$
 shows "ideal (Idl S) R
unfolding genideal_def
proof (rule i_Intersect, fast, simp)
 from oneideal and Scarr
 show "$\exists I. \text{ideal } I \ R \land S \subseteq I$" by fast
qed

lemmas ((in ring) genideal_self):
 assumes "$S \subseteq \text{carrier } R$
 shows "$S \subseteq \text{Idl } S$
unfolding genideal_def by fast

lemmas ((in ring) genideal_self'):
 assumes carr: "$i \in \text{carrier } R$
 shows "$i \in \text{Idl } \{i\}$
proof -
 from carr have "$\{i\} \subseteq \text{Idl } \{i\}$" by (fast intro!: genideal_self)
 then show "$i \in \text{Idl } \{i\}$" by fast
qed

genideal generates the minimal ideal

lemmas ((in ring) genideal_minimal):
 assumes a: "ideal $I \ R$
 and b: "$S \subseteq I$
 shows "$\text{Idl } S \subseteq I$
unfolding genideal_def by rule (elim InterD, simp add: a b)

Generated ideals and subsets

lemmas ((in ring) Idl_subset_ideal):
 assumes Iideal: "ideal $I \ R$
 and Hcarr: "$H \subseteq \text{carrier } R$
 shows "$(\text{Idl } H \subseteq I) = (H \subseteq I)$"
proof
 assume a: "$\text{Idl } H \subseteq I$
 from Hcarr have "$H \subseteq \text{Idl } H$" by (rule genideal_self)
 with a show "$H \subseteq I$" by simp

next
 fix x
 assume "$H \subseteq I$"
 with Iideal have "$I \in \{I. \text{ideal } I \ R \land H \subseteq I\}$" by fast
 then show "$\text{Idl } H \subseteq I$" unfolding genideal_def by fast
qed

lemmas ((in ring) subset_Idl_subset):

assumes \(I \subseteq \text{carrier } R \)
and \(H \subseteq I \)
shows \(\text{Idl } H \subseteq \text{Idl } I \)

proof -
from \(HI \) and \(\text{genideal_self[OF Icarr]} \) have \(HI\text{dI} : "H \subseteq \text{Idl } I" \)
by fast

from \(Icarr \) have \(I\text{ideal} : "\text{ideal } (\text{Idl } I) \) \(\subseteq \) \(R \)"
by \(\text{rule genideal_ideal} \)
from \(HI \) and \(Icarr \) have "\(H \subseteq \text{carrier } R \)"
by fast
with \(I\text{ideal} \) have "\((H \subseteq \text{Idl } I) = (\text{Idl } H \subseteq \text{Idl } I) \)"
by \(\text{rule Idl_subset_ideal[symmetric]} \)

with \(HI\text{dI} \) show "\(\text{Idl } H \subseteq \text{Idl } I \)" by simp
qed

lemma (in ring) \(\text{Idl}_\text{subset}_\text{ideal}' \):
assumes \(\text{acarr} : "a \in \text{carrier } R" \) and \(\text{bcarr} : "b \in \text{carrier } R" \)
shows "\(\{a\} \subseteq \text{Idl } \{b\} \) = \(\{a \in \text{Idl } \{b\}\} \)"
apply \(\text{subst \(\text{Idl}_\text{subset}_\text{ideal[OF genideal_ideal[of "\{b\}"], of "\{a\}"]] } \)"
apply \(\text{fast intro: bcarr, fast intro: acarr} \)
apply \(\text{fast} \)
done

lemma (in ring) \(\text{genideal}_\text{zero} : "\text{Idl } \{0\} = \{0\}" \)
apply \(\text{rule} \)
apply \(\text{rule genideal_minimal[OF zeroideal], simp} \)
apply \(\text{simp add: \(\text{genideal}_\text{self}' \)} \)
done

lemma (in ring) \(\text{genideal}_\text{one} : "\text{Idl } \{1\} = \text{carrier } R" \)
proof -
interpret \(\text{ideal } "\text{Idl } \{1\}" \) "\(R \)" by \(\text{rule genideal_ideal} \) fast
show "\(\text{Idl } \{1\} = \text{carrier } R \)"
apply \(\text{rule, rule a_subset} \)
apply \(\text{simp add: \(\text{one}_\text{imp}_\text{carrier genideal}_\text{self}' \)} \)
done
qed

Generation of Principal Ideals in Commutative Rings

definition \(\text{cgenideal :: } "_ \Rightarrow 'a \Rightarrow 'a\text{ set}" \) ("\(\text{PIdl } _ \) \(= \) \([80] \) 79)
where "\(\text{cgenideal } R \ a = \{x \otimes_R a \mid x \in \text{carrier } R\}"\n
\(\text{genhid}_\text{ideal} (?) \) really generates an ideal

lemma (in cring) cgenideal_ideal:
assumes \(\text{acarr} : "a \in \text{carrier } R" \)
shows "\(\text{ideal } (\text{PIdl } a) \) \(\subseteq \) \(R \)"
apply \(\text{unfold cgenideal_def} \)
apply (rule idealI[OF is_ring])
apply (rule subgroup.intro)
apply simp_all
apply (blast intro: acarr)
apply clarsimp defer 1
deffer 1
apply (fold a_inv_def, clarsimp) defer 1
apply clarsimp defer 1
proof -
 fix x y
 assume xcarr: "x ∈ carrier R"
 and ycarr: "y ∈ carrier R"
 note carr = acarr xcarr ycarr

 from carr have ""x ⊗ a ⊗ y ⊗ a = (x ⊗ y) ⊗ a"
 by (simp add: l_distr)
 with carr show "∃z. x ⊗ a ⊗ y ⊗ a = z ⊗ a ∧ z ∈ carrier R" by fast
next
 from l_null[OF acarr, symmetric] and zero_closed
 show "∃x. 0 = x ⊗ a ∧ x ∈ carrier R" by fast
next
 fix x
 assume xcarr: "x ∈ carrier R"
 note carr = acarr xcarr

 from carr have "⊕ (x ⊗ a) = (⊕ x) ⊗ a"
 by (simp add: l_minus)
 with carr show "∃z. ⊕ (x ⊗ a) = z ⊗ a ∧ z ∈ carrier R" by fast
next
 fix x y
 assume xcarr: "x ∈ carrier R"
 and ycarr: "y ∈ carrier R"
 note carr = acarr xcarr ycarr

 from carr have "y ⊗ a ⊗ x = (y ⊗ x) ⊗ a"
 by (simp add: m_assoc) (simp add: m_comm)
 with carr show "∃z. y ⊗ a ⊗ x = z ⊗ a ∧ z ∈ carrier R" by fast
next
 fix x y
 assume xcarr: "x ∈ carrier R"
 and ycarr: "y ∈ carrier R"
 note carr = acarr xcarr ycarr

 from carr have "x ⊗ (y ⊗ a) = (x ⊗ y) ⊗ a"
 by (simp add: m_assoc)
with carr show "∃z. x ⊗ (y ⊗ a) = z ⊗ a ∧ z ∈ carrier R"
 by fast
qed

lemma (in ring) cgenideal_self:
 assumes icarr: "i ∈ carrier R"
 shows "i ∈ PIdl i"
 unfolding cgenideal_def
 proof simp
 from icarr have "i = 1 ⊗ i"
 by simp
 with icarr show "∃x. i = x ⊗ i ∧ x ∈ carrier R"
 by fast
 qed

cgenideal is minimal

lemma (in ring) cgenideal_minimal:
 assumes "ideal J R"
 assumes aJ: "a ∈ J"
 shows "PIdl a ⊆ J"
 proof
 interpret ideal J R by fact
 show ?thesis
 unfolding cgenideal_def
 apply rule
 apply clarify
 using aJ
 apply (erule I_l_closed)
 done
 qed

lemma (in cring) cgenideal_eq_genideal:
 assumes icarr: "i ∈ carrier R"
 shows "PIdl i = Idl {i}"
 apply rule
 apply (intro cgenideal_minimal)
 apply (rule genideal_ideal, fast intro: icarr)
 apply (rule genideal_self', fast intro: icarr)
 apply (intro genideal_minimal)
 apply (rule cgenideal_ideal [OF icarr])
 apply (simp, rule cgenideal_self [OF icarr])
 done

lemma (in cring) cgenideal_eq_rcos: "PIdl i = carrier R #> i"
 unfolding cgenideal_def r_coset_def by fast

lemma (in cring) cgenideal_is_principalideal:
 assumes icarr: "i ∈ carrier R"
 shows "principalideal (PIdl i) R"
apply (rule principalidealI)
apply (rule cgenideal_ideal [OF icarr])

proof -
 from icarr have "PIdl i = Idl \{i\}"
 by (rule cgenideal_eq_genideal)
 with icarr show "\exists i' \in \text{carrier } R. \ PIdl i = Idl \{i'\}"
 by fast
qed

10.7 Union of Ideals

lemma (in ring) union_genideal:
 assumes idealI: "ideal I R"
 and idealJ: "ideal J R"
 shows "Idl (I \cup J) = I <+> J"
apply rule
 apply (rule ring.genideal_minimal)
 apply (rule is_ring)
 apply (rule add_ideals[OF idealI idealJ])
 apply (rule)
 apply (simp add: set_add_defs)
 apply (elim disjE) defer 1 defer 1
 apply (rule)
 apply (simp add: set_add_defs genideal_def) apply clarsimp defer 1
proof -
 fix x
 assume xI: "x \in I"
 have ZJ: "0 \in J"
 by (intro additive_subgroup.zero_closed) (rule ideal.axioms[OF idealJ])
 from ideal.Icarr[OF idealI xI] have "x = x \oplus 0"
 by algebra
 with xI and ZJ show "\exists h \in I. \exists k \in J. x = h \oplus k"
 by fast

next
 fix x
 assume xJ: "x \in J"
 have ZI: "0 \in I"
 by (intro additive_subgroup.zero_closed, rule ideal.axioms[OF idealI])
 from ideal.Icarr[OF idealJ xJ] have "x = 0 \oplus x"
 by algebra
 with ZI and xJ show "\exists h \in I. \exists k \in J. x = h \oplus k"
 by fast

next
 fix i j K
 assume iI: "i \in I"
 and jJ: "j \in J"
 and idealK: "ideal K R"
 and IK: "I \subseteq K"
 and JK: "J \subseteq K"
 from iI and IK have iK: "i \in K" by fast
from \(j \) and \(K \) have \(j \in K \) by fast
from \(i \) and \(K \) show "\(i \oplus j \in K \)"
by (intro additive_subgroup.a_closed) (rule ideal.axioms[OF idealK])
qed

10.8 Properties of Principal Ideals

0 generates the zero ideal

lemma (in ring) zero_genideal: "Idl \(\{0\} = \{0\}\)"
apply rule
apply (simp add: genideal_minimal zeroideal)
apply (fast intro!: genideal_self)
done

1 generates the unit ideal

lemma (in ring) one_genideal: "Idl \(\{1\} = \text{carrier } R\)"
proof -
 have "\(1 \in Idl \{1\}\)"
 by (simp add: genideal_self')
 then show "Idl \(\{1\} = \text{carrier } R\)"
 by (intro ideal.one_imp_carrier) (fast intro: genideal_ideal)
qed

The zero ideal is a principal ideal

corollary (in ring) zeropideal: "principalideal \(\{0\} \) \(R\)"
apply (rule principalidealI)
apply (rule zeroideal)
apply (blast intro!: zero_genideal[symmetric])
done

The unit ideal is a principal ideal

corollary (in ring) onepideal: "principalideal (\text{carrier } R) \(R\)"
apply (rule principalidealI)
apply (rule oneideal)
apply (blast intro!: one_genideal[symmetric])
done

Every principal ideal is a right coset of the carrier

lemma (in principalideal) rcos_generate:
 assumes "\(\text{cring } R\)"
 shows "\(\exists x \in I. I = \text{carrier } R \#> x\)"
proof -
 interpret \(\text{cring } R \) by fact
 from generate obtain \(i \) where icarr: "\(i \in \text{carrier } R\)" and I1: "\(I = Idl \{i\}\)"
 by fast+
 from icarr and genideal_self[of "\{i\}\) have "\(i \in Idl \{i\}\)"
by fast
then have iI: "i ∈ I" by (simp add: I1)

from I1 icarr have I2: "I = PIdl i"
 by (simp add: cgenideal_eq_genideal)

have "PIdl i = carrier R #> i"
 unfolding cgenideal_def r_coset_def by fast

with I2 have "I = carrier R #> i"
 by simp

with iI show "∃x∈I. I = carrier R #> x"
 by fast
qed

10.9 Prime Ideals

lemma (in ideal) primeidealCD:
 assumes "cring R"
 assumes notprime: "¬ primeideal I R"
 shows "carrier R = I ∨ (∃a b. a ∈ carrier R ∧ b ∈ carrier R ∧ a ⊗ b ∈ I ∧ a /∈ I ∧ b /∈ I)"
proof (rule ccontr, clarsimp)
 interpret cring R by fact
 assume InR: "carrier R ≠ I"
 and "∀a. a ∈ carrier R → (∀b. a ⊗ b ∈ I → b ∈ carrier R → a ∈ I ∨ b ∈ I)"
 then have I_prime: "∀a b. [a ∈ carrier R; b ∈ carrier R; a ⊗ b ∈ I] → a ∈ I ∨ b ∈ I"
 by simp
 have "primeideal I R"
 apply (rule primeideal.intro [OF is_ideal is_cring])
 apply (rule primeideal_axioms.intro)
 apply (rule InR)
 apply (erule (2) I_prime)
 done
 with notprime show False by simp
qed

lemma (in ideal) primeidealCE:
 assumes "cring R"
 assumes notprime: "¬ primeideal I R"
 obtains "carrier R = I" | "∃a b. a ∈ carrier R ∧ b ∈ carrier R ∧ a ⊗ b ∈ I ∧ a /∈ I ∧ b /∈ I"
proof -
 interpret R: cring R by fact
 assume "carrier R = I ==> thesis"
and \(\exists \ a \ b. \ a \in \text{carrier } R \land b \in \text{carrier } R \land a \otimes b \in I \land a \notin I \land b \notin I \implies \text{thesis} \)
then show thesis using primeidealCD [OF R.is_cring notprime] by blast qed

If \(\{0\} \) is a prime ideal of a commutative ring, the ring is a domain

lemma (in cring) zeroprimeideal_domainI:
assumes pi: "primeideal \(\{0\} \) R"
shows "domain R"
apply (rule domain.intro, rule is_cring)
apply (rule domain_axioms.intro)
proof (rule ccontr, simp)
interpret primeideal "\(\{0\} \)" "R" by (rule pi)
assume "I = 0"
then have "carrier R = \(\{0\} \)" by (rule one_zeroD)
from this[symmetric] and I_notcarr show False by simp
next
interpret primeideal "\(\{0\} \)" "R" by (rule pi)
fix a b
assume ab: "a \otimes b = 0" and carr: "a \in \text{carrier } R" "b \in \text{carrier } R"
from ab have abI: "a \otimes b \in \{0\}"
 by fast
with carr have "a \in \{0\} \lor b \in \{0\}"
 by (rule I_prime)
then show "a = 0 \lor b = 0" by simp
qed

corollary (in cring) domain_eq_zeroprimeideal: "domain R = primeideal \(\{0\} \) R"
apply rule
apply (erule domain.zeroprimeideal)
apply (erule zeroprimeideal_domainI)
done

10.10 Maximal Ideals

lemma (in ideal) helper_I_closed:
assumes carr: "a \in \text{carrier } R" "x \in \text{carrier } R" "y \in \text{carrier } R"
 and axI: "a \otimes x \in I"
shows "a \otimes (x \otimes y) \in I"
proof -
 from axI and carr have "(a \otimes x) \otimes y \in I"
 by (simp add: I_r_closed)
 also from carr have "(a \otimes x) \otimes y = a \otimes (x \otimes y)"
 by (simp add: m_assoc)
 finally show "a \otimes (x \otimes y) \in I".
qed
lemma (in ideal) helper_max_prime:
 assumes "cring R"
 assumes acarr: "a ∈ carrier R"
 shows "ideal {x ∈ carrier R. a ⊗ x ∈ I} R"
proof -
 interpret cring R by fact
 show ?thesis apply (rule idealI)
 apply (rule cring.axioms[OF is_cring])
 apply (rule subgroup.intro)
 apply (simp, fast)
 apply clarsimp
 apply (simp add: r_distr acarr)
 apply (simp add: acarr)
 apply (simp add: a_inv_def[symmetric], clarify)
 defer 1
 apply clarsimp
 defer 1
 apply (fast intro!: helper_I_closed acarr)
 proof -
 fix x
 assume xcarr: "x ∈ carrier R"
 and ax: "a ⊗ x ∈ I"
 from ax and acarr xcarr have "⊖(a ⊗ x) ∈ I" by simp
 also from acarr xcarr have "⊖(a ⊗ x) = a ⊗ (⊖x)" by algebra
 finally show "a ⊗ (⊖x) ∈ I" .
 from acarr have "a ⊗ 0 = 0" by simp
next
 fix x y
 assume xcarr: "x ∈ carrier R"
 and ycarr: "y ∈ carrier R"
 and ayI: "a ⊗ y ∈ I"
 from ayI and acarr xcarr ycarr have "a ⊗ (y ⊗ x) ∈ I"
 by (simp add: helper_I_closed)
 moreover
 from xcarr ycarr have "y ⊗ x = x ⊗ y"
 by (simp add: m_comm)
 ultimately
 show "a ⊗ (x ⊗ y) ∈ I" by simp
qed

In a cring every maximal ideal is prime

lemma (in cring) maximalideal_is_prime:
 assumes "maximalideal I R"
 shows "primeideal I R"
proof -
 interpret maximalideal I R by fact
 show ?thesis apply (rule ccontr)
 apply (rule primeidealCE)
 apply (rule is_cring)
apply assumption
apply (simp add: I_notcarr)
proof -
assume "∃a b. a ∈ carrier R ∧ b ∈ carrier R ∧ a ⊗ b ∈ I ∧ a /∈ I ∧ b /∈ I"
then obtain a b where
 acarr: "a ∈ carrier R" and
 bcarr: "b ∈ carrier R" and
 abI: "a ⊗ b ∈ I" and
 anI: "a /∈ I" and
 bnI: "b /∈ I" by fast
def J ≡ "{x ∈ carrier R. a ⊗ x ∈ I}"
from is_cring and acarr have idealJ: "ideal J R"
 unfolding J_def by (rule helper_max_prime)
 have IsubJ: "I ⊆ J"
 proof
 fix x
 assume xI: "x ∈ I"
 with acarr have "a ⊗ x ∈ I"
 by (intro I_l_closed)
 with xI[THEN a_Hcarr] show "x ∈ J"
 unfolding J_def by fast
 qed
from abI and acarr bcarr have "b ∈ J"
 unfolding J_def by fast
with bnI have JnI: "J ≠ I" by fast
from acarr have "a = a ⊗ 1" by algebra
with anI have "a ⊗ 1 /∈ I" by simp
with one_closed have "1 /∈ J"
 unfolding J_def by fast
then have Jncarr: "J ≠ carrier R" by fast
interpret ideal J R by (rule idealJ)

have "J = I ∨ J = carrier R"
 apply (intro I_maximal)
 apply (rule idealJ)
 apply (rule IsubJ)
 apply (rule a_subset)
 done
with JnI and Jncarr show False by simp
qed
qed
10.11 Derived Theorems

— A non-zero cring that has only the two trivial ideals is a field

Lemma (in cring) trivialideals_fieldI:

assumes carrnzero: "carrier R \(\neq \{0\}\)"
and haveideals: "\{I. ideal I R\} = \{\{0\}, carrier R\}"
shows "field R"
apply (rule cring_fieldI)
apply (rule, rule, rule)
apply (erule Units_closed)
def 1
apply rule
def 1
proof (rule ccontr, simp)
assume zUnit: "0 \in Units R"
then have a: "0 \otimes inv 0 = 1" by (rule Units_r_inv)
from zUnit have "0 \otimes inv 0 = 0"
 by (intro l_null) (rule Units_inv_closed)
then have "carrier R = \{0\}" by (rule one_zeroD)
with carrnzero show False by simp
next
fix x
assume xcarr': "x \in carrier R - \{0\}" then have xcarr: "x \in carrier R" by fast
from xcarr' have xnZ: "x \neq 0" by fast
from xcarr have xIdl: "ideal (PIdl x) R"
 by (intro cgenideal_ideal) fast
from xcarr have "x \in PIdl x"
 by (intro cgenideal_self) fast
with xnZ have "PIdl x \neq \{0\}" by fast
with haveideals have "PIdl x = carrier R"
 by (blast intro!: xIdl)
then have "1 \in PIdl x" by simp
then have "\exists y. 1 = y \otimes x \wedge y \in carrier R"
 unfolding cgenideal_def by blast
then obtain y where ycarr: " y \in carrier R" and ylinv: "1 = y \otimes x"
 by fast+
from ylinv and xcarr ycarr have yrinv: "1 = x \otimes y"
 by (simp add: m_comm)
from ycarr and ylinv[symmetric] and yrinv[symmetric]
have "\exists y \in carrier R. y \otimes x = 1 \wedge x \otimes y = 1" by fast
with xcarr show "x \in Units R"
 unfolding Units_def by fast
qed

Lemma (in field) all_ideals: "\{I. ideal I R\} = \{\{0\}, carrier R\}"
apply (rule, rule)
proof -
fix I
assume a: "I ∈ {I. ideal I R}"
then interpret ideal I R by simp

show "I ∈ {{0}, carrier R}"
proof (cases "∃a. a ∈ I - {0}"
 case True
 then obtain a where aI: "a ∈ I" and anZ: "a ≠ 0"
 by fast+
 from aI[THEN a_Hcarr] anZ have aUnit: "a ∈ Units R"
 by (simp add: field_Units)
 then have a: "a ⊗ inv a = 1" by (rule Units_r_inv)
 from aI and aUnit have "a ⊗ inv a ∈ I"
 by (simp add: I_r_closed del: Units_r_inv)
 then have oneI: "1 ∈ I" by (simp add: a[symmetric])
 have "carrier R ⊆ I"
 proof
 fix x
 assume xcarr: "x ∈ carrier R"
 with oneI have "1 ⊗ x ∈ I" by (rule I_r_closed)
 with xcarr show "x ∈ I" by simp
 qed
 with a_subset have "I = carrier R" by fast
 then show "I ∈ {{0}, carrier R}" by fast
next
 case False
 then have IZ: "∀a. a ∈ I ⇒ a = 0" by simp

 have a: "I ⊆ {0}"
 proof
 fix x
 assume "x ∈ I"
 then have "x = 0" by (rule IZ)
 then show "x ∈ {0}" by fast
 qed

 have "0 ∈ I" by simp
 then have "{0} ⊆ I" by fast

with a have "I = {0}" by fast
 then show "I ∈ {{0}, carrier R}" by fast
qed
qed (simp add: zeroideal oneideal)

— Jacobson Theorem 2.2
lemma (in cring) trivialideals_eq_field:
 assumes carrnzero: "carrier R ≠ {0}"
 shows "{{I. ideal I R} = {{0}, carrier R}} = field R"
Like zero prime ideal for domains

lemma (in field) zeromaximalideal: "maximalideal \{0\} R"
 apply (rule maximalidealI)
 apply (rule zeroideal)
proof-
 from one_not_zero have "1 \notin \{0\}" by simp
 with one_closed show "carrier R \neq \{0\}" by fast
next
 fix J
 assume Jideal: "ideal J R"
 then have "J \in \{I. ideal I R\}" by fast
 with all_ideals show "J = \{0\} \lor J = carrier R"
 by simp
qed

lemma (in cring) zeromaximalideal_fieldI:
 assumes zeromax: "maximalideal \{0\} R"
 shows "field R"
 apply rule trivialideals_fieldI, rule maximalideal.I_notcarr[OF zeromax])
 apply rule apply clarsimp defer 1
 apply (simp add: zeroideal oneideal)
proof -
 fix J
 assume Jn0: "J \neq \{0\}"
 and idealJ: "ideal J R"
 interpret ideal J R by (rule idealJ)
 have "\{0\} \subseteq J" by (rule ccontr) simp
 from zeromax and idealJ and this and a_subset
 have "J = \{0\} \lor J = carrier R"
 by (rule maximalideal.I_maximal)
 with Jn0 show "J = carrier R"
 by simp
qed

lemma (in cring) zeromaximalideal_eq_field: "maximalideal \{0\} R = field R"
 apply rule
 apply (erule zeromaximalideal_fieldI)
 apply (erule field.zeromaximalideal)
 done

end

theory RingHom
imports Ideal
begin
11 Homomorphisms of Non-Commutative Rings

Lifting existing lemmas in a \texttt{ring_hom_ring} locale

\begin{verbatim}
locale ring_hom_ring = R: ring R + S: ring S
 for R (structure) and S (structure) +
 fixes h
 assumes homh: "h ∈ ring_hom R S"
 notes hom_mult [simp] = ring_hom_mult [OF homh]
 and hom_one [simp] = ring_hom_one [OF homh]

sublocale ring_hom_cring ⊆ ring: ring_hom_ring
 by default (rule homh)

sublocale ring_hom_ring ⋒ abelian_group: abelian_group_hom R S
 apply (rule abelian_group_homI)
 apply (rule R.is_abelian_group)
 apply (rule S.is_abelian_group)
 apply (intro group_hom.intro group_hom_axioms.intro)
 apply (rule R.a_group)
 apply (rule S.a_group)
 apply (insert homh, unfold hom_def ring_hom_def)
 apply simp
 done

lemma (in ring_hom_ring) is_ring_hom_ring:
 "ring_hom_ring R S h"
 by (rule ring_hom_ring_axioms)

lemma ring_hom_ringI:
 fixes R (structure) and S (structure)
 assumes "ring R" "ring S"
 assumes hom_closed: "∀x. x ∈ carrier R ==> h x ∈ carrier S" and
 compatible_mult: "∀x y. [| x : carrier R; y : carrier R |]
 ==> h (x ⊗ y) = h x ⊗ S h y" and
 compatible_add: "∀x y. [| x : carrier R; y : carrier R |] ==> h (x ⊕ y) = h x ⊕ S h y" and
 compatible_one: "h 1 = 1 S"
 shows "ring_hom_ring R S h"
proof -
 interpret ring R by fact
 interpret ring S by fact
 show ?thesis apply unfold_locales
 apply (unfold ring_hom_def, safe)
 apply (simp add: hom_closed Pi_def)
 apply (erule (1) compatible_mult)
 apply (erule (1) compatible_add)
 apply (rule compatible_one)
 done
\end{verbatim}
lemma ring_hom_ringI2:
 assumes "ring R" "ring S"
 assumes h: "h ∈ ring_hom R S"
 shows "ring_hom_ring R S h"
proof -
 interpret R: ring R by fact
 interpret S: ring S by fact
 show ?thesis apply (intro ring_hom_ring.intro ring_hom_ring_axioms.intro)
 apply (rule R.is_ring)
 apply (rule S.is_ring)
 done
qed

lemma ring_hom_ringI3:
 fixes R (structure) and S (structure)
 assumes "abelian_group_hom R S h" "ring R" "ring S"
 assumes compatible_mult: "∀ x y. [| x ∈ carrier R; y ∈ carrier R |] ==> h (x ⊗ y) = h x ⊗ S h y"
 and compatible_one: "h 1 = 1_S"
 shows "ring_hom_ring R S h"
proof -
 interpret abelian_group_hom R S h by fact
 interpret R: ring R by fact
 interpret S: ring S by fact
 show ?thesis apply (intro ring_hom_ring.intro ring_hom_ring_axioms.intro,
 rule R.is_ring, rule S.is_ring)
 apply (insert group_hom.homh[OF a_group_hom])
 apply (unfold hom_def ring_hom_def, simp)
 apply safe
 apply (erule (1) compatible_mult)
 apply (rule compatible_one)
 done
qed

lemma ring_hom_cringI:
 assumes "ring_hom_ring R S h" "cring R" "cring S"
 shows "ring_hom_cring R S h"
proof -
 interpret ring_hom_ring R S h by fact
 interpret R: cring R by fact
 interpret S: cring S by fact
 show ?thesis by (intro ring_hom_cring.intro ring_hom_cring_axioms.intro)
 (rule R.is_cring, rule S.is_cring, rule homh)
qed
11.1 The Kernel of a Ring Homomorphism

— the kernel of a ring homomorphism is an ideal

Lemma (in ring_hom_ring) kernel_is_ideal:

shows "ideal (a_kernel R S h) R"

proof

apply (rule idealI)

apply (rule R.is_ring)

apply (rule additive_subgroup.a_subgroup[OF additive_subgroup_a_kernel])

apply (unfold a_kernel_def', simp+)

done

Elements of the kernel are mapped to zero

**Lemma (in abelian_group_hom) kernel_zero [simp]:

"i ∈ a_kernel R S h =⇒ h i = 0_S"

by (simp add: a_kernel_defs)

11.2 Cosets

Cosets of the kernel correspond to the elements of the image of the homomorphism

Lemma (in ring_hom_ring) rcos_imp_homeq:

assumes acarr: "a ∈ carrier R"

and xrcos: "x ∈ a_kernel R S h +> a"

shows "h x = h a"

**proof -

interpret ideal "a_kernel R S h" "R" by (rule kernel_is_ideal)

from xrcos

have "∃i ∈ a_kernel R S h. x = i ⊕ a" by (simp add: a_r_coset_defs)

from this obtain i

where iker: "i ∈ a_kernel R S h"

and x: "x = i ⊕ a"

by fast+

note carr = acarr iker[THEN a_Hcarr]

from x

have "h x = h (i ⊕ a)" by simp

also from carr

have "... = h i ⊕ₗ h a" by simp

also from iker

have "... = 0ₗ ⊕ₗ h a" by simp

also from carr

have "... = h a" by simp

finally

show "h x = h a".

qed

Lemma (in ring_hom_ring) homeq_imp_rcos:

assumes acarr: "a ∈ carrier R"
and \(x \in \text{carrier} \ R \)
and \(h x = h a \)
shows \(x \in a_{\text{kernel}} \ R \ S \ h \rightarrow a \)

proof -
interpret ideal "a_{\text{kernel}} \ R \ S \ h" "R" by (rule kernel_is_ideal)

note carr = acarr xcarr
note hcarr = acarr[THEN hom_closed] xcarr[THEN hom_closed]

from hx and hcarr
have a: \(h x \ominus_S \ominus_S h a = 0_S \) by algebra
from carr
have "h x \ominus_S \ominus_S h a = h (x \ominus a)" by simp
from a and this
have b: \(h (x \ominus a) = 0_S \) by simp

from carr have "x \oplus a \in \text{carrier} \ R" by simp
from this and b
have "x \oplus a \in a_{\text{kernel}} \ R \ S \ h"
unfolding a_{kernel_def'}
by fast

from this and carr
show "x \in a_{\text{kernel}} \ R \ S \ h \rightarrow a" by (simp add: a_rcos_module_rev)
qed

corollary (in ring_hom_ring) rcos_eq_homeq:
assumes acarr: "a \in \text{carrier} \ R"
shows "(a_{\text{kernel}} \ R \ S \ h) \rightarrow a = \{ x \in \text{carrier} \ R. \ h \ x = h a \}"
apply rule defer 1
apply clarsimp defer 1
proof
interpret ideal "a_{\text{kernel}} \ R \ S \ h" "R" by (rule kernel_is_ideal)

fix x
assume xrcos: "x \in a_{\text{kernel}} \ R \ S \ h \rightarrow a"
from acarr and this
have xcarr: "x \in \text{carrier} \ R"
by (rule a_elemrcos_carrier)

from xrcos
have "h x = h a" by (rule rcos_imp_homeq[OF acarr])
from xcarr and this
show "x \in \{ x \in \text{carrier} \ R. \ h \ x = h a \}" by fast

next
interpret ideal "a_{\text{kernel}} \ R \ S \ h" "R" by (rule kernel_is_ideal)

fix x
assume xcarr: "x \in \text{carrier} \ R"
and hx: "h x = h a"
from acarr xcarr hx
 show "x ∈ a_kernel R S h ↦ a" by (rule homeq_imp_rcos)
qed
end

theory QuotRing
imports RingHom
begin

12 Quotient Rings

12.1 Multiplication on Cosets

definition rcoset_mult ::
 "[(\'a, _) ring_scheme, \'a set, \'a set, \'a set]
 \Rightarrow \'a set"
 ("[mod _:] _ \times _" [81,81,81] 80)
 where "rcoset_mult R I A B = (\bigcup a \in A. \bigcup b \in B. I \racts R (a \otimes R b))"

rcoset_mult fulfils the properties required by congruences

lemma (in ideal) rcoset_mult_add:
 "x \in carrier R \Longrightarrow y \in carrier R \Longrightarrow [\mod I:] (I \racts x) \times (I \racts y)
 = I \racts (x \otimes y)"
apply rule
apply (rule, simp add: rcoset_mult_def, clarsimp)
defer 1
apply (rule, simp add: rcoset_mult_def)
defer 1
proof -
 fix x x' y'
 assume carr: "x \in carrier R" "y \in carrier R"
 and x'rcos: "x' \in I \racts x"
 and y'rcos: "y' \in I \racts y"
 and zrcos: "z \in I \racts x' \otimes y'"

 from x'rcos have "\\exists h \in I. x' = h \oplus x"
 by (simp add: a_r_coset_def r_coset_def)
 then obtain hx where hxI: "hx \in I" and x': "x' = hx \oplus x"
 by fast+

 from y'rcos have "\\exists h \in I. y' = h \oplus y"
 by (simp add: a_r_coset_def r_coset_def)
 then obtain hy where hyI: "hy \in I" and y': "y' = hy \oplus y"
 by fast+

 from zrcos have "\\exists h \in I. z = h \oplus (x' \otimes y')"
 by (simp add: a_r_coset_def r_coset_def)
then obtain hz where $hz \in I$ and $z = hz \oplus (x' \otimes y')$

by fast+

note carr = carr hxI[THEN a_Hcarr] hyI[THEN a_Hcarr] hzI[THEN a_Hcarr]

from z have "$z = hz \oplus (x' \otimes y')$".
also from $x' \ y'$ have "... = $hz \oplus ((hx \oplus x) \otimes (hy \oplus y))$" by simp
also from carr have "... = $(hz \oplus (hx \otimes (hy \oplus y))) \oplus x \otimes hy) \oplus x \otimes y$" by algebra

finally have z2: "$z = (hz \oplus (hx \otimes (hy \oplus y))) \oplus x \otimes hy) \oplus x \otimes y$".

from hxI hyI hzI carr have "$hz \oplus (hx \otimes (hy \oplus y)) \oplus x \otimes hy \in I$"

by (simp add: I_l_closed I_r_closed)

with z2 have "\exists h\in I. z = h \oplus x \otimes y" by fast

then show "$z \in I +> x \otimes y$" by (simp add: a_r_coset_def r_coset_def)

next
fix z
assume xcarr: "$x \in carrier R$"

and ycarr: "$y \in carrier R$"

and zrcos: "$z \in I +> x \otimes y$"

from xcarr have xself: "$x \in I +> x$" by (intro a_rcos_self)

from ycarr have yself: "$y \in I +> y$" by (intro a_rcos_self)

show "\exists a\in I. \exists b\in I. z \in I +> a \otimes b"

using xself and yself and zrcos by fast

dqed

12.2 Quotient Ring Definition

definition FactRing :: "[('a,'b) ring_scheme, 'a set] ⇒ ('a set) ring"
(infixl "Quot" 65)
where "FactRing R I = (carrier = a_rcosets R I, mult = rcoset_mult R I, one = (I +> R 1 R), zero = I, add = set_add R)"

12.3 Factorization over General Ideals

The quotient is a ring

lemma (in ideal) quotient_is_ring: "ring (R Quot I)"
apply (rule ringI)
— abelian group
apply (rule comm_group_abelian_groupI)
apply (simp add: FactRing_def)
apply (rule a_factorgroup_is_comm_group[unfolded A_FactGroup_def'])
— mult monoid
apply (rule monoidI)
apply (simp_all add: FactRing_def A_RCOSETS_def RCOSETS_def a_r_coset_def[symmetric])
— mult closed
apply (clarify)
apply (simp add: rcoset_mult_add, fast)
—— mult one_closed
apply force
—— mult assoc
apply clarify
apply (simp add: rcoset_mult_add m_assoc)
—— mult one
apply clarify
apply (simp add: rcoset_mult_add)
apply clarify
apply (simp add: rcoset_mult_add)
—— distr
apply clarify
apply (simp add: rcoset_mult_add a_rcos_sum l_distr)
apply clarify
apply (simp add: rcoset_mult_add a_rcos_sum r_distr)
done

This is a ring homomorphism

lemma (in ideal) rcos_ring_hom: "(op +> I) ∈ ring_hom R (R Quot I)"
apply (rule ring_hom_memI)
apply (simp add: FactRing_def a_rcosetsI[OF a_subset])
apply (simp add: FactRing_def rcoset_mult_add)
apply (simp add: FactRing_def a_rcos_sum)
apply (simp add: FactRing_def)
done

lemma (in ideal) rcos_ring_hom_ring: "ring_hom_ring R (R Quot I) (op +> I)"
apply (rule ring_hom_ringI)
apply (rule is_ring, rule quotient_is_ring)
apply (simp add: FactRing_def a_rcosetsI[OF a_subset])
apply (simp add: FactRing_def rcoset_mult_add)
apply (simp add: FactRing_def a_rcos_sum)
apply (simp add: FactRing_def)
done

The quotient of a cring is also commutative

lemma (in ideal) quotient_is_cring:
 assumes "cring R"
 shows "cring (R Quot I)"
proof -
 interpret cring R by fact
 show ?thesis
 apply (intro cring.intro comm_monoid.intro comm_monoid.axioms.intro)
 apply (rule quotient_is_ring)
 apply (rule ring.axioms[OF quotient_is_ring])
 apply (simp add: FactRing_def A_RCOSETS_defs a_r_coset_def[symmetric])
 done
apply clarify
apply (simp add: rcoset_mult_add m_comm)
done

qed

Cosets as a ring homomorphism on crings

lemma (in ideal) rcos_ring_hom_cring:
 assumes "cring R"
 shows "ring_hom_cring R (R Quot I) (op +> I)"
proof -
 interpret cring R by fact
 show ?thesis
 apply (rule ring_hom_cringI)
 apply (rule rcos_ring_hom_ring)
 apply (rule is_cring)
 apply (rule quotient_is_cring)
 apply (rule is_cring)
done

qed

12.4 Factorization over Prime Ideals

The quotient ring generated by a prime ideal is a domain

lemma (in primeideal) quotient_is_domain: "domain (R Quot I)"
apply (rule domain.intro)
 apply (rule quotient_is_cring, rule is_cring)
 apply (rule domain_axioms.intro)
 apply (simp add: FactRing_def)
 defer 1
 apply (simp add: FactRing_def A_RCOSETS_defs a_r_coset_def[symmetric],
clarify)
 apply (simp add: rcoset_mult_add) defer 1
proof (rule ccontr, clarsimp)
 assume "I +> 1 = I"
 then have "1 ∈ I" by (simp only: a_coset_join1 one_closed a_subgroup)
 then have "carrier R ⊆ I" by (subst one_imp_carrier, simp, fast)
 with a_subset have "I = carrier R" by fast
 with I_notcarr show False by fast
next
 fix x y
 assume carr: "x ∈ carrier R" "y ∈ carrier R"
 and a: "I ↦ x ⊗ y = I"
 and b: "I ↦ y ≠ I"
 have yI: "y /∈ I"
proof (rule ccontr, simp)
 assume "y ∈ I"
 then have "I ↦ y = I" by (rule a_rcos_const)
 with b show False by simp
qed
from carr have "x ⊗ y ∈ I +> x ⊗ y" by (simp add: a_rcos_self)
then have xyI: "x ⊗ y ∈ I" by (simp add: a)

from xyI and carr have xI: "x ∈ I +> y" by (simp add: I_prime)
with yI1 have "x ∈ I" by fast
then show "I +> x = I" by (rule a_rcos_const)
qed

Generating right cosets of a prime ideal is a homomorphism on commutative rings

lemma (in primeideal) rcos_ring_hom_cring: "ring_hom_cring R (R Quot I) (op +> I)"
 by (rule rcos_ring_hom_cring) (rule is_cring)

12.5 Factorization over Maximal Ideals

In a commutative ring, the quotient ring over a maximal ideal is a field.
The proof follows “W. Adkins, S. Weintraub: Algebra – An Approach via Module Theory”

lemma (in maximalideal) quotient_is_field:
 assumes "cring R"
 shows "field (R Quot I)"
proof -
 interpret cring R by fact
 show ?thesis
 apply (intro cring.cring_fieldI2)
 apply (rule quotient_is_cring, rule is_cring)
 defer 1
 apply (simp add: FactRing_def A_RCOSETS_defs a_r_coset_def[symmetric], clarsimp)
 apply (simp add: rcoset_mult_add) defer 1
 proof (rule ccontr, simp)
 — Quotient is not empty
 assume "0_R Quot I = 1_R Quot I"
 then have IIIl: "I = I +> 1" by (simp add: FactRing_def)
 from a_rcos_self[OF one_closed] have "I ∈ I"
 by (simp add: IIIl[symmetric])
 then have "I = carrier R" by (rule one_imp_carrier)
 with I_notcarr show False by simp
 next
 — Existence of Inverse
 fix a
 assume IanI: "I +> a ≠ I" and acarr: "a ∈ carrier R"
 — Helper ideal J
 def J ≡ "(carrier R #> a) <-> I :: 'a set"
 have idealJ: "ideal J R"
apply (unfold J_def, rule add_ideals)
 apply (simp only: cgenideal_eq_rcos[symmetric], rule cgenideal_ideal,
 rule acarr)
 apply (rule is_ideal)
 done

— Showing \(J \) not smaller than \(I \)

have IinJ: "I \subseteq J"
proof (rule, simp add: J_def r_coset_def set_add_defs)
 fix x
 assume xI: "x \in I"
 have Zcarr: "0 \in carrier R" by fast
 from xI[THEN a_Hcarr] acarr
 have "x = 0 \odot a \oplus x" by algebra
 with Zcarr and xI show "\(\exists x \in carrier R. \exists k \in I. x = xa \odot a \oplus k \)"
 by fast
qed

— Showing \(J \neq I \)

have anI: "a \notin I"
proof (rule ccontr, simp)
 assume "a \in I"
 then have "I <+ a = I" by (rule a_rcos_const)
 with IanI show False by simp
qed

have aJ: "a \in J"
proof (simp add: J_def r_coset_def set_add_defs)
 from acarr
 have "a = 1 \odot a \oplus 0" by algebra
 with one_closed and additive_subgroup.zero_closed[OF is_additive_subgroup]
 show "\(\exists x \in carrier R. \exists k \in I. a = x \odot a \oplus k \)" by fast
qed

from aJ and anI have JnI: "J \neq I" by fast

— Deducing \(J = carrier R \) because \(I \) is maximal

from idealJ and IinJ have "J = I \lor J = carrier R"
proof (rule I_maximal, unfold J_def)
 have "carrier R #> a \subseteq carrier R"
 using subset_refl acarr by (rule r_coset_subset_G)
 then show "carrier R #> a \leftrightarrow I \subseteq carrier R"
 using a_subset by (rule set_add_closed)
qed

with JnI have Jcarr: "J = carrier R" by simp

— Calculating an inverse for \(a \)

from one_closed[folded Jcarr]
have "\exists r \in \text{carrier } R. \exists i \in I. 1 = r \otimes a \oplus i"
by (simp add: J_def r_coset_def set_add_defs)
then obtain r i where rcarr: "r \in \text{carrier } R"
and iI: "i \in I" and one: "1 = r \otimes a \oplus i" by fast
from one and rcarr and acarr and iI[THEN a_Hcarr]
have rai1: "a \otimes r = \ominus i \oplus 1" by algebra |
— Lifting to cosets
from iI have "\ominus i \oplus 1 \in I \Rightarrow 1"
 by (intro a_rcosI, simp, intro a_subset, simp)
with rai1 have "a \otimes r \in I \Rightarrow 1" by simp
then have "I \Rightarrow 1 = I \Rightarrow a \otimes r"
 by (rule a_repr_independence, simp) (rule a_subgroup)
from rcarr and this[symmetric]
show "\exists r \in \text{carrier } R. I \Rightarrow a \otimes r = I \Rightarrow 1" by fast
qed
qed
end

theory IntRing
imports QuotRing Lattice Int "~/src/HOL/Number_Theory/Primes"
begins

13 The Ring of Integers

13.1 Some properties of int

lemma dvds_eq_abseq:
 fixes k :: int
 shows "l dvd k \land k dvd l \iff \text{abs } l = \text{abs } k"
apply rule
apply (simp add: zdvd_antisym_abs)
done

13.2 Z: The Set of Integers as Algebraic Structure

abbreviation int_ring :: "int ring" ("\mathbb{Z}\"
where "int_ring = (\text{carrier } = \text{UNIV}, \text{mult } = \text{op } *, \text{one } = 1, \text{zero } = 0, \text{add } = \text{op } +)"
lemma int_Zcarr [intro!, simp]: "k \in \text{carrier } \mathbb{Z}"
 by simp
lemma int_is_cring: "\text{cring } \mathbb{Z}"
apply (rule cringI)
apply (rule abelian_groupI, simp_all)
defer 1
apply (rule comm_monoidI, simp_all)
apply (rule distrib_right)
apply (fast intro: left_minus)
done

13.3 Interpretations

Since definitions of derived operations are global, their interpretation needs
to be done as early as possible — that is, with as few assumptions as possible.

interpretation int: monoid Z
where "carrier Z = UNIV"
 and "mult Z x y = x * y"
 and "one Z = 1"
 and "pow Z x n = x^n"
proof -
 — Specification
 show "monoid Z" by default auto
 then interpret int: monoid Z.

 — Carrier
 show "carrier Z = UNIV" by simp

 — Operations
 { fix x y show "mult Z x y = x * y" by simp }
 show "one Z = 1" by simp
 show "pow Z x n = x^n" by (induct n) simp_all
qed

interpretation int: comm_monoid Z
where "finprod Z f A = (if finite A then setprod f A else undefined)"
proof -
 — Specification
 show "comm_monoid Z" by default auto
 then interpret int: comm_monoid Z.

 — Operations
 { fix x y have "mult Z x y = x * y" by simp }
 note mult = this
 have one: "one Z = 1" by simp
 show "finprod Z f A = (if finite A then setprod f A else undefined)"
 proof (cases "finite A")
 case True
 then show ?thesis
 proof induct
 case empty
 show ?case by (simp add: one)
 next
case insert
 then show ?case by (simp add: Pi_def mult)
qed

next
 case False
 then show ?thesis by (simp add: finprod_def)
qed

interpretation int: abelian_monoid \mathcal{Z}
 where int_carrier_eq: "carrier \mathcal{Z} = \text{UNIV}"
 and int_zero_eq: "zero \mathcal{Z} = 0"
 and int_add_eq: "add \mathcal{Z} x y = x + y"
 and int_finsum_eq: "finsum \mathcal{Z} f A = (if finite A then setsum f A else undefined)"
proof -
 — Specification
 show "abelian_monoid \mathcal{Z}" by default auto
 then interpret int: abelian_monoid \mathcal{Z}.

 — Carrier
 show "carrier \mathcal{Z} = \text{UNIV}" by simp

 — Operations
 { fix x y show "add \mathcal{Z} x y = x + y" by simp }
 note add = this
 show zero: "zero \mathcal{Z} = 0"
 by simp
 show "finsum \mathcal{Z} f A = (if finite A then setsum f A else undefined)"
proof (cases "finite A")
 case True
 then show ?thesis
 proof induct
 case empty
 show ?case by (simp add: zero)
 next
 case insert
 then show ?case by (simp add: Pi_def add)
 qed
next
 case False
 then show ?thesis by (simp add: finsum_def finprod_def)
qed

interpretation int: abelian_group \mathcal{Z}

where "carrier \mathcal{Z} = \text{UNIV}"
and "zero $\mathbb{Z} = 0$"
and "add $\mathbb{Z} \times y = x + y$"
and "$\text{finsum} \mathbb{Z} f A = (\text{iffinite} A \text{ then setsum} f A \text{ else undefined})$"
and int_a_inv_eq: "a_inv $\mathbb{Z} x = - x$"
and int_a_minus_eq: "a_minus $\mathbb{Z} x y = x - y$"

proof -
— Specification
show "abelian_group \mathbb{Z}"
proof (rule abelian_groupI)
 fix x
 assume "$x \in \text{carrier} \mathbb{Z}$"
 then show "$\exists y \in \text{carrier} \mathbb{Z}. \ y \oplus \mathbb{Z} x = 0$"
 by simp arith
qed auto
then interpret int: abelian_group \mathbb{Z}.
— Operations
{ fix x y have "add $\mathbb{Z} x y = x + y$" by simp }
note add = this
have zero: "zero $\mathbb{Z} = 0$" by simp
{ fix x
 have "add $\mathbb{Z} (-x) x = \text{zero} \mathbb{Z}$"
 by (simp add: add zero)
 then show "a_inv $\mathbb{Z} x = - x$"
 by (simp add: int.minus_equality)
}
note a_inv = this
show "a_minus $\mathbb{Z} x y = x - y$"
 by (simp add: int.minus_eq add a_inv)
qed (simp add: int_carrier_eq int_zero_eq int_add_eq int_finsum_eq int_a_inv_eq
int_a_minus_eq)+

interpretation int: "domain" \mathbb{Z}
where "carrier $\mathbb{Z} = \text{UNIV}"
and "zero $\mathbb{Z} = 0$"
and "add $\mathbb{Z} x y = x + y$"
and "$\text{finsum} \mathbb{Z} f A = (\text{iffinite} A \text{ then setsum} f A \text{ else undefined})$"
and "a_inv $\mathbb{Z} x = - x$"
and "a_minus $\mathbb{Z} x y = x - y$"

proof -
— show "domain \mathbb{Z}"
 by unfold_locales (auto simp: distrib_right distrib_left)
qed (simp add: int_carrier_eq int_zero_eq int_add_eq int_finsum_eq int_a_inv_eq
int_a_minus_eq)+

Removal of occurrences of UNIV in interpretation result — experimental.

lemma UNIV:
"$x \in \text{UNIV} \longleftrightarrow \text{True}$"
"$A \subseteq \text{UNIV} \longleftrightarrow \text{True}$"
"$(\forall x \in \text{UNIV}. \ P x) \longleftrightarrow (\forall x. \ P x)$"
"(EX x : UNIV. P x) <-> (EX x. P x)"
"(True --> Q) <-> Q"
"(True --> PROP R) = PROP R"
by simp_all

interpretation int
: partial_order "{|carrier = UNIV::int set, eq = op =, le = op <=|}"
where "carrier (|carrier = UNIV::int set, eq = op =, le = op <=|) = UNIV"
and "le (|carrier = UNIV::int set, eq = op =, le = op <=|) x y = (x \leq y)"
and "lless (|carrier = UNIV::int set, eq = op =, le = op <=|) x y = (x < y)"
proof -
 show "partial_order (|carrier = UNIV::int set, eq = op =, le = op <=|)"
 by default simp_all
 show "carrier (|carrier = UNIV::int set, eq = op =, le = op <=|) = UNIV"
 by simp
 show "le (|carrier = UNIV::int set, eq = op =, le = op <=|) x y = (x \leq y)"
 by simp
 show "lless (|carrier = UNIV::int set, eq = op =, le = op <=|) x y = (x < y)"
 by (simp add: lless_def) auto
qed

interpretation int
: lattice "{|carrier = UNIV::int set, eq = op =, le = op <=|}"
where "join (|carrier = UNIV::int set, eq = op =, le = op <=|) x y = max x y"
and "meet (|carrier = UNIV::int set, eq = op =, le = op <=|) x y = min x y"
proof -
 let ?Z = "{|carrier = UNIV::int set, eq = op =, le = op <=|}"
 show "lattice ?Z"
 apply unfold_locales
 apply (simp add: least_def Upper_def)
 apply arith
 apply (simp add: greatest_def Lower_def)
 apply arith
 done
then interpret int: lattice "?Z".

show "join ?Z x y = max x y"
 apply (rule int.join1)
 apply (simp_all add: least_def Upper_def)
 apply arith
 done

show "meet ?Z x y = min x y"
 apply (rule int.meet1)
 apply (simp_all add: greatest_def Lower_def)
 done
apply arith
done
qed

interpretation int :
 total_order "(carrier = UNIV::int set, eq = op =, le = op ≤)"
 by default clarsimp

13.4 Generated Ideals of \(\mathbb{Z}\)

lemma int_Idl: "Idl \(\mathbb{Z}\) \{a\} = \{x * a | x. True\}"
 apply (subst int.cgenideal_eq_genideal[symmetric])
 apply simp
 apply (simp add: cgenideal_def)
 done

lemma multiples_principalideal: "principalideal \{x * a | x. True \} \(\mathbb{Z}\)"
 by (metis UNIV_I int.cgenideal_eq_genideal int.cgenideal_is_principalideal
 int_Idl)

lemma prime_primeideal:
 assumes prime: "prime p"
 shows "primeideal (Idl \(\mathbb{Z}\) \{p\}) \(\mathbb{Z}\)"
 apply (rule primeidealI)
 apply (rule int.genideal_ideal, simp)
 apply (rule int_is_cring)
 apply (simp add: int.cgenideal_eq_genideal[symmetric] cgenideal_def)
 apply clarsimp
 defer 1
 apply (simp add: int.cgenideal_eq_genideal[symmetric] cgenideal_def)
 apply (elim exE)
 proof -
 fix a b x
 assume "a * b = x * int p"
 then have "p dvd a * b" by simp
 then have "p dvd a ∨ p dvd b"
 by (metis prime prime_dvd_mult_eq_int)
 then show "(∃x. a = x * int p) ∨ (∃x. b = x * int p)"
 by (metis dvd_def mult.commute)
 next
 assume "UNIV = \{uu. EX x. uu = x * int p\}"
 then obtain x where "1 = x * int p" by best
 then have "|int p * x| = 1" by (simp add: mult.commute)
 then show False
 by (metis abs_of_nat int_1 of_nat_eq_iff abs_zmult_eq_1 one_not_prime_nat
 prime)
 qed

13.5 Ideals and Divisibility

lemma int_Idl_subset_ideal: "Idl \(\mathbb{Z}\) \{k\} ⊆ Idl \(\mathbb{Z}\) \{l\} = (k ∈ Idl \(\mathbb{Z}\) \{l\})"
 by (rule int.Idl_subset_ideal') simp_all
lemma Idl_subset_eq_dvd: "Idl\(_\mathbb{Z}\)\(\{k\}\) \subseteq Idl\(_\mathbb{Z}\)\(\{l\}\) \iff l \mid k"
apply (subst int_Idl_subset_ideal, subst int_Idl, simp)
apply (rule, clarify)
apply (simp add: dvd_def)
done

lemma dvds_eq_Idl: "l \mid k \land k \mid l \iff Idl\(_\mathbb{Z}\)\(\{k\}\) = Idl\(_\mathbb{Z}\)\(\{l\}\)"
proof -
 have a: "l \mid k \iff (Idl\(_\mathbb{Z}\)\(\{k\}\) \subseteq Idl\(_\mathbb{Z}\)\(\{l\}\))"
 by (rule Idl_subset_eq_dvd[symmetric])
 have b: "k \mid l \iff (Idl\(_\mathbb{Z}\)\(\{l\}\) \subseteq Idl\(_\mathbb{Z}\)\(\{k\}\))"
 by (rule Idl_subset_eq_dvd[symmetric])
 have "l \mid k \land k \mid l \iff Idl\(_\mathbb{Z}\)\(\{k\}\) \subseteq Idl\(_\mathbb{Z}\)\(\{l\}\) \land Idl\(_\mathbb{Z}\)\(\{l\}\) \subseteq Idl\(_\mathbb{Z}\)\(\{k\}\)"
 by (subst a, subst b, simp)
 also have "Idl\(_\mathbb{Z}\)\(\{k\}\) \subseteq Idl\(_\mathbb{Z}\)\(\{l\}\) \land Idl\(_\mathbb{Z}\)\(\{l\}\) \subseteq Idl\(_\mathbb{Z}\)\(\{k\}\) \iff Idl\(_\mathbb{Z}\)\(\{k\}\) = Idl\(_\mathbb{Z}\)\(\{l\}\)"
 by blast
 finally show \(?thesis\).
qed

lemma Idl_eq_abs: "Idl\(_\mathbb{Z}\)\(\{k\}\) = Idl\(_\mathbb{Z}\)\(\{l\}\) \iff \text{abs } l = \text{abs } k"
apply (subst dvds_eq_abseq[symmetric])
apply (rule dvds_eq_Idl[symmetric])
done

13.6 Ideals and the Modulus

definition ZMod :: "\text{int} \Rightarrow \text{int} \Rightarrow \text{int set}"
where "ZMod k r = (Idl\(_\mathbb{Z}\)\(\{k\}\)) +> \mathbb{Z} r"

lemmas ZMod_defs =
 ZMod_def genideal_def

lemma rcos_zfact:
 assumes kIl: "k \in ZMod l r"
 shows "\exists x. k = x \cdot l + r"
proof -
 from kIl[unfolded ZMod_def] have "\exists x \in Idl\(_\mathbb{Z}\)\(\{l\}\). k = x \cdot l + r"
 by (simp add: a_r_coset_defs)
 then obtain xl where xl: "xl \in Idl\(_\mathbb{Z}\)\(\{l\}\)" and k: "k = xl + r"
 by auto
 from xl obtain x where "xl = x \cdot l"
 by (auto simp: int_Idl)
 with k have "k = x \cdot l + r"
 by simp
then show "∃x. k = x * 1 + r" ..

qed

lemma ZMod_imp_zmod:
 assumes zmods: "ZMod m a = ZMod m b"
 shows "a mod m = b mod m"
proof -
 interpret ideal "Idl\ Z \{m\}" \ Z
 by (rule int.genideal_ideal) fast
 from zmods have "b ∈ ZMod m a"
 unfolding ZMod_def by (simp add: a_repr_independenceD)
 then obtain x where "b = x * m + a"
 by (rule rcos_zfact)
 then have "∃x. b = x * m + a"
 by fast
 then have "b mod m = (x * m + a) mod m"
 by simp
 also have "... = ((x * m) mod m) + (a mod m)"
 by (simp add: mod_add_eq)
 also have "... = a mod m"
 by simp
 finally have "b mod m = a mod m".
 then show "a mod m = b mod m" ..
qed

lemma ZMod_mod: "ZMod m a = ZMod m (a mod m)"
proof -
 interpret ideal "Idl\ Z \{m\}" \ Z
 by (rule int.genideal_ideal) fast
 show ?thesis
 unfolding ZMod_def
 apply (rule a_repr_independence'[symmetric])
 apply (simp add: int_Idl a_r_coset_defs)
 proof -
 have "a = m * (a div m) + (a mod m)"
 by (simp add: zmod_zdiv_equality)
 then have "a = (a div m) * m + (a mod m)"
 by simp
 then show "∃h. (∃x. h = x * m) ∧ a = h + a mod m"
 by fast
 qed simp
qed

lemma zmod_imp_ZMod:
 assumes modeq: "a mod m = b mod m"
 shows "ZMod m a = ZMod m b"
proof -
 have "ZMod m a = ZMod m (a mod m)"
 by (rule ZMod_mod)
also have "... = ZMod m (b mod m)"
also have "... = ZMod m b"
finally show ?thesis.

qed

corollary ZMod_eq_mod: "ZMod m a = ZMod m b ←→ a mod m = b mod m"
apply (rule iffI)
apply (erule ZMod_imp_zmod)
apply (erule zmod_imp_ZMod)
done

13.7 Factorization

definition ZFact :: "int ⇒ int set ring"
where "ZFact k = Z Quot (Idl Z {k})"

lemmas ZFact_defs = ZFact_def FactRing_def

lemma ZFact_is_cring: "cring (ZFact k)"
apply (unfold ZFact_def)
apply (rule ideal.quotient_is_cring)
apply (intro ring.genideal_ideal)
apply (simp add: cring.axioms[OF int_is_cring] ring.intro)
apply simp
apply (rule int_is_cring)
done

lemma ZFact_zero: "carrier (ZFact 0) = (⋃a. {{a}})"
apply (insert int.genideal_zero)
apply (simp add: ZFact_defs A_RCOSETS_defs r_coset_def)
done

lemma ZFact_one: "carrier (ZFact 1) = {UNIV}"*
apply (simp only: ZFact_defs A_RCOSETS_defs r_coset_def ring_record_simps)
apply (subst int.genideal_one)
apply (rule, rule,clarsimp)
apply (rule, rule,clarsimp)
apply (rule,clarsimp, arith)
apply (rule,clarsimp)
apply (rule exI[of _ "0"],clarsimp)
done

lemma ZFact_prime_is_domain:
assumes pprime: "prime p"
shows "domain (ZFact p)"
apply (unfold ZFact_def)
apply (rule primeideal.quotient_is_domain)
theory Module
imports Ring
begin

14 Modules over an Abelian Group

14.1 Definitions

record ('a, 'b) module = "'b ring" +
 smult :: "['a, 'b] => 'b" (infixl \(\odot \) 70)

locale module = R: cring + M: abelian_group M for M (structure) +
 assumes smult_closed [simp, intro]:
 "\[| a \in \text{carrier} \ R; x \in \text{carrier} \ M |\] \Rightarrow a \odot_M x \in \text{carrier} \ M"
 and smult_l_distr:
 "\[| a \in \text{carrier} \ R; b \in \text{carrier} \ R; x \in \text{carrier} \ M |\] \Rightarrow
 (a \oplus b) \odot_M x = a \odot_M x \oplus b \odot_M x"
 and smult_r_distr:
 "\[| a \in \text{carrier} \ R; x \in \text{carrier} \ M; y \in \text{carrier} \ M |\] \Rightarrow
 a \odot_M (x \oplus_M y) = a \odot_M x \oplus a \odot_M y"
 and smult_assoc1:
 "\[| a \in \text{carrier} \ R; b \in \text{carrier} \ R; x \in \text{carrier} \ M |\] \Rightarrow
 (a \odot b) \odot_M x = a \odot_M (b \odot_M x)"
 and smult_one [simp]:
 "x \in \text{carrier} \ M \Rightarrow 1 \odot_M x = x"

locale algebra = module + cring M +
 assumes smult_assoc2:
 "\[| a \in \text{carrier} \ R; x \in \text{carrier} \ M; y \in \text{carrier} \ M |\] \Rightarrow
 (a \odot_M x) \odot_M y = a \odot_M (x \odot_M y)"

lemma moduleI:
 fixes R (structure) and M (structure)
 assumes cring: "cring R"
 and abelian_group: "abelian_group M"
 and smult_closed:
 "\[| a \in \text{carrier} \ R; x \in \text{carrier} \ M |\] \Rightarrow a \odot_M x \in \text{carrier} \ M"
 and smult_l_distr:
 "\[| a \in \text{carrier} \ R; b \in \text{carrier} \ R; x \in \text{carrier} \ M |\] \Rightarrow
 (a \oplus b) \odot_M x = (a \odot_M x) \oplus_M (b \odot_M x)"
 and smult_r_distr:
 "\[| a \in \text{carrier} \ R; x \in \text{carrier} \ M; y \in \text{carrier} \ M |\] \Rightarrow

lemma algebraI:
 fixes R (structure) and M (structure)
 assumes R_cring: "cring R"
 and M_cring: "cring M"
 and smult_closed:
 "!!a x. [| a ∈ carrier R; x ∈ carrier M |] ==> a ⊙_M x ∈ carrier M"
 and smult_l_distr:
 "!!a b x. [| a ∈ carrier R; b ∈ carrier R; x ∈ carrier M |] ==> (a ⊕ b) ⊙_M x = (a ⊙_M x) ⊕_M (b ⊙_M x)"
 and smult_r_distr:
 "!!a x y. [| a ∈ carrier R; x ∈ carrier M; y ∈ carrier M |] ==> a ⊙_M (x ⊕_M y) = (a ⊙_M x) ⊕_M (a ⊙_M y)"
 and smult_assoc1:
 "!!a b x. [| a ∈ carrier R; b ∈ carrier R; x ∈ carrier M |] ==> (a ⊗ b) ⊙_M x = a ⊙_M (b ⊙_M x)"
 and smult_one:
 "!!x. x ∈ carrier M ==> (one R) ⊙_M x = x"
 and smult_assoc2:
 "!!a x y. [| a ∈ carrier R; x ∈ carrier M; y ∈ carrier M |] ==> (a ⊙_M x) ⊗_M y = a ⊙_M (x ⊗_M y)"
 shows "algebra R M"

apply intro_locales
apply (rule cring.axioms ring.axioms abelian_group.axioms comm_monoid.axioms assms)+
apply (rule module_axioms.intro)
apply (simp add: smult_closed)
apply (simp add: smult_l_distr)
apply (simp add: smult_r_distr)
apply (simp add: smult_assoc1)
apply (simp add: smult_one)
apply (rule cring.axioms ring.axioms abelian_group.axioms comm_monoid.axioms assms)+
apply (rule algebra.axioms.intro)
apply (simp add: smult_assoc2)
done

lemma (in algebra) R_cring:
 "cring R"
lemma (in algebra) M_cring:
"cring M"

lemma (in algebra) module:
"module R M"
by (auto intro: moduleI R_cring is_abelian_group
 smult_l_distr smult_r_distr smult_assoc)

14.2 Basic Properties of Algebras

lemma (in algebra) smult_l_null [simp]:
"x ∈ carrier M ==> 0 ⊙_M x = 0_M"
proof -
 assume M: "x ∈ carrier M"
 note facts = M smult_closed [OF R.zero_closed]
 from facts have "0 ⊙_M x = (0 ⊙_M x ⊕_M 0 ⊙_M x) ⊕_M (0 ⊙_M x)"
 by (simp add: smult_l_distr del: M.l_zero M.r_zero)
 also from M have "... = (0 ⊕_M x) ⊕_M (0 ⊙_M x)"
 by (simp add: smult_r_distr del: M.l_zero M.r_zero)
 finally show ?thesis .
qed

lemma (in algebra) smult_r_null [simp]:
"a ∈ carrier R ==> a ⊙_M 0_M = 0_M"
proof -
 assume R: "a ∈ carrier R"
 note facts = R smult_closed
 from facts have "a ⊙_M 0_M = (a ⊕_M 0_M ⊕_M (a ⊙_M 0_M))"
 by (simp add: smult_l_distr del: M.l_zero M.r_zero)
 also from R have "... = a ⊕_M (0_M ⊕_M 0_M) ⊕_M (a ⊙_M 0_M)"
 by (simp add: smult_r_distr del: M.l_zero M.r_zero)
 finally show ?thesis .
qed

lemma (in algebra) smult_l_minus:
"[| a ∈ carrier R; x ∈ carrier M |] ==> (⊖_M a) ⊙_M x = ⊕_M (a ⊙_M x)"
proof -
 assume RM: "a ∈ carrier R" "x ∈ carrier M"
 from RM have a_smult: "a ⊙_M x ∈ carrier M" by simp
 from RM have ma_smult: "⊖_M a ⊙_M x ∈ carrier M" by simp
 note facts = RM a_smult ma_smult
 from facts have "(⊖_M a) ⊙_M x = (⊖_M a ⊕_M a ⊙_M x) ⊕_M (a ⊙_M x)"
 by (simp add: smult_l_distr del: M.l_zero M.r_zero)
 finally show ?thesis .
qed
by (simp add: smult_l_distr)
also from facts smult_l_null have "... = ⊖_M(a ⊙_M x)"
 apply algebra
finally show ?thesis.

qed

lemma (in algebra) smult_r_minus:
"[| a ∈ carrier R; x ∈ carrier M |] ==> a ⊙_M (⊖_M x) = ⊖_M (a ⊙_M x)"
proof -
 assume RM: "a ∈ carrier R" "x ∈ carrier M"
 note facts = RM smult_closed
 from facts
 have "a ⊙_M (⊖_M x) = (a ⊙_M ⊖_M x ⊕_M a ⊙_M x ⊕_M ⊖_M (a ⊙_M x))"
 by algebra
 also from RM
 have "... = a ⊙_M (⊖_M x ⊕_M x) ⊕_M (a ⊙_M x)"
 by (simp add: smult_r_distr)
 also from facts smult_r_null
 have "... = ⊖_M (a ⊙_M x)" by algebra
 finally show ?thesis.

qed

end

theory UnivPoly
imports Module RingHom
begin

15 Univariate Polynomials

Polynomials are formalised as modules with additional operations for extracting coefficients from polynomials and for obtaining monomials from coefficients and exponents (record up_ring). The carrier set is a set of bounded functions from Nat to the coefficient domain. Bounded means that these functions return zero above a certain bound (the degree). There is a chapter on the formalisation of polynomials in the PhD thesis [1], which was implemented with axiomatic type classes. This was later ported to Locales.

15.1 The Constructor for Univariate Polynomials

Functions with finite support.

locale bound =
 fixes z :: 'a
 and n :: nat
 and f :: "nat ⇒ 'a"
 assumes bound: "!!m. n < m ==> f m = z"

declare bound.intro [intro!]
 and bound.bound [dest]
lemma bound_below:
assumes bound: "bound z m f" and nonzero: "f n ≠ z" shows "n ≤ m"
proof (rule classical)
assume "¬ thesis" then have "m < n" by arith with bound have "f n = z" .. with nonzero show thesis by contradiction qed

record ('a, 'p) up_ring = "('a, 'p) module" +
monom :: "['a, nat] => 'p"
coeff :: "['p, nat] => 'a"
definition up :: "('a, 'm) ring_scheme => (nat => 'a) set"
where "up R = {f. f ∈ UNIV -> carrier R & (EX n. bound (zero R) n f)}"
definition UP :: "('a, 'm) ring_scheme => ('a, nat => 'a) up_ring"
where "UP R = (carrier = up R,
mult = (%p:up R. %q:up R. %n. ⊕_R i ∈ {..n}. p i ⊗_R q (n-i)),
one = (%i. if i=0 then 1_R else 0_R),
zero = (%i. 0_R),
add = (%p:up R. %q:up R. %i. p i ⊕_R q i),
smult = (%a:carrier R. %p:up R. %i. a ⊗_R p i),
monom = (%a:carrier R. %n i. if i=n then a else 0_R),
coeff = (%p:up R. %n. p n))"

Properties of the set of polynomials up.

lemma mem_upI [intro]:
"[| !!n. f n ∈ carrier R; EX n. bound (zero R) n f |] ==> f ∈ up R"
by (simp add: up_def Pi_def)

lemma mem_upD [dest]:
"f ∈ up R ==> f n ∈ carrier R"
by (simp add: up_def Pi_def)

context ring begin

lemma bound_upD [dest]: "f ∈ up R ==> EX n. bound 0 n f" by (simp add: up_def)

lemma up_one_closed: "(%n. if n = 0 then 1 else 0) ∈ up R" using up_def by force

lemma up_smult_closed: "[| a ∈ carrier R; p ∈ up R |] ==> (%i. a ⊗ p i) ∈ up R" by force
lemma up_add_closed:
"[| p ∈ up R; q ∈ up R |] ==> (%i. p i ⊕ q i) ∈ up R"
proof
 fix n
 assume "p ∈ up R" and "q ∈ up R"
 then show "p n ⊕ q n ∈ carrier R"
 by auto
next
assume UP: "p ∈ up R" "q ∈ up R"
show "EX n. bound 0 n (%i. p i ⊕ q i)"
proof -
 from UP obtain n where boundn: "bound 0 n p" by fast
 from UP obtain m where boundm: "bound 0 m q" by fast
 have "bound 0 (max n m) (%i. p i ⊕ q i)"
 proof
 fix i
 assume "max n m < i"
 with boundn and boundm show "p i ⊕ q i = 0" by fastforce
 qed
 then show ?thesis ..
 qed
next
assume UP: "p ∈ up R" "q ∈ up R"
show "EX n. bound 0 n (%i. p i ⊕ q i)"
proof -
 from UP obtain n where boundn: "bound 0 n p" by fast
 from UP obtain m where boundm: "bound 0 m q" by fast
 have "bound 0 (max n m) (%i. p i ⊕ q i)"
 proof
 fix i
 assume "max n m < i"
 with boundn and boundm show "p i ⊕ q i = 0" by fastforce
 qed
 then show ?thesis ..
 qed
lemma up_a_inv_closed:
"p ∈ up R ==> (%i.⊖(p i)) ∈ up R"
proof
 assume R: "p ∈ up R"
 then obtain n where boundn: "bound 0 n p" by auto
 then have "bound 0 n (%i.⊖ p i)" by auto
 then show "EX n. bound 0 n (%i.⊖ p i)" by auto
 qed
lemma up_minus_closed:
"[| p ∈ up R; q ∈ up R |] ==> (%i. p i ⊖ q i) ∈ up R"
using mem_upD [of p R] mem_upD [of q R] up_add_closed up_a_inv_closed
 a_minus_def [of _ R]
 by auto
lemma up_mult_closed:
"[| p ∈ up R; q ∈ up R |] ==>
 (%n. ∑ i ∈ {..n}. p i ⊗ q (n-i)) ∈ up R"
proof
 fix n
 assume "p ∈ up R" "q ∈ up R"
 then show "(∑ i ∈ {..n}. p i ⊗ q (n-i)) ∈ carrier R"
 by (simp add: mem_upD funcsetI)
next
assume UP: "p ∈ up R" "q ∈ up R"
show "EX n. bound 0 n (%n. \(\bigoplus i \in \{..n\}. p i \otimes q (n-i))\)"
proof -
 from UP obtain n where boundn: "bound 0 n p" by fast
 from UP obtain m where boundm: "bound 0 m q" by fast
 have "bound 0 (n + m) (%n. \(\bigoplus i \in \{..n\}. p i \otimes q (n - i))\)"
proof
 fix k assume bound: "n + m < k"
 { fix i
 have "p i \otimes q (k-i) = 0"
 proof (cases "n < i")
 case True
 with boundn have "p i = 0" by auto
 moreover from UP have "q (k-i) \in carrier R" by auto
 ultimately show \?thesis by simp
 next
 case False
 with bound have "m < k-i" by arith
 with boundm have "q (k-i) = 0" by auto
 moreover from UP have "p i \in carrier R" by auto
 ultimately show \?thesis by simp
 qed
 }
 then show "(\bigoplus i \in \{..k\}. p i \otimes q (k-i)) = 0"
 by (simp add: Pi_def)
qed

15.2 Effect of Operations on Coefficients

locale UP =
 fixes R (structure) and P (structure)
 defines P_def: "P == UP R"
locale UP_ring = UP + R: ring R
locale UP_cring = UP + R: cring R
sublocale UP_cring < UP_ring
 by intro_locales [1] (rule P_def)
locale UP_domain = UP + R: "domain" R
sublocale UP_domain < UP_cring
 by intro_locales [1] (rule P_def)
context UP
begin

Temporarily declare \(P \equiv \text{UP} \ R \) as simp rule.

declare \(P \text{_def} \ [\text{simp}] \)

lemma \text{up_eqI}:
 assumes \text{prem: "\\!}n. \text{coeff} \ P \ p \ n = \text{coeff} \ P \ q \ n" \text{\ and } R: "p \in \text{carrier} \ P" "q \in \text{carrier} \ P"
 shows "p = q"
proof
 fix \(x \)
 from \text{prem} \text{\ and } R \text{\ show } "p \ x = q \ x" \text{\ by } (\text{simp add: UP_def})
qed

lemma \text{coeff_closed} \ [\text{simp}]:
 "p \in \text{carrier} \ P \Longrightarrow \text{coeff} \ P \ p \ n \in \text{carrier} \ R" \text{\ by } (\text{auto simp add: UP_def})
end

context UP_ring
begin

lemma \text{coeff_monom} \ [\text{simp}]:
 "a \in \text{carrier} \ R \Longrightarrow \text{coeff} \ P \ (\text{monom} \ P \ a \ m) \ n = (\text{if } m\text{=}n \text{ then } a \text{ else } 0)"
proof -
 assume R: "a \in \text{carrier} \ R"
 then have "(\%n. \text{if } n \text{=} m \text{ then } a \text{ else } 0) \in \text{up} \ R"
 using \text{up_def} \text{\ by force}
 with R \text{ show } ?\text{thesis} \text{ by } (\text{simp add: UP_def})
qed

lemma \text{coeff_zero} \ [\text{simp}]: "coeff \ P \ 0 \ P \ n = 0"
 \text{\ by } (\text{auto simp add: UP_def})

lemma \text{coeff_one} \ [\text{simp}]: "coeff \ P \ 1 \ P \ n = (\text{if } n\text{=}0 \text{ then } 1 \text{ else } 0)"
 \text{\ using up_one_closed \ by } (\text{simp add: UP_def})

lemma \text{coeff_smult} \ [\text{simp}]:
 "[| a \in \text{carrier} \ R; p \in \text{carrier} \ P |] \Longrightarrow \text{coeff} \ P \ (a \odot P \ p) \ n = a \odot \text{coeff} \ P \ p \ n"
 \text{\ by } (\text{simp add: UP_def up_smult_closed})

lemma \text{coeff_add} \ [\text{simp}]:
 "[| p \in \text{carrier} \ P; q \in \text{carrier} \ P |] \Longrightarrow \text{coeff} \ P \ (p \oplus P \ q) \ n = \text{coeff} \ P \ p \ n \oplus \text{coeff} \ P \ q \ n"
 \text{\ by } (\text{simp add: UP_def up_add_closed})"
lemma coeff_mult [simp]:
"[\{| p \in carrier P; q \in carrier P |\} \Rightarrow \text{coeff P } (p \otimes p q) \text{ n} = (\bigoplus i \in
\{..n\}. \text{coeff P } p i \otimes \text{coeff P } q (n-i))"
by (simp add: UP_def up_mult_closed)
end

15.3 Polynomials Form a Ring.

context UP_ring
begin
Operations are closed over P.

lemma UP_mult_closed [simp]:
"[\{| p \in carrier P; q \in carrier P |\} \Rightarrow p \otimes P q \in carrier P" by (simp add: UP_def up_mult_closed)

lemma UP_one_closed [simp]:
"1 \in carrier P" by (simp add: UP_def up_one_closed)

lemma UP_zero_closed [intro, simp]:
"0 \in carrier P" by (auto simp add: UP_def)

lemma UP_a_closed [intro, simp]:
"[\{| p \in carrier P; q \in carrier P |\} \Rightarrow p \oplus P q \in carrier P" by (simp add: UP_def up_add_closed)

lemma monom_closed [simp]:
"a \in carrier R \Rightarrow \text{monom P a n} \in carrier P" by (auto simp add: UP_def up_def Pi_def)

lemma UP_smult_closed [simp]:
"[\{| a \in carrier R; p \in carrier P |\} \Rightarrow a \otimes P p \in carrier P" by (simp add: UP_def up_smult_closed)

end

declare (in UP) P_def [simp del]

Algebraic ring properties

context UP_ring
begin

lemma UP_a_assoc:
assumes R: "p \in carrier P" "q \in carrier P" "r \in carrier P"
shows "(p \oplus p q) \oplus p r = p \oplus p (q \oplus p r)" by (rule up_eqI, simp add: a_assoc R, simp_all add: R)

end
lemma UP_l_zero [simp]:
 assumes R: "p ∈ carrier P"
 shows "0 ⊕_p p = p" by (rule up_eqI, simp_all add: R)

lemma UP_l_neg_ex:
 assumes R: "p ∈ carrier P"
 shows "EX q : carrier P. q ⊕_p p = 0_P"
proof -
 let ?q = "λi. ⊖ (p i)"
 from R have closed: "?q ∈ carrier P"
 by (simp add: UP_def P_def up_a_inv_closed)
 from R have coeff: "!!n. coeff P ?q n = ⊖ (coeff P p n)"
 by (simp add: UP_def P_def up_a_inv_closed)
 show ?thesis
 proof
 show "?q ⊕_p p = 0_P"
 by (auto intro!: up_eqI simp add: R closed coeff R.l_neg)
 qed
 qed

lemma UP_a_comm:
 assumes R: "p ∈ carrier P" "q ∈ carrier P"
 shows "p ⊕_p q = q ⊕_p p" by (rule up_eqI, simp add: a_comm R, simp_all add: R)

lemma UP_m_assoc:
 assumes R: "p ∈ carrier P" "q ∈ carrier P" "r ∈ carrier P"
 shows "(p ⊗_p q) ⊗_p r = p ⊗_p (q ⊗_p r)"
predicate proof (rule up_eqI)
 fix n
 { fix k and a b c :: "nat=>'a"
 assume R: "a ∈ UNIV -> carrier R" "b ∈ UNIV -> carrier R"
 "c ∈ UNIV -> carrier R"
 then have "k <= n ==>
 (⨁ j ∈ {...k}. (⨁ i ∈ {...j}. a i ⊗ b (j-i)) ⊗ c (n-j)) =
 (⨁ j ∈ {...k}. a j ⊗ (⨁ i ∈ {...k-j}. b i ⊗ c (n-j-i)))"
 (is "_ == ?eq k")
 proof (induct k)
 case 0 then show ?case by (simp add: Pi_def m_assoc)
 next
 case (Suc k)
 then have "k <= n" by arith
 from this R have "?eq k" by (rule Suc)
 with R show ?case
 by (simp cong: finsum_cong
 add: Suc_diff_le Pi_def l_distr r_distr m_assoc)
 qed
 qed
with R show "coeff P ((p ⊗P q) ⊗P r) n = coeff P (p ⊗P (q ⊗P r)) n"
 by (simp add: Pi_def)
qed (simp_all add: R)

lemma UP_r_one [simp]:
 assumes R: "p ∈ carrier P" shows "p ⊗P 1P = p"
proof (rule up_eqI)
 fix n
 show "coeff P (p ⊗P 1P) n = coeff P p n"
 proof
 (cases n)
 case 0
 { with R show ?thesis by simp }
 next
 case Suc
 { fix nn assume Succ: "n = Suc nn"
 have "coeff P (p ⊗P 1P) (Suc nn) = coeff P p (Suc nn)"
 proof -
 have "coeff P (p ⊗P 1P) (Suc nn) = (⨁ i ∈ {..Suc nn}. coeff P p i ⊗ (if Suc nn ≤ i then 1 else 0))" using R by simp
 also have "... = coeff P p (Suc nn) ⊗ (if Suc nn ≤ Suc nn then 1 else 0) ⊕ (⨁ i ∈ {..nn}. coeff P p i ⊗ (if Suc nn ≤ i then 1 else 0)))" using finsum_Suc [of "(λi::nat. coeff P p i ⊗ (if Suc nn ≤ i then 1 else 0))" "nn"], unfolding Pi_def using R by simp
 also have "... = 0" by simp
 finally show ?thesis using r_zero R by simp qed
 also have "... = coeff P p (Suc nn) ⊗ (if Suc nn ≤ Suc nn then 1 else 0)"
 proof -
 have "(⨁ i ∈ {..nn}. coeff P p i ⊗ (if Suc nn ≤ i then 1 else 0)) = (⨁ i ∈ {..nn}. 0)"
 using finsum_cong [of "{..nn}" "{..nn}" "(λi::nat. coeff P p i ⊗ (if Suc nn ≤ i then 1 else 0))", "(λi::nat. 0)"], unfolding Pi_def by simp
 also have "... = 0" by simp
 finally show ?thesis using r_zero R by simp qed
 qed
 then show ?thesis using Succ by simp
 qed
qed (simp_all add: R)

lemma UP_l_one [simp]:
assumes R: "p ∈ carrier P"
shows "1p ⊗p p = p"
proof (rule up_eqI)
 fix n
 show "coeff P (1p ⊗p p) n = coeff P p n"
 proof (cases n)
 case 0 with R show ?thesis by simp
 next
 case Suc with R show ?thesis
 by (simp del: finsum_Suc add: finsum_Suc2 Pi_def)
 qed
 qed (simp_all add: R)

lemma UP_l_distr:
assumes R: "p ∈ carrier P" "q ∈ carrier P" "r ∈ carrier P"
shows "(p ⊕p q) ⊗p r = (p ⊗p r) ⊕p (q ⊗p r)"
by (rule up_eqI) (simp add: l_distr R Pi_def, simp_all add: R)

lemma UP_r_distr:
assumes R: "p ∈ carrier P" "q ∈ carrier P" "r ∈ carrier P"
shows "r ⊗p (p ⊕p q) = (r ⊗p p) ⊕p (r ⊗p q)"
by (rule up_eqI) (simp add: r_distr R Pi_def, simp_all add: R)

theorem UP_ring: "ring P"
 by (auto intro!: ringI abelian_groupI monoidI UP_a_assoc)
 (auto intro: UP_a_comm UP_l_neg_ex UP_m_assoc UP_l_distr UP_r_distr)

end

15.4 Polynomials Form a Commutative Ring.

context UP_cring
begin

lemma UP_m_comm:
assumes R1: "p ∈ carrier P" and R2: "q ∈ carrier P" shows "p ⊗p q = q ⊗p p"
proof (rule up_eqI)
 fix n
 { fix k and a b :: "nat=>'a"
 assume R: "a ∈ UNIV → carrier R" "b ∈ UNIV → carrier R"
 then have "k <= n ==> (∑ i ∈ {..k}. a i ⊗ b (n-i)) = (∑ i ∈ {..k}. a (k-i) ⊗ b (i+n-k))" (is "_ → ?eq k")
 proof (induct k)
 case 0 then show ?case by (simp add: Pi_def)
 next
 case (Suc k) then show ?case
 }
by (subst (2) finsum_Suc2) (simp add: Pi_def a_comm)+
qed
\}

\note \ref{this}
from \texttt{R1 R2} show "coeff \texttt{P} (p \oplus_p q) n = coeff \texttt{P} (q \oplus_p p) n"
 unfolding coeff_mult [OF \texttt{R1 R2}, of \texttt{n}]
 unfolding coeff_mult [OF \texttt{R2 R1}, of \texttt{n}]
 using \texttt{l} [of "\lambda i. coeff \texttt{P} p i" "\lambda i. coeff \texttt{P} q i" "\texttt{n}"] by (simp
 add: Pi_def m_comm)
qed (simp_all add: \texttt{R1 R2})

15.5 Polynomials over a commutative ring for a commutative ring

\texttt{theorem UP_cring:}
 "\texttt{cring P} using \texttt{UP_ring unfolding cring_def by (auto intro!: comm_monoidI}
 \texttt{UP_m_assoc UP_m_comm)}
\texttt{end}

context \texttt{UP_ring}
\begin{\texttt{lemma UP_a_inv_closed [intro, simp]:}}
 "$p \in \texttt{carrier P} ==> \ominus_p p \in \texttt{carrier P}"
 by (rule abelian_group.a_inv_closed [OF \texttt{ring.is_abelian_group [OF UP_ring]]])
\end{\texttt{lemma}}

\texttt{lemma coeff_a_inv [simp]:}
 \tttext{assumes R: "p \in \texttt{carrier P}"
 shows "coeff \texttt{P} (\ominus_p p) n = \ominus (coeff \texttt{P} p n)"
 proof -
 from \texttt{R coeff_closed UP_a_inv_closed have}
 "coeff \texttt{P} (\ominus_p p) n = \ominus coeff \texttt{P} p n \oplus (coeff \texttt{P} p n \oplus coeff \texttt{P} (\ominus_p p) n)"
 by \texttt{algebra}
 also from \texttt{R have ".\ldots = \ominus (coeff \texttt{P} p n)"
 by (simp del: coeff_add add: coeff_add [THEN sym]
 \texttt{abelian_group.r_neg [OF \texttt{ring.is_abelian_group [OF UP_ring]]})}
 finally show \texttt{thesis} .
\texttt{qed}
\texttt{end}

\texttt{sublocale UP_ring < P: ring P using UP_ring}.
\texttt{sublocale UP_cring < P: cring P using UP_cring}.

15.6 Polynomials Form an Algebra

context \texttt{UP_ring}
begin

lemma UP_smult_l_distr:
"[| a ∈ carrier R; b ∈ carrier R; p ∈ carrier P |] ==>
(a ⊕ b) ⊙ p = a ⊙ p ⊕ b ⊙ p"
by (rule up_eqI) (simp_all add: R.l_distr)

lemma UP_smult_r_distr:
"[| a ∈ carrier R; p ∈ carrier P; q ∈ carrier P |] ==>
a ⊙ (p ⊕ P q) = a ⊙ p ⊕ a ⊙ P q"
by (rule up_eqI) (simp_all add: R.r_distr)

lemma UP_smult_assoc1:
"[| a ∈ carrier R; b ∈ carrier R; p ∈ carrier P |] ==>
(a ⊗ b) ⊙ P p = a ⊙ P (b ⊙ P p)"
by (rule up_eqI) (simp_all add: R.m_assoc)

lemma UP_smult_zero [simp]:
"p ∈ carrier P ==> 0 ⊙ P p = 0"
by (rule up_eqI) simp_all

lemma UP_smult_one [simp]:
"p ∈ carrier P ==> 1 ⊗ P p = p"
by (rule up_eqI) simp_all

lemma UP_smult_assoc2:
"[| a ∈ carrier R; p ∈ carrier P; q ∈ carrier P |] ==>
(a ⊙ p) ⊗ P q = a ⊙ P (p ⊗ P q)"
by (rule up_eqI) (simp_all add: R.finsum_rdistr R.m_assoc Pi_def)

end

Interpretation of lemmas from algebra.

lemma (in cring) cring:
"cring R" ..

lemma (in UP_cring) UP_algebra:
"algebra R P" by (auto intro!: algebraI R.cring UP_cring UP_smult_l_distr
UP_smult_r_distr UP_smult_assoc1 UP_smult_assoc2)

sublocale UP_cring < algebra R P using UP_algebra.

15.7 Further Lemmas Involving Monomials

context UP_ring
begin

lemma monom_zero [simp]:

"monom P 0 n = 0_p" by (simp add: UP_def P_def)

lemma monom_mult_is_smult:
 assumes R: "a ∈ carrier R" "p ∈ carrier P"
 shows "monom P a 0 ⊗ₚ p = a ⊗ₚ P p"
proof (rule up_eqI)
 fix n
 show "coeff P (monom P a 0 ⊗ₚ p) n = coeff P (a ⊗ₚ P p) n"
 proof (cases n)
 case 0 with R show ?thesis by simp
 next
 case Suc with R show ?thesis using R.finsum_Suc2 by (simp del: R.finsum_Suc add: Pi_def)
 qed
qed (simp_all add: R)

lemma monom_one [simp]:
 "monom P 1 0 = 1_p"
by (rule up_eqI) simp_all

lemma monom_add [simp]:
 "[| a ∈ carrier R; b ∈ carrier R |] ==> monom P (a ⊕ b) n = monom P a n ⊕ₚ P monom P b n"
by (rule up_eqI) simp_all

lemma monom_one_Suc:
 "monom P 1 (Suc n) = monom P 1 n ⊗ₚ monom P 1 1"
proof (rule up_eqI)
 fix k
 show "coeff P (monom P 1 (Suc n)) k = coeff P (monom P 1 n ⊗ₚ monom P 1 1) k"
 proof (cases "k = Suc n")
 case True
 have "... = (⨁ₗ i ∈ {..<n} ∪ {n}. coeff P (monom P 1 n) i ⊗ₚ coeff P (monom P 1 1) (k - i))" by (simp cong: R.finsum_cong add: Pi_def)
 also have "... = (⨁ₗ i ∈ {..<n} ∪ {n}. coeff P (monom P 1 n) i ⊗ₚ coeff P (monom P 1 1) (k - i))" by (simp only: ivl_disj_un_singleton)
 also have "... = (⨁ₗ i ∈ {..<n}. coeff P (monom P 1 n) i ⊗ₚ coeff P (monom P 1 1) (k - i))" by (simp cong: R.finsum_cong add: R.finsum_disjoint ivl_disj_int_one)
order_less_imp_not_eq Pi_def
also from True have "... = coeff P (monom P 1 n ⊗P monom P 1 1) k"
 by (simp add: ivl_disj_un_one)
finally show ?thesis .
qed

next
case False
note neq = False
let ?s = "λi. (if n = i then 1 else 0) ⊗ (if Suc 0 = k - i then 1 else 0)"
from neq have "coeff P (monom P 1 (Suc n)) k = 0" by simp
also have "... = (⨁i ∈ {..k}. ?s i)"
proof -
 have f1: "(⨁i ∈ {..<n}. ?s i) = 0"
 by (simp cong: R.finsum_cong add: Pi_def)
 from neq have f2: "(⨁i ∈ {n}. ?s i) = 0"
 by (simp cong: R.finsum_cong add: Pi_def) arith
 have f3: "n < k ==> (⨁i ∈ {n<..<k}. ?s i) = 0"
 by (simp cong: R.finsum_cong add: order_less_imp_not_eq Pi_def)
show ?thesis
proof (cases "k < n")
case True then show ?thesis by (simp cong: R.finsum_cong add: Pi_def)
next
case False then have n_le_k: "n <= k" by arith
show ?thesis
proof (cases "n = k")
case True
 then have "0 = (⨁i ∈ {..<n} ∪ {n}. ?s i)"
 by (simp cong: R.finsum_cong add: Pi_def)
 also from True have "... = (⨁i ∈ {..k}. ?s i)"
 by (simp only: ivl_disj_un_singleton)
 finally show ?thesis .
next
case False with n_le_k have n_less_k: "n < k" by arith
with neq have "0 = (⨁i ∈ {..<n} ∪ {n}. ?s i)"
 by (simp add: R.finsum_Un_disjoint f1 f2 Pi_def del: Un_insert_right)
also have "... = (⨁i ∈ {..n}. ?s i)"
 by (simp only: ivl_disj_un_singleton)
also from n_less_k neq have "... = (⨁i ∈ {..n} ∪ {n<..<k}. ?s i)"
 by (simp add: R.finsum_Un_disjoint f3 ivl_disj_int_one Pi_def)
also from n_less_k have "... = (⨁i ∈ {..k}. ?s i)"
 by (simp only: ivl_disj_un_one)
finally show ?thesis .
qed
qed
qed
also have "... = coeff P (monom P 1 n ⊗P monom P 1 1) k" by simp
finally show ?thesis.
qed
qed (simp_all)

lemma monom_one_Suc2:
 "monom P 1 (Suc n) = monom P 1 1 ⊗P monom P 1 n"
proof (induct n)
 case 0 show ?case by simp
next
 case Suc
 { fix k:: nat
 assume hypo: "monom P 1 (Suc k) = monom P 1 1 ⊗P monom P 1 k"
 then show "monom P 1 (Suc (Suc k)) = monom P 1 1 ⊗P monom P 1 (Suc k)"
 proof -
 have lhs: "monom P 1 (Suc (Suc k)) = monom P 1 1 ⊗P monom P 1 k
 ⊗P monom P 1 1"
 unfolding monom_one_Suc [of "Suc k"] unfolding hypo ..
 note cl = monom_closed [OF R.one_closed, of 1]
 note clk = monom_closed [OF R.one_closed, of k]
 have rhs: "monom P 1 1 ⊗P monom P 1 (Suc k) = monom P 1 1 ⊗P monom P 1 k
 ⊗P monom P 1 1"
 unfolding monom_one_Suc [of k] unfolding sym [OF m_assoc [OF
 cl clk cl]] ..
 from lhs rhs show ?thesis by simp
 qed
 }
qed

The following corollary follows from lemmas monom P 1 (Suc ?n) = monom P
1 ?n ⊗P monom P 1 1 and monom P 1 (Suc ?n) = monom P 1 1 ⊗P monom P
1 ?n, and is trivial in UP_cring

corollary monom_one_comm: shows "monom P 1 k ⊗P monom P 1 1 = monom P
1 1 ⊗P monom P 1 k"
 unfolding monom_one_Suc [symmetric] monom_one_Suc2 [symmetric] ..

lemma monom_mult_smult:
 "[| a ∈ carrier R; b ∈ carrier R |] ==> monom P (a ⊗ b) n = a ⊗P monom
 P b n"
 by (rule up_eql) simp_all

lemma monom_one_mult:
 "monom P 1 (n + m) = monom P 1 n ⊗P monom P 1 m"
proof (induct n)
 case 0 show ?case by simp
next
 case Suc then show ?case
unfolding add_Suc unfolding monom_one_Suc unfolding Suc.hyps using m_assoc monom_one_comm [of m] by simp

qed

lemma monom_one_mult_comm: "monom P 1 n ⊗ₚ monom P 1 m = monom P 1 m ⊗ₚ monom P 1 n"
 unfolding monom_one_mult [symmetric] by (rule up_eqI) simp_all

lemma monom_mult [simp]:
 assumes a_in_R: 'a ∈ carrier R" and b_in_R: "b ∈ carrier R" shows "monom P (a ⊗ b) (n + m) = monom P a n ⊗ₚ monom P b m"
proof (rule up_eqI)
 fix k show "coeff P (monom P (a ⊗ b) (n + m)) k = coeff P (monom P a n ⊗ₚ monom P b m) k"
 proof (cases "n + m = k")
 case True
 show ?thesis unfolding True [symmetric] coeff_mult [OF monom_closed [OF a_in_R, of n] monom_closed [OF b_in_R, of m], of "n + m"]
 unfolding coeff_monom [OF a_in_R, of n] coeff_monom [OF b_in_R, of m] using R.finsum_cong [of "{.. n + m}" "{.. n + m}" "(λi. (if n = i then a else 0) ⊗ (if m = n + m - i then b else 0))"
 "(λi. if n = i then a ⊗ b else 0)"
 a_in_R b_in_R
 unfolding simp_implies_def using R.finsum_singleton [of n "{.. n + m}" "(λi. a ⊗ b)"
 unfolding Pi_def by auto
 next
 case False
 show ?thesis unfolding coeff_monom [OF R.m_closed [OF a_in_R b_in_R], of "n + m" k] apply (simp add: False)
 unfolding coeff_mult [OF monom_closed [OF a_in_R, of n] monom_closed [OF b_in_R, of m], of k]
 unfolding coeff_monom [OF a_in_R, of n] unfolding coeff_monom [OF b_in_R, of m] using False
 using R.finsum_cong [of "{..k}" "{..k}" "(λi. (if n = i then a else 0) ⊗ (if m = k - i then b else 0))" "(λi. 0)"
 unfolding Pi_def simp_implies_def using a_in_R b_in_R by force
 qed
qed (simp_all add: a_in_R b_in_R)

lemma monom_a_inv [simp]:
lemma monom_inj:
"inj_on (%a. monom P a n) (carrier R)"
proof (rule inj_onI)
 fix x y
 assume R: "x ∈ carrier R" "y ∈ carrier R" and eq: "monom P x n = monom P y n"
 then have "coeff P (monom P x n) n = coeff P (monom P y n) n" by simp
 with R show "x = y" by simp
qed

end

15.8 The Degree Function

definition
 deg :: "('a, 'm) ring_scheme, nat => 'a" where
 "deg R p = (LEAST n. bound 0 R n (coeff (UP R) p))"

context UP_ring
begin
lemma deg_aboveI:
 "[| (!!m. n < m ==> coeff P p m = 0); p ∈ carrier P |] ==> deg R p ≤ n"
 by (unfold deg_def P_def) (fast intro: Least_le)

lemma deg_aboveD:
 assumes "deg R p < m" and "p ∈ carrier P"
 shows "coeff P p m = 0"
proof -
 from ‘p ∈ carrier P’ obtain n where "bound 0 n (coeff P p)"
 by (auto simp add: UP_def P_def)
 then have "bound 0 (deg R p) (coeff P p)"
 by (auto simp: deg_def P_def dest: LeastI)
 from this and ‘deg R p < m’ show ?thesis ..
qed

lemma deg_belowI:
 assumes non_zero: "n ≠ 0 ==> coeff P p n ≠ 0"
 and R: "p ∈ carrier P"
 shows "n ≤ deg R p"
 — Logically, this is a slightly stronger version of deg_aboveD
proof (cases "n=0")
 case True then show ?thesis by simp
next
case False then have "coeff P p n = 0" by (rule non_zero)
then have "deg R p < n" by (fast dest: deg_aboveD intro: R)
then show ?thesis by arith
qed

lemma lcoeff_nonzero_deg:
assumes deg: "deg R p = 0" and R: "p ∈ carrier P"
shows "coeff P p (deg R p) = 0"
proof -
from R obtain m where "deg R p ≤ m" and m_coeff: "coeff P p m = 0"
proof -
 have minus: "!!(n::nat) m. n ≠ 0 ==> (n - Suc 0 < m) = (n ≤ m)"
 by arith
 from deg have "deg R p - 1 < (LEAST n. bound 0 n (coeff P p))"
 by (unfold deg_def P_def) simp
 then have "bound 0 (deg R p - 1) (coeff P p)" by (rule not_less_least)
 then have "EX m. deg R p - 1 < m & coeff P p m = 0"
 by (unfold bound_def) fast
 then have "EX m. deg R p ≤ m & coeff P p m = 0" by (simp add: deg minus)
 then show ?thesis by (auto intro: that)
qed
with deg_belowI R have "deg R p = m" by fastforce
with m_coeff show ?thesis by simp
qed

lemma lcoeff_nonzero_nonzero:
assumes deg: "deg R p = 0" and nonzero: "p ≠ 0 P" and R: "p ∈ carrier P"
shows "coeff P p 0 = 0"
proof -
 have "EX m. coeff P p m = 0"
 proof (rule classical)
 assume "~ ?thesis"
 with R have "p = 0 P" by (auto intro: up_eqI)
 with nonzero show ?thesis by contradiction
 qed
 then obtain m where coeff: "coeff P p m = 0" ..
 from this and R have "m ≤ deg R p" by (rule deg_belowI)
 then have "m = 0" by (simp add: deg)
 with coeff show ?thesis by simp
qed

lemma lcoeff_nonzero:
assumes neq: "p ≠ 0 P" and R: "p ∈ carrier P"
suggests "coeff P p (deg R p) ≠ 0"
proof (cases "deg R p = 0")
case True with neq R show ?thesis by (simp add: lcoeff_nonzero_nonzero)
next
case False with neq R show ?thesis by (simp add: lcoeff_nonzero_deg)
qed

lemma deg_eqI:
"[| !!m. n < m ==> coeff P p m = 0;
 !!n. n = 0 ==> coeff P p n ~= 0; p ∈ carrier P |] ==> deg R p = n"
by (fast intro: le_antisym deg_aboveI deg_belowI)

Degree and polynomial operations

lemma deg_add [simp]:
"p ∈ carrier P ==> q ∈ carrier P ==>
 deg R (p ⊕ P q) <= max (deg R p) (deg R q)"
by (rule deg_aboveI) (simp_all add: deg_aboveD)

lemma deg_monom_le:
"a ∈ carrier R ==> deg R (monom P a n) <= n"
by (intro deg_aboveI) simp_all

lemma deg_monom [simp]:
"[| a ~= 0; a ∈ carrier R |] ==> deg R (monom P a n) = n"
by (fastforce intro: le_antisym deg_aboveI deg_belowI)

lemma deg_const [simp]:
assumes R: "a ∈ carrier R" shows "deg R (monom P a 0) = 0"
proof (rule le_antisym)
 show "deg R (monom P a 0) <= 0" by (rule deg_aboveI) (simp_all add: R)
next
 show "0 <= deg R (monom P a 0)" by (rule deg_belowI) (simp_all add: R)
qed

lemma deg_zero [simp]:
"deg R 0p = 0"
proof (rule le_antisym)
 show "deg R 0p <= 0" by (rule deg_aboveI) simp_all
next
 show "0 <= deg R 0p" by (rule deg_belowI) simp_all
qed

lemma deg_one [simp]:
"deg R 1p = 0"
proof (rule le_antisym)
 show "deg R 1p <= 0" by (rule deg_aboveI) simp_all
next
 show "0 <= deg R 1p" by (rule deg_belowI) simp_all
lemma deg_uminus [simp]:
 assumes R: "p ∈ carrier P" shows "deg R (⊖ p) = deg R p"
proof (rule le_antisym)
 show "deg R (⊖ p) <= deg R p" by (simp add: deg_aboveI deg_aboveD R)
next
 show "deg R p <= deg R (⊖ p)"
 by (simp add: deg_belowI lcoeff_nonzero_deg
 inj_on_iff [OF R.a_inv_inj, of _ "0", simplified] R)
qed

The following lemma is later overwritten by the most specific one for domains, deg_smult.

lemma deg_smult_ring [simp]:
 "[| a ∈ carrier R; p ∈ carrier P |] ==>
 deg R (a ⊙ p) <= (if a = 0 then 0 else deg R p)"
by (cases "a = 0") (simp add: deg_aboveI deg_aboveD)+

context UP_domain
begin

lemma deg_smult [simp]:
 assumes R: "a ∈ carrier R" "p ∈ carrier P"
 shows "deg R (a ⊙ p) = (if a = 0 then 0 else deg R p)"
proof (rule le_antisym)
 show "deg R (a ⊙ p) <= (if a = 0 then 0 else deg R p)"
 using R by (rule deg_smult_ring)
next
 show "(if a = 0 then 0 else deg R p) <= deg R (a ⊙ p)"
 proof (cases "a = 0")
 qed (simp, simp add: deg_belowI lcoeff_nonzero_deg integral_iff R)
 qed (simp, simp add: deg_aboveI deg_aboveD)
qed

end

context UP_ring
begin

lemma deg_mult_ring:
 assumes R: "p ∈ carrier P" "q ∈ carrier P"
 shows "deg R (p ⊗ q) <= deg R p + deg R q"
proof (rule deg_aboveI)
 fix m
 assume boundm: "deg R p + deg R q < m"
 {
fix \(k\) \(i\)
assume boundk: "\(\text{deg } R\ p + \text{deg } R\ q < k\)"
then have "\(\text{coeff } P\ p\ i \odot \text{coeff } P\ q\ (k - i) = 0\)"
proof (cases "\(\text{deg } R\ p < i\)"
 case True then show "\(\text{thesis} by (simp add: \text{deg_aboveD } R)\)"
next
 case False with boundk have "\(\text{deg } R\ q < k - i\)" by arith
 then show "\(\text{thesis} by (simp add: \text{deg_aboveD } R)\)"
qed
}
with boundm R show "\(\text{coeff } P\ (p \odot P\ q)\ m = 0\)" by simp
qed (simp add: \(R\))
The following lemmas also can be lifted to \texttt{UP_ring}.

context \texttt{UP_ring}

begin

lemma \texttt{coeff_finsum}:
 assumes fin: "finite A"
 shows "\(p \in A \rightarrow \text{carrier } P \Rightarrow\)
 \(\text{coeff } P \left(\text{finsum } P \ p \ A\right) \ k = \left(\bigoplus i \in A. \ \text{coeff } P \ \left(\ p \ i\ \right) \ k\right)\)"
 using fin by (induct (auto simp: \texttt{Pi_def})

lemma \texttt{up_repr}:
 assumes R: "\(p \in \text{carrier } P\)"
 shows "\(\bigoplus p \ i \in \{..\deg R \ p\}. \ \text{monom } P \ (\text{coeff } P \ p \ i) \ i\) = p"
proof (rule \texttt{up_eqI})
 let \(?s = \("\bigoplus i. \ \text{monom } P \ (\text{coeff } P \ p \ i) \ i\)"
 fix \(k\)
 from R have RR: "\(!i. \ (\text{if } i = k \text{ then coeff } P \ p \ i \ else \ 0) \in \text{carrier } R\)"
 by simp
 show "\(\text{coeff } P \left(\bigoplus P \ i \in \{..\deg R \ p\}. \ ?s \ i\right) \ k = \text{coeff } P \ p \ k\)"
 proof (cases "\(k \leq \deg R \ p\)"
 case True
 hence "\(\text{coeff } P \left(\bigoplus p \ i \in \{..\deg R \ p\}. \ ?s \ i\right) \ k = \text{coeff } P \left(\bigoplus p \ i \in \{..k\} \cup \{k<..\deg R \ p\}. \ ?s \ i\right) \ k\)"
 by (simp only: \texttt{ivl_disj_un_one})
 also from True have "\(\ldots = \text{coeff } P \left(\bigoplus p \ i \in \{..k\}. \ ?s \ i\right) \ k\)"
 by (simp cong: \texttt{R_finsum_cong} add: \texttt{R_finsum_Un_disjoint} \
 \texttt{ivl_disj_int_one} \texttt{order_less_imp_not_eq2} \texttt{coeff_finsum} \texttt{R} \texttt{RR} \texttt{Pi_def})
 also have "\(\ldots = \text{coeff } P \ p \ k\)"
 by (simp cong: \texttt{R_finsum_cong} add: \texttt{coeff_finsum} \texttt{deg_aboveD} \texttt{R} \texttt{RR} \texttt{Pi_def})
 also have "\(\ldots = \text{coeff } P \ p \ k\)"
 by (simp cong: \texttt{R_finsum_cong} add: \texttt{coeff_finsum} \texttt{deg_aboveD} \texttt{R} \texttt{Pi_def})
 finally show ?thesis.
 next
 case False
 hence "\(\text{coeff } P \left(\bigoplus p \ i \in \{..\deg R \ p\}. \ ?s \ i\right) \ k = \text{coeff } P \left(\bigoplus p \ i \in \{..<\deg R \ p\} \cup \{\deg R \ p\}. \ ?s \ i\right) \ k\)"
 by (simp only: \texttt{ivl_disj_un_singleton})
 also from False have "\(\ldots = \text{coeff } P \ p \ k\)"
 by (simp cong: \texttt{R_finsum_cong} add: \texttt{coeff_finsum} \texttt{deg_aboveD} \texttt{R} \texttt{RR} \texttt{Pi_def})
 finally show ?thesis.
 qed
 qed (simp_all add: \texttt{R} \texttt{Pi_def})

lemma \texttt{up_repr_le}:
"[| \text{deg } R \ p \leq n; \ p \in \text{carrier } P |] \implies
(\sum_{i \in \{..n\}} \text{monom } P \ (\text{coeff } P \ p \ i) \ i) = p"
proof -
let \(\text{?s} = \((\%i. \text{monom } P \ (\text{coeff } P \ p \ i) \ i)\)"
assume \(R: \ "p \in \text{carrier } P"\) and \(\"\text{deg } R \ p \leq n\"
then have \("\text{finsum } P \ ?s \ {..n} = \text{finsum } P \ ?s \ (\{..\text{deg } R \ p\} \cup \{\text{deg } R \ p < ..n\})\"
by (simp only: ivl_disj_un_one)
also have \("\ldots = \text{finsum } P \ ?s \ {..\text{deg } R \ p}\"
by (simp cong: P.finsum_cong add: P.finsum_Un_disjoint ivl_disj_int_one
deg_aboveD R Pi_def)
also have \("\ldots = p"\) using \(R\) by (rule up_repr)
finally show \(?\text{thesis} \).
qed
e
end

15.9 Polynomials over Integral Domains

lemma domainI:
assumes cring: "\text{cring } R"
and one_not_zero: "\text{one } R \neq \text{zero } R"
and integral: "\(!!a \ b. \ [\! \! \text{mult } R \ a \ b = \text{zero } R; \ a \in \text{carrier } R; \ b \in \text{carrier } R \!] \implies a = \text{zero } R \ | \ b = \text{zero } R\)"
shows "\text{domain } R"
by (auto intro!: domain.intro domain_axioms.intro cring.axioms assms
del: disjCI)

calendar UP_domain
begin

lemma UP_one_not_zero:
"1 P \neq 0 P"
proof
assume "1 P = 0 P"
consequent's" coeff P \ 1 P \ 0 = (coeff P \ 0 P \ 0)" by simp
hence "1 = 0" by simp
with R.one_not_zero show "\text{False}" by contradiction
qed

lemma UP_integral:
"[| p \ \otimes \ q = 0 P; \ p \in \text{carrier } P; \ q \in \text{carrier } P |] \implies p = 0 P \ | \ q = 0 P"
proof -
fix p q
assume pq: "p \ \otimes \ q = 0 P" and R: "p \in \text{carrier } P" "q \in \text{carrier } P"
show "p = 0 P \ | \ q = 0 P"
proof (rule classical)
assume c: "\(p = 0 P \ | \ q = 0 P\)"
with R have "\text{deg } R \ p + \text{deg } R \ q = \text{deg } R \ (p \ \otimes \ q)" by simp
also from pq have "\ldots = 0" by simp
finally have "deg R p + deg R q = 0".
then have f1: "deg R p = 0 & deg R q = 0" by simp
from f1 R have "p = (⨁ p i ∈ {..0}. monom P (coeff P p i) i)"
 by (simp only: up_repr_le)
also from R have "... = monom P (coeff P p 0) 0" by simp
finally have p: "p = monom P (coeff P p 0) 0" .
from f1 R have "q = (⨁ p i ∈ {..0}. monom P (coeff P q i) i)"
 by (simp only: up_repr_le)
also from R have "... = monom P (coeff P q 0) 0" by simp
finally have q: "q = monom P (coeff P q 0) 0" .
from R have "coeff P p 0 ⊗ coeff P q 0 = coeff P (p ⊗ P q) 0" by simp
also from pq have "... = 0" by simp
finally have "coeff P p 0 ⊗ coeff P q 0 = 0" .
with R have "coeff P p 0 = 0 | coeff P q 0 = 0" by (simp add: R.integral_iff)
with p q show "p = 0p | q = 0p" by fastforce
qed
qed

theorem UP_domain:
 "domain P"
 by (auto intro!: domainI UP_cring UP_one_not_zero UP_integral del: disjCI)
end

Interpretation of theorems from domain.

sublocale UP_domain < "domain" P
 by intro_locales (rule domain.axioms UP_domain)+

15.10 The Evaluation Homomorphism and Universal Property

lemma (in abelian_monoid) boundD_carrier:
 "[| bound 0 n f; n < m |] ==> f m ∈ carrier G"
 by auto

context ring
begin

theorem diagonal_sum:
 "[| f ∈ {..n + m::nat} -> carrier R; g ∈ {..n + m} -> carrier R |] ==>
 (⨁ k ∈ {..n + m}. ⨁ i ∈ {..k}. f i ⊗ g (k - i)) =
 (⨁ k ∈ {..n + m}. ⨁ i ∈ {..n + m - k}. f k ⊗ g i)"
proof -
 assume Rf: "f ∈ {..n + m} -> carrier R" and Rg: "g ∈ {..n + m} -> carrier R"
 { fix j
have "j <= n + m ==>
 (⋃ k ∈ {..j}. ⊔ i ∈ {..k}. f i ⊗ g (k - i)) =
 (⋃ k ∈ {..j}. ⊔ i ∈ {..j - k}. f k ⊗ g i)"
proof (induct j)
 case 0 from Rf Rg show ?case by (simp add: Pi_def)
next
 case (Suc j)
 have R6: "!!i k. [| k <= j; i <= Suc j - k |] ==> g i ∈ carrier R"
 using Suc by (auto intro!: funcset_mem [OF Rg])
 have R8: "!!i k. [| k <= Suc j; i <= k |] ==> g (k - i) ∈ carrier R"
 using Suc by (auto intro!: funcset_mem [OF Rg])
 have R9: "!!i k. [| k <= Suc j |] ==> f k ∈ carrier R"
 using Suc by (auto intro!: funcset_mem [OF Rf])
 have R10: "!!i k. [| k <= Suc j; i <= Suc j - k |] ==> g i ∈ carrier R"
 using Suc by (auto intro!: funcset_mem [OF Rg])
 have R11: "g 0 ∈ carrier R"
 from Suc show ?case
 by (simp cong: finsum_cong add: Suc_diff_le a_ac Pi_def R6 R8 R9 R10 R11)
qed

theorem cauchy_product:
 assumes bf: "bound 0 n f" and bg: "bound 0 m g"
 and Rf: "f ∈ {..n} -> carrier R" and Rg: "g ∈ {..m} -> carrier R"
 shows "(⋃ k ∈ {..n + m}. ⊔ i ∈ {..k}. f i ⊗ g (k - i)) =
 (⋃ i ∈ {..n}. f i) ⊗ (⋃ i ∈ {..m}. g i)"
proof -
 have f: "!!x. f x ∈ carrier R"
 proof -
 fix x
 show "f x ∈ carrier R"
 using Rf bf boundD_carrier by (cases "x <= n") (auto simp: Pi_def)
 qed
 have g: "!!x. g x ∈ carrier R"
 proof -
 fix x
 show "g x ∈ carrier R"
 using Rg bg boundD_carrier by (cases "x <= m") (auto simp: Pi_def)
 qed
 from f g have "(⋃ k ∈ {..n + m}. ⊔ i ∈ {..k}. f i ⊗ g (k - i)) =
 (⋃ k ∈ {..n + m}. ⊔ i ∈ {..n + m - k}. f k ⊗ g i)"
 by (simp add: diagonal_sum Pi_def)
also have "... = (⨁ k ∈ {..n} ∪ {n..n + m}. ⊗ i ∈ {..n + m - k}. {f k ⊗ g i})"
 by (simp only: ivl_disj_un_one)
also from f g have "... = (⨁ k ∈ {..n}. ⊗ i ∈ {..n + m - k}. f k ⊗ g i)"
 by (simp cong: finsum_cong
 add: bound.bound [OF bf] finsum_Un_disjoint ivl_disj_int_one Pi_def)
also from f g have "... = (⨁ k ∈ {..n}. ⊗ i ∈ {..m}. f k ⊗ g i)"
 by (simp cong: finsum_cong
 add: bound.bound [OF bg] finsum_Un_disjoint ivl_disj_int_one Pi_def)
also from f g have "... = (⨁ i ∈ {..n}. f i) ⊗ (⨁ i ∈ {..m}. g i)"
 by (simp add: finsum_ldistr diagonal_sum Pi_def,
 simp cong: finsum_cong add: finsum_rdistr Pi_def)
finally show ?thesis .
qed
end

lemma (in UP_ring) const_ring_hom:
 "(%a. monom P a 0) ∈ ring_hom R P"
 by (auto intro!: ring_hom_memI intro: up_eqI simp: monom_mult_is_smult)
definition
eval :: "['a, 'm] ring_scheme, ('b, 'n] ring_scheme,
 'a => 'b, 'b, nat => 'a] => 'b"
where "eval R S phi s = (λp ∈ carrier (UP R).
 ⊗ S i ∈ {..deg R p}. phi (coeff (UP R) p i) ⊗ S s ("}_S i)"
context UP
begin
lemma eval_on_carrier:
 fixes S (structure)
 shows "p ∈ carrier P ==>
 eval R S phi s p = (⨁ S i ∈ {..deg R p}. phi (coeff P p i) ⊗ S s ("}_S i)"
 by (unfold eval_def, fold P_def) simp
lemma eval_extensional:
 "eval R S phi p ∈ extensional (carrier P)"
 by (unfold eval_def, fold P_def) simp
end

The universal property of the polynomial ring
locale UP_pre_univ_prop = ring_hom_cring + UP_cring
locale UP_univ_prop = UP_pre_univ_prop +
 fixes s and Eval
 assumes indet_img_carrier [simp, intro]: "s ∈ carrier S"
 defines Eval_def: "Eval == eval R S h s"

JE: I have moved the following lemma from Ring.thy and lifted then to the
locale ring_hom_ring from ring_hom_cring.

JE: I was considering using it in eval_ring_hom, but that property does not
hold for non commutative rings, so maybe it is not that necessary.

lemma (in ring_hom_ring) hom_finsum [simp]:
 "[| finite A; f ∈ A -> carrier R |] ==>
 h (finsum R f A) = finsum S (h o f) A"
proof (induct set: finite)
 case empty then show ?case by simp
next
 case insert then show ?case by (simp add: Pi_def)
qed

context UP_pre_univ_prop
begin

theorem eval_ring_hom:
 assumes S: "s ∈ carrier S"
 shows "eval R S h s ∈ ring_hom P S"
proof (rule ring_hom_memI)
 fix p
 assume R: "p ∈ carrier P"
 then show "eval R S h s p ∈ carrier S"
 by (simp only: eval_on_carrier)
next
 fix p q
 assume R: "p ∈ carrier P" "q ∈ carrier P"
 then show "eval R S h s (p ⊕ P q) = eval R S h s p ⊕ S eval R S h s q"
 proof (simp only: eval_on_carrier P.a_closed)
 from S R have
 "(⊕ S i∈{..deg R (p ⊕ P q)}. h (coeff P (p ⊕ P q) i) ⊗ S s (¬)S i) =
 (⊕ S i∈{..deg R (p ⊕ P q)} ∪ {deg R (p ⊕ P q)<..max (deg R p) (deg R q)}. h (coeff P (p ⊕ P q) i) ⊗ S s (¬)S i)"
 by (simp cong: S.finsum_cong add: deg_aboveD S.finsum_Un_disjoint ivl_disj_int_one Pi_def del: coeff_add)
 also from R have "... ="
\[\bigoplus_{i \in \{\ldots \max (\deg R p) \ (\deg R q)\}} . \ h \ (\text{coeff} \ P \ (p \oplus q) \ i) \otimes_S s \ (-)S i \]

by (simp add: ivl_disj_un_one)

also from \(R \ S \) have "... =

\[\bigoplus_{\bigoplus_{i \in \{\ldots \max (\deg R p) \ (\deg R q)\}} . \ h \ (\text{coeff} \ P \ p \ i) \otimes_S S \ (-)S i \]

by (simp cong: S.finsum_cong

\[\bigoplus_{\bigoplus_{i \in \{\ldots \max (\deg R p) \ (\deg R q)\}} . \ h \ (\text{coeff} \ P \ q \ i) \otimes_S S \ (-)S i \]

by (simp only: ivl_disj_un_one max.cobounded1 max.cobounded2)

also from \(R \ S \) have "... =

\[\bigoplus_{\bigoplus_{i \in \{\ldots \deg R p\} \cup \{\deg R p< \ldots \max (\deg R p) \ (\deg R q)\}} . \ h \ (\text{coeff} \ P \ p \ i) \otimes_S S \ (-)S i \]

by (simp cong: S.finsum_cong

\[\bigoplus_{\bigoplus_{i \in \{\ldots \deg R q\} \cup \{\deg R q< \ldots \max (\deg R p) \ (\deg R q)\}} . \ h \ (\text{coeff} \ P \ q \ i) \otimes_S S \ (-)S i \]

by (simp only: ivl_disj_un_one max.cobounded1 max.cobounded2)

finally show

\[\text{"eval } R \ S \ h \ s \ 1P = 1S" \]

by (simp only: eval_on Carrier UP_one_closed) simp

next

fix \(p \ q \)

assume \(R \) : \("p \in \text{carrier } P" \) "q \in \text{carrier } P"}

then show "eval \(R \ S \ h \ s \ (p \oplus p \ q) = \text{eval } R \ S \ h \ s \ p \oplus_S \text{eval } R \ S \ h \ s \ q"}

proof (simp only: eval_on_carrier UP_mult_closed)

from \(R \ S \) have

\[\text{"eval } R \ S \ h \ s \ (p \oplus p \ q) \]

by (simp cong: S.finsum_cong

\[\text{eval } R \ S \ h \ s \ p \oplus_S \text{eval } R \ S \ h \ s \ q"}

proof (simp only: eval_on_carrier UP_mult_closed)

from \(R \ S \) have

\[\text{"eval } R \ S \ h \ s \ (p \oplus p \ q) \]

by (simp cong: S.finsum_cong

\[\text{eval } R \ S \ h \ s \ p \oplus_S \text{eval } R \ S \ h \ s \ q"}

proof (simp only: eval_on_carrier UP_mult_closed)

from \(R \ S \) have

\[\text{"eval } R \ S \ h \ s \ (p \oplus p \ q) \]

by (simp cong: S.finsum_cong

\[\text{eval } R \ S \ h \ s \ p \oplus_S \text{eval } R \ S \ h \ s \ q"}
\[\bigoplus_{i \in \{\ldots, \deg R p + \deg R q\}} \bigoplus_{k \in \{\ldots\}} h \left(\text{coeff } P p k\right) \otimes_S h \left(\text{coeff } Q q (i - k)\right) \otimes_S \left(\text{coeff } P p i \otimes_S \left(\text{coeff } Q q (i - k)\right)\right) \]

by \((\text{simp cong: } S.\text{finsum_cong add: } S.\text{nat_pow_mult Pi_def S.m_ac S.\text{finsum_rdistr}})\)

also from \(R S\) have "\(\ldots = \bigoplus_{i \in \{\ldots, \deg R p\}} h \left(\text{coeff } P p i\right) \otimes_S \left(\text{coeff } P p i\right) \otimes_S \left(\text{coeff } Q q (i - k)\right) \otimes_S \left(\text{coeff } Q q (i - k)\right)\)"

by \((\text{simp add: } S.\text{cauchy_product then sym bound.intro deg_aboveD S.m_ac Pi_def})\)

finally show "\(\bigoplus_{i \in \{\ldots, \deg R (p \otimes_P q)\}} h \left(\text{coeff } P (p \otimes_P q) i\right) \otimes_S \left(\text{coeff } P (p \otimes_P q) i\right) \otimes_S \left(\text{coeff } P (p \otimes_P q) i\right)\)"

by \((\text{simp add: } S.\text{finsum_cong del: coeff_monom})\)

qed

The following lemma could be proved in \(UP_{\text{cring}}\) with the additional assumption that \(h\) is closed.

lemma \((\text{in } UP_{\text{pre_univ_prop}}) \text{ eval_const:} \)

"\([s \in \text{carrier } S; r \in \text{carrier } R] \Rightarrow \text{eval } R S h s (\text{monom } P r 0) = h r\)"

by \((\text{simp only: eval_on_carrier monom_closed})\)

Further properties of the evaluation homomorphism.

The following proof is complicated by the fact that in arbitrary rings one might have \(1 = 0\).

lemma \((\text{in } UP_{\text{pre_univ_prop}}) \text{ eval_monom1:} \)

assumes \(S: "s \in \text{carrier } S"\)

shows "\(\text{eval } R S h s (\text{monom } P 1 1) = s\)"

proof \((\text{simp only: eval_on_carrier monom_closed R.one_closed})\)

from \(S\) have "\((\bigoplus_{i \in \{\ldots, \deg R (\text{monom } P 1 1)\}} h \left(\text{coeff } P (\text{monom } P 1 1) i\right) \otimes_S \left(\text{coeff } P (\text{monom } P 1 1) i\right) \otimes_S \left(\text{coeff } P (\text{monom } P 1 1) i\right)\)"

by \((\text{simp cong: } S.\text{finsum_cong del: coeff_monom add: deg_aboveD S.\text{finsum_Un_disjoint ivl_disj_int_one Pi_def})\)

also have "\(\ldots = s\)"

proof \((\text{cases } "s = 0S")\)

case True then show ?thesis by \((\text{simp add: Pi_def})\)

next
case False then show ?thesis by (simp add: S Pi_def)
qed

finally show "\((\bigoplus S \ i \in \{..\ \deg R \ (\text{monom} \ P \ 1 \ 1)\}. \ h \ (\text{coeff} \ P \ (\text{monom} \ P \ 1 \ 1) \ i) \ \otimes S \ s \ (^\bot) S \ i) = s \) ".

qed

end

Interpretation of ring homomorphism lemmas.

sublocale UP_univ_prop < ring_hom_cring P S Eval
 unfolding Eval_def
 by unfold_locales (fast intro: eval_ring_hom)

lemma (in UP_cring) monom_pow:
 assumes R: "a \in\ carrier\ R"
 shows "(\text{monom} \ P \ a \ n) \ (^\bot) p \ m = \text{monom} \ P \ (a \ (^\bot) m) \ (n \ast m)"
proof (induct m)
 case 0 from R show ?case by simp
next
 case Suc with R show ?case
 by (simp del: monom_mult add: monom_mult [THEN sym] add.commute)
qed

lemma (in ring_hom_cring) hom_pow [simp]:
 "x \in\ carrier\ R \implies h \ (x \ (^\bot) n) = h \ x \ (^\bot) S \ (n::nat)"
by (induct n) simp_all

lemma (in UP_univ_prop) Eval_monom:
 "r \in\ carrier\ R \implies Eval \ (\text{monom} \ P \ r \ n) = h \ r \ \otimes S \ s \ (^\bot) S \ n"
proof -
 assume R: "r \in\ carrier\ R"
 from R have "Eval \ (\text{monom} \ P \ r \ n) = Eval \ (\text{monom} \ P \ r \ 0 \ \otimes p \ (\text{monom} \ P \ 1 \ 1) \ (^\bot) p \ n)"
 by (simp del: monom_mult add: monom_mult [THEN sym] monom_pow)
 also
 from R eval_monom1 [where s = s, folded Eval_def]
 have "... = h \ r \ \otimes S \ s \ (^\bot) S \ n"
 by (simp add: eval_const [where s = s, folded Eval_def])
 finally show ?thesis .
qed

lemma (in UP_pre_univ_prop) eval_monom:
 assumes R: "r \in\ carrier\ R" and S: "s \in\ carrier\ S"
 shows "eval \ R \ S \ h \ s \ (\text{monom} \ P \ r \ n) = h \ r \ \otimes S \ s \ (^\bot) S \ n"
proof -
 interpret UP_univ_prop R S h P s "eval \ R \ S \ h \ s"
 using UP_pre_univ_prop_axioms P_def R S
 by (auto intro: UP_univ_prop.intro UP_univ_prop_axioms.intro)
 from R
show thesis by (rule Eval_monom)

qed

lemma (in UP_univ_prop) Eval_smult:
 "[| r ∈ carrier R; p ∈ carrier P |] ==> Eval (r ⊙_P p) = h r ⊗_S Eval p"
proof -
 assume R: "r ∈ carrier R" and P: "p ∈ carrier P"
 then show thesis
 by (simp add: monom_mult_is_smult [THEN sym]
 eval_const [where s = s, folded Eval_def])

qed

lemma ring_hom_cringI:
 assumes "cring R"
 and "cring S"
 and "h ∈ ring_hom R S"
 shows "ring_hom_cring R S h"
 by (fast intro: ring_hom_cring.intro ring_hom_cring_axioms.intro
 cring.axioms assms)

context UP_pre_univ_prop
begin

lemma UP_hom_unique:
 assumes "ring_hom_cring P S Phi"
 assumes Phi: "Phi (monom P (1 (Suc 0))) = s"
 "!!r. r ∈ carrier R ==> Phi (monom P r 0) = h r"
 assumes Psi: "Psi (monom P (1 (Suc 0))) = s"
 "!!r. r ∈ carrier R ==> Psi (monom P r 0) = h r"
 and P: "p ∈ carrier P" and S: "s ∈ carrier S"
 shows "Phi p = Psi p"
proof -
 interpret ring_hom_cring P S Phi by fact
 interpret ring_hom_cring P S Psi by fact
 have "Phi p =
 Phi (∑ p i ∈ {..deg R p}. monom P (coeff P p i) 0 ⊗_P monom P 1 1 (^)P i)"
 by (simp add: up_repr P monom_mult [THEN sym] monom_pow del: monom_mult)
 also have "... =
 Psi (∑ p i ∈ {..deg R p}. monom P (coeff P p i) 0 ⊗_P monom P 1 1 (^)P i)"
 by (simp add: Phi Psi P Pi_def comp_def)
 also have "... = Psi p"
 by (simp add: up_repr P monom_mult [THEN sym] monom_pow del: monom_mult)
 finally show thesis.

qed
lemma ring_homD:
 assumes Phi: "Phi ∈ ring_hom P S"
 shows "ring_hom_cring P S Phi"
 by unfold_locales (rule Phi)

theorem UP_universal_property:
 assumes S: "s ∈ carrier S"
 shows "EX! Phi. Phi ∈ ring_hom P S ∩ extensional (carrier P) &
 Phi (monom P 1 1) = s &
 (ALL r : carrier R. Phi (monom P r 0) = h r)"
 using S eval_monom1
 apply (auto intro: eval_ring_hom eval_const eval_extensional)
 apply (rule extensionalityI)
 apply (auto intro: UP_hom_unique ring_homD)
 done

end

JE: The following lemma was added by me; it might be even lifted to a
simpler locale

context monoid
begin

lemma nat_pow_eone[simp]: assumes x_in_G: "x ∈ carrier G" shows "x (^) (1::nat) = x"
 using nat_pow_Suc [of x 0]
 unfolding nat_pow_0 [of x]
 unfolding l_one [OF x_in_G]
 by simp

end

context UP_ring
begin

abbreviation lcoeff :: "(nat =>'a) => 'a"
where "lcoeff p == coeff P p (deg R p)"

lemma lcoeff_nonzero2: assumes p_in_R: "p ∈ carrier P" and p_not_zero: "p ≠ 0p"
 shows "lcoeff p ≠ 0"
 using lcoeff_nonzero [OF p_not_zero p_in_R]

15.11 The long division algorithm: some previous facts.

lemma coeff_minus [simp]:
 assumes p: "p ∈ carrier P" and q: "q ∈ carrier P" shows "coeff P (p ⊕ p q) n = coeff P p n ⊕ coeff P q n"
 unfolding a_minus_def [OF p q] unfolding coeff_add [OF p a_inv_closed [OF q]] unfolding coeff_a_inv [OF q]
 using coeff_closed [OF p, of n] using coeff_closed [OF q, of n] by algebra
lemma lcoeff_closed [simp]: assumes p: "p ∈ carrier P" shows "lcoeff p ∈ carrier R"
using coeff_closed [OF p, of "deg R p"] by simp

lemma deg_smult_decr: assumes a_in_R: "a ∈ carrier R" and f_in_P: "f ∈ carrier P" shows "deg R (a ⊗ P f) ≤ deg R f"
using deg_smult_ring [OF a_in_R f_in_P] by (cases "a = 0", auto)

lemma coeff_monom_mult: assumes R: "c ∈ carrier R" and P: "p ∈ carrier P"
shows "coeff P (monom P c n ⊗ P p) (m + n) = c ⊗ (coeff P p m)"
proof -
have "coeff P (monom P c n ⊗ P p) (m + n) = \(\sum_{i∈\{..m+n\}} (\text{if } n = i \text{ then } c \text{ else } 0) \otimes \text{coeff } P \ p \ (m + n - i))"
unfolding coeff_mult [OF monom_closed [OF R, of n] P, of "m + n"]
unfolding coeff_monom [OF R, of n] by simp
also have "\(\sum_{i∈\{..m+n\}} (\text{if } n = i \text{ then } c \text{ else } 0) \otimes \text{coeff } P \ p \ (m + n - i)) = \(\sum_{i∈\{..m+n\}} (\text{if } n = i \text{ then } c \otimes \text{coeff } P \ p \ (m + n - i) \text{ else } 0)\)"
using R.finsum_cong [of "\{..m+n\}" "\{..m+n\}" "(λi::nat. (if n = i then c else 0) \otimes \text{coeff } P \ p \ (m + n - i))"
"(λi::nat. (if n = i then c \otimes \text{coeff } P \ p \ (m + n - i) \text{ else } 0))"
using coeff_closed [OF P] unfolding Pi_def simp_implies_def using R by auto
also have "\(\sum_{i∈\{..m+n\}} (\text{if } n = i \text{ then } c \otimes \text{coeff } P \ p \ (m + n - i) \text{ else } 0)\) = \(\sum_{i∈\{..m+n\}} (\text{if } n = i \text{ then } c \otimes \text{coeff } P \ p \ (m + n - i) \text{ else } 0)\)"
unfolding Pi_def using coeff_closed [OF P] using P R by auto
finally show ?thesis by simp
qed

lemma deg_lcoeff_cancel: assumes p_in_P: "p ∈ carrier P" and q_in_P: "q ∈ carrier P" and r_in_P: "r ∈ carrier P"
and deg_r_nonzero: "deg R r ≠ 0"
and deg_R_p: "deg R p ≤ deg R r" and deg_R_q: "deg R q ≤ deg R r"
and coeff_R_p_eq_q: "coeff P p (deg R r) = ⊖ R (coeff P q (deg R r))"
shows "deg R (p ⊕ P q) < deg R r"
proof -
have deg_le: "deg R (p ⊕ P q) ≤ deg R r"
proof (rule deg_aboveI)
fix m
assume deg_r_le: "deg R r < m"
show "coeff P (p ⊕ P q) m = 0"
proof -
have slp: "deg R p < m" and "deg R q < m" using deg_R_p deg_R_q
using deg_r_le by auto
then have max_sl: "max (deg R p) (deg R q) < m" by simp
then have "deg R (p ⊕ q) < m" using deg_add [OF p_in_P q_in_P]
by arith
with deg_R_p deg_R_q show ?thesis using coeff_add [OF p_in_P q_in_P, of m]
using deg_aboveD [of "p ⊕ q" m] using p_in_P q_in_P by simp

qed
qed (simp add: p_in_P q_in_P)
moreover have deg_ne: "deg R (p ⊕ q) ≠ deg R r"
proof (rule ccontr)
assume nz: "¬ deg R (p ⊕ q) ≠ deg R r" then have deg_eq: "deg R (p ⊕ q) = deg R r" by simp
from deg_r_nonzero have r_nonzero: "r ≠ 0_R" by (cases "r = 0_R", simp_all)
have "coeff P (p ⊕ q) (deg R r) = 0_R" using coeff_add [OF p_in_P q_in_P, of "deg R r"] using coeff_R_p_eq_q
using coeff_closed [OF p_in_P, of "deg R r"] coeff_closed [OF q_in_P, of "deg R r"] by algebra
with lcoeff_nonzero [OF r_nonzero r_in_P] and deg_eq show False
using deg_r_nonzero by (cases "p ⊕ q ≠ 0_R", auto)
qed
ultimately show ?thesis by simp

end

15.12 The long division proof for commutative rings
context UP_cring
begin

lemma monom_deg_mult:
assumes f_in_P: "f ∈ carrier P" and g_in_P: "g ∈ carrier P" and deg_le:
"deg R g ≤ deg R f" and a_in_R: "a ∈ carrier R"
shows "deg R (g ⊗ monom P a (deg R f - deg R g)) ≤ deg R f"
using deg_mult_ring [OF g_in_P monom_closed [OF a_in_R, of "deg R f - deg R g"]]
apply (cases "a = 0_R") using g_in_P apply simp
using deg_monom [OF _ a_in_R, of "deg R f - deg R g"] using deg_le by simp

lemma deg_zero_impl_monom:
assumes f_in_P: "f ∈ carrier P" and deg_f: "deg R f = 0"
shows "f = monom P (coeff P f 0) 0"
apply (rule up_eqI) using coeff_monom [OF coeff_closed [OF f_in_P], of 0 0]
using f_in_P deg_f using deg_aboveD [of f _] by auto

end
lemma exI3: assumes exist: "Pred x y z"
 shows "∃ x y z. Pred x y z"
 using exist by blast

Jacobson's Theorem 2.14

lemma long_div_theorem:
 assumes g_in_P [simp]: "g ∈ carrier P" and f_in_P [simp]: "f ∈ carrier P"
 and g_not_zero: "g ≠ 0" shows "∃ q r (k::nat). (q ∈ carrier P) ∧ (r ∈ carrier P) ∧ (lcoeff g)(^)R k ⊗ P f = g ⊗ P q ⊕ P r ∧ (r = 0 | deg R r < deg R g)"
 using f_in_P proof (induct "deg R f" arbitrary: "f" rule: nat_less_induct)
 case (1 f)
 note f_in_P [simp] = "1.prems"
 let ?pred = "(λ q r (k::nat). (q ∈ carrier P) ∧ (r ∈ carrier P) ∧ (lcoeff g)(^)R k ⊗ P f = g ⊗ P q ⊕ P r ∧ (r = 0 | deg R r < deg R g))"
 let ?lg = "lcoeff g" and ?lf = "lcoeff f"
 show ?case proof (cases "deg R f < deg R g")
 case True
 have "?pred f 0" using True by force
 then show ?thesis by blast
 next
 case False then have deg_g_le_deg_f: "deg R g ≤ deg R f" by simp
 let ?k = "1::nat"
 let ?f1 = "(g ⊗ P (monom P (?lf) (deg R f - deg R g))) ⊕ P (?lg ⊗ P f)"
 let ?q = "monom P (?lf) (deg R f - deg R g)"
 have f1_in_carrier: "?f1 ∈ carrier P" and q_in_carrier: "?q ∈ carrier P" by simp_all
 show ?thesis proof (cases "deg R f = 0")
 case True
 have deg_g: "deg R g = 0" using True using deg_g_le_deg_f by simp
 have "?pred f 0 1" using deg_zero_impl_monom [OF g_in_P deg_g] using sym [OF monom_mult_is_smult [OF coeff_closed [OF g_in_P, of 0]] f_in_P]
 using deg_g by simp
 then show ?thesis by blast
 next

case False note deg_f_nzero = False

have exist: "lcoeff g (^) ?k ⊙ P f = g ⊙ P (?q ⊕ P ⊖ P ?f1)"
 by (simp add: minus_add r_neg sym [OF a_assoc [of "g ⊙ P ?q" "⊕ P (g ⊙ P ?q)" "lcoeff g ⊙ P f"]])
have deg_remainder_l_f: "deg R (⊕ P ?f1) < deg R f"
proof (unfold deg_minus [OF f1_in_carrier])
 show "deg R ?f1 < deg R f"
proof (rule deg_lcoeff_cancel)
 show "deg R (⊕ P (?lg ⊙ P ?q)) ≤ deg R f"
 using deg_smult_ring [of ?lg f]
 using lcoeff_nonzero2 [OF g_in_P g_not_zero] by simp
 show "deg R (g ⊙ P ?q) ≤ deg R f"
 by (simp add: monom_deg_mult [OF f_in_P g_in_P deg_g_le_deg_f, of ?lf])
 show "coeff P (g ⊙ P ?q) (deg R f) = ⊖ (coeff P (⊖ P (?lg ⊙ P f)) (deg R f))"
 unfolding coeff_mult [OF g_in_P monom_closed
 [OF lcoeff_closed [OF f_in_P]], of "deg R f - deg R g"]
 using R.finsum_cong' [of "deg R f - deg R g = deg R f - i then ?lf else 0)"
 "(λi. coeff P g i ⊕ (if deg R f - deg R g = deg R f - i then ?lf else 0))"
 using R.finsum_singleton [of "deg R g" "deg R f"]
 using R.finsum_cong2 [OF _ _ f_in_P]
 using R.finsum_cong' [of "deg R f - deg R g = deg R f - i then ?lf else 0)"
 "(λi. coeff P g i ⊕ ?lf)"
 unfolding Pi_def using deg_g_le_deg_f by force
 qed (simp_all add: deg_f_nzero)
qed

then obtain q' r' k'
 where rem_desc: "?lg (^) (k':nat) ⊙ P r' = g ⊙ P q' ⊕ P r'"
 and rem_deg: "(r' = 0p ∨ deg R r' < deg R g)"
 and q'_in_carrier: "q' ∈ carrier P" and r'_in_carrier: "r' ∈ carrier P"

using "l1.hyps" using f1_in_carrier by blast
show ?thesis
proof (rule exI3 [of _ "((?lg (^) k') ⊙ P q ⊕ P q')" r' "Suc k'"], intro conjI)
 show "((?lg (^) (Suc k'))) ⊙ P f = g ⊙ P ((?lg (^) k') ⊙ P q)
 ⊕ P q') ⊙ P r'"
 proof -
 have "((?lg (^) (Suc k'))) ⊙ P f = (?lg (^) (Suc k')) ⊙ P (g ⊙ P
 ?q ⊕ P ?f1)"
 using smult_assoc1 [OF _ _ f_in_P] using exist by simp
 also have "... = (?lg (^) (Suc k')) ⊙ P (g ⊙ P ?q) ⊕ P ((?lg (^)
 k') ⊙ P (?p ?f1))"
 qed
"
using UP_smult_r_distr by simp
also have "... = (?lg (^) k') ⊛_p (g ⊛_p ?q) ⊛_p (g ⊛_p q') ⊛_p r'")
unfolding rem_desc ..
also have "... = (?lg (^) k') ⊛_p (g ⊛_p ?q) ⊛_p g ⊛_p q' ⊛_p r'
using sym [OF a_assoc [of "?lg (^) k' k' ⊛_p (g ⊛_p ?q)" g
⊗_p q" "r'"]]
using r'_in_carrier q'_in_carrier by simp
also have "... = (?lg (^) k') ⊛_p (?q ⊛_p g) ⊛_p q' ⊛_p g ⊛_p r'
using q'_in_carrier by (auto simp add: m_comm)
also have "... = (((?lg (^) k') ⊛_p ?q) ⊛_p g) ⊛_p q' ⊛_p g ⊛_p r'
using smult_assoc2 q'_in_carrier "1.prems" by auto
also have "... = (((?lg (^) k') ⊛_p ?q) ⊛_p g) ⊛_p q' ⊛_p g ⊛_p r'
using sym [OF l_distr] and q'_in_carrier by auto
finally show ?thesis using m_comm q'_in_carrier by auto
qed
qed (simp_all add: rem_deg q'_in_carrier r'_in_carrier)
}
}
qed

end

The remainder theorem as corollary of the long division theorem.

context UP_cring
begin

lemma deg_minus_monom:
 assumes a: "a ∈ carrier R"
 and R_not_trivial: "(carrier R ≠ {0})"
 shows "deg R (monom P 1_R 1 ⊛_p monom P a 0) = 1"
 (is "deg R ?g = 1")
proof -
 have "deg R ?g ≤ 1"
 proof (rule deg_aboveI)
 fix m
 assume "(1::nat) < m"
 then show "coeff P ?g m = 0"
 using coeff_minus using a by auto algebra
 qed (simp add: a)
 moreover have "deg R ?g ≥ 1"
 proof (rule deg_belowI)
 show "coeff P ?g 1 ≠ 0"
 using a using R.carrier_one_not_zero R_not_trivial by simp algebra
ultimately show thesis by simp

lemma lcoeff_monom:
 assumes a: "a ∈ carrier R" and R_not_trivial: "(carrier R ≠ {0})"
 shows "lcoeff (monom P 1R 1 ⊕P monom P a 0) = 1"
 using deg_minus_monom [OF a R_not_trivial]
 using coeff_minus a by auto

lemma deg_nzero_nzero:
 assumes deg_p_nzero: "deg R p ≠ 0"
 shows "p ≠ 0p"
 using deg_zero deg_p_nzero by auto

lemma deg_monom_minus:
 assumes a: "a ∈ carrier R"
 and R_not_trivial: "carrier R ≠ {0}"
 shows "deg R (monom P 1R 1 ⊕P monom P a 0) = 1"
 (is "deg R ?g = 1")
 proof -
 have "deg R ?g ≤ 1"
 proof (rule deg_aboveI)
 fix m::nat assume "1 < m" then show "coeff P ?g m = 0"
 using coeff_minus [OF monom_closed [OF R.one_closed, of 1] monom_closed [OF a, of 0], of m]
 using coeff_monom [OF R.one_closed, of 1 1] using coeff_monom [OF a, of 0 1]
 using R_not_trivial using R.carrier_one_not_zero
 by auto
 qed (simp add: a)
 moreover have "1 ≤ deg R ?g"
 proof (rule deg_belowI)
 show "coeff P ?g 1 ≠ 0"
 using coeff_minus [OF monom_closed [OF R.one_closed, of 1] monom_closed [OF a, of 0], of 1]
 using coeff_monom [OF R.one_closed, of 1 1] using coeff_monom [OF a, of 0 1]
 using R_not_trivial using R.carrier_one_not_zero
 by auto
 qed (simp add: a)
 ultimately show thesis by simp
 qed

lemma eval_monom_expr:
 assumes a: "a ∈ carrier R"
 shows "eval R R id a (monom P 1R 1 ⊕P monom P a 0) = 0"
 (is "eval R R id a ?g = _")
 proof -
 interpret UP_pre_univ_prop R R id by unfold_locales simp
 have eval_ring_hom: "eval R R id a ∈ ring_hom P R" using eval_ring_hom
interpret ring_hom_cring P R "eval R R id a" by unfold_locales (rule eval_ring_hom)

have mon1_closed: "monom P 1 ∈ carrier P"
 and mon0_closed: "monom P a 0 ∈ carrier P"
 and min_mon0_closed: "⊖ P monom P a 0 ∈ carrier P"
 using a R.a_inv_closed
 by (auto)

have "eval R R id a ?g = eval R R id a (monom P 1 1) ⊕ eval R R id a (monom P a 0)"
 unfolding P.minus_eq [OF mon1_closed mon0_closed]
 unfolding hom_add [OF mon1_closed min_mon0_closed]
 unfolding hom_a_inv [OF mon0_closed]
 using R.minus_eq [symmetric] mon1_closed mon0_closed
 by (auto)

also have "... = a ⊗ a"
 using eval_monom [OF R.one_closed a, of 1]
 using eval_monom [OF a a, of 0]
 using a
 by (simp)

finally show ?thesis by simp

qed

lemma remainder_theorem_exist:
 assumes f: "f ∈ carrier P" and a: "a ∈ carrier R" and R_not_trivial: "carrier R ≠ {0}"
 shows "∃ q r. (q ∈ carrier P) ∧ (r ∈ carrier P) ∧ f = (monom P 1 ⊕ P monom P a 0) ⊗P q ⊕P r ∧ (deg R r = 0)"
 (is "∃ q r. (q ∈ carrier P) ∧ (r ∈ carrier P) ∧ f = ?g ⊗P q ⊕P r ∧ (deg R r = 0)")
proof -
 let ?g = "monom P 1 ⊕ P monom P a 0"
 from deg_minus_monom [OF a R_not_trivial]
 have deg_g_nzero: "deg R ?g ≠ 0" by simp
 have "∃ q r. (q ∈ carrier P) ∧ (r ∈ carrier P) ∧ lcoeff ?g (k::nat) k ⊗P f = ?g ⊗P q ⊕P r ∧ (deg R r = 0)"
 using long_div_theorem [OF _ f deg_nzero_nzero [OF deg_g_nzero]] a
 by auto
 then show ?thesis
 unfolding lcoeff_monom [OF a R_not_trivial]
 unfolding deg_monom_minus [OF a R_not_trivial]
 using smult_one [OF f] using deg_zero by force
qed

lemma remainder_theorem_expression:
 assumes f [simp]: "f ∈ carrier P" and a [simp]: "a ∈ carrier R" and q [simp]: "q ∈ carrier P" and r [simp]: "r ∈ carrier P" and R_not_trivial: "carrier R ≠ {0}"
 and f_expr: "f = (monom P 1 ⊕ P monom P a 0) ⊗P q ⊕P r"
 (is "f = ?g ⊗P q ⊕P r"
 is "f = gq ⊕P r")
and deg_r_0: "deg R r = 0"
shows "r = monom P (eval R R id a f) 0"

proof -
interpret UP_pre_univ_prop R R id P by default simp
have eval_ring_hom: "eval R R id a ∈ ring_hom P R"
 using eval_ring_hom [OF a] by simp
have "eval R R id a f = eval R R id a ?gq ⊕R eval R R id a r"
 unfolding f_expr using ring_hom_add [OF eval_ring_hom] by auto
also have "... = ((eval R R id a ?g) ⊗ (eval R R id a q)) ⊕R eval R R id a r"
 using ring_hom_mult [OF eval_ring_hom] by auto
also have "... = eval R R id a r"
 unfolding eval_monom_expr [OF a] using eval_ring_hom unfolding ring_hom_def
 unfolding Pi_def by simp
finally have eval_eq: "eval R R id a f = eval R R id a r" by simp
from deg_zero_impl_monom [OF r deg_r_0]
have "r = monom P (coeff P r 0) 0" by simp
with eval_const [OF a, of "coeff P r 0"] eval_eq
 show ?thesis by auto
qed

corollary remainder_theorem:
 assumes f [simp]: "f ∈ carrier P" and a [simp]: "a ∈ carrier R"
 and R_not_trivial: "carrier R ≠ {0}"
 shows "∃ q r. (q ∈ carrier P) ∧ (r ∈ carrier P) ∧
 f = (monom P 1R 1 ⊗P monom P a 0) ⊗P q ⊗P monom P (eval R R id a f) 0"
 (is "∃ q r. (q ∈ carrier P) ∧ (r ∈ carrier P) ∧ f = ?g ⊗P q ⊗P monom P (eval R R id a f) 0")
proof -
 from remainder_theorem_exist [OF f a R_not_trivial]
 obtain q r
 where q_r: "q ∈ carrier P ∧ r ∈ carrier P ∧ f = ?g ⊗P q ⊗P r"
 and deg_r: "deg R r = 0" by force
 with remainder_theorem_expression [OF f a _ _ R_not_trivial, of q r]
 show ?thesis by auto
qed

end

15.13 Sample Application of Evaluation Homomorphism

lemma UP_pre_univ_propI:
 assumes "cring R"
 and "cring S"
 and "h ∈ ring_hom R S"
shows "UP_pre_univ_prop R S h"
using assms
by (auto intro!: UP_pre_univ_prop.intro ring_hom_cring.intro
 ring_hom_cring_axioms.intro UP_cring.intro)

definition
 INTEG :: "int ring"
 where "INTEG = ([carrier = UNIV, mult = op *, one = 1, zero = 0, add
 = op +]"

lemma INTEG_cring: "cring INTEG"
 by (unfold INTEG_def) (auto intro!: cringI abelian_groupI comm_monoidI
 left_minus distrib_right)

lemma INTEG_id_eval:
 "UP_pre_univ_prop INTEG INTEG id"
 by (fast intro: UP_pre_univ_propI INTEG_cring id_ring_hom)

Interpretation now enables to import all theorems and lemmas valid in the
context of homomorphisms between INTEG and UP INTEG globally.

interpretation INTEG: UP_pre_univ_prop INTEG INTEG id "UP INTEG"
 using INTEG_id_eval by simp_all

lemma INTEG_closed [intro, simp]:
 "z ∈ carrier INTEG"
 by (unfold INTEG_def) simp

lemma INTEG_mult [simp]:
 "mult INTEG z w = z * w"
 by (unfold INTEG_def) simp

lemma INTEG_pow [simp]:
 "pow INTEG z n = z ^ n"
 by (induct n) (simp_all add: INTEG_def nat_pow_def)

lemma "eval INTEG INTEG id 10 (monom (UP INTEG) 5 2) = 500"
 by (simp add: INTEG.eval_monom)

end

References
