Theory VCG

theory VCG
imports Hoare
(* Author: Tobias Nipkow *)

theory VCG imports Hoare begin

subsection "Verification Conditions"

text{* Annotated commands: commands where loops are annotated with
invariants. *}

datatype acom =
  Askip                  ("SKIP") |
  Aassign vname aexp     ("(_ ::= _)" [1000, 61] 61) |
  Aseq   acom acom       ("_;;/ _"  [60, 61] 60) |
  Aif bexp acom acom     ("(IF _/ THEN _/ ELSE _)"  [0, 0, 61] 61) |
  Awhile assn bexp acom  ("({_}/ WHILE _/ DO _)"  [0, 0, 61] 61)

notation com.SKIP ("SKIP")

text{* Strip annotations: *}

fun strip :: "acom ⇒ com" where
"strip SKIP = SKIP" |
"strip (x ::= a) = (x ::= a)" |
"strip (C1;; C2) = (strip C1;; strip C2)" |
"strip (IF b THEN C1 ELSE C2) = (IF b THEN strip C1 ELSE strip C2)" |
"strip ({_} WHILE b DO C) = (WHILE b DO strip C)"

text{* Weakest precondition from annotated commands: *}

fun pre :: "acom ⇒ assn ⇒ assn" where
"pre SKIP Q = Q" |
"pre (x ::= a) Q = (λs. Q(s(x := aval a s)))" |
"pre (C1;; C2) Q = pre C1 (pre C2 Q)" |
"pre (IF b THEN C1 ELSE C2) Q =
  (λs. if bval b s then pre C1 Q s else pre C2 Q s)" |
"pre ({I} WHILE b DO C) Q = I"

text{* Verification condition: *}

fun vc :: "acom ⇒ assn ⇒ bool" where
"vc SKIP Q = True" |
"vc (x ::= a) Q = True" |
"vc (C1;; C2) Q = (vc C1 (pre C2 Q) ∧ vc C2 Q)" |
"vc (IF b THEN C1 ELSE C2) Q = (vc C1 Q ∧ vc C2 Q)" |
"vc ({I} WHILE b DO C) Q =
  ((∀s. (I s ∧ bval b s ⟶ pre C I s) ∧
        (I s ∧ ¬ bval b s ⟶ Q s)) ∧
    vc C I)"


text {* Soundness: *}

lemma vc_sound: "vc C Q ⟹ ⊢ {pre C Q} strip C {Q}"
proof(induction C arbitrary: Q)
  case (Awhile I b C)
  show ?case
  proof(simp, rule While')
    from `vc (Awhile I b C) Q`
    have vc: "vc C I" and IQ: "∀s. I s ∧ ¬ bval b s ⟶ Q s" and
         pre: "∀s. I s ∧ bval b s ⟶ pre C I s" by simp_all
    have "⊢ {pre C I} strip C {I}" by(rule Awhile.IH[OF vc])
    with pre show "⊢ {λs. I s ∧ bval b s} strip C {I}"
      by(rule strengthen_pre)
    show "∀s. I s ∧ ¬bval b s ⟶ Q s" by(rule IQ)
  qed
qed (auto intro: hoare.conseq)

corollary vc_sound':
  "⟦ vc C Q; ∀s. P s ⟶ pre C Q s ⟧ ⟹ ⊢ {P} strip C {Q}"
by (metis strengthen_pre vc_sound)


text{* Completeness: *}

lemma pre_mono:
  "∀s. P s ⟶ P' s ⟹ pre C P s ⟹ pre C P' s"
proof (induction C arbitrary: P P' s)
  case Aseq thus ?case by simp metis
qed simp_all

lemma vc_mono:
  "∀s. P s ⟶ P' s ⟹ vc C P ⟹ vc C P'"
proof(induction C arbitrary: P P')
  case Aseq thus ?case by simp (metis pre_mono)
qed simp_all

lemma vc_complete:
 "⊢ {P}c{Q} ⟹ ∃C. strip C = c ∧ vc C Q ∧ (∀s. P s ⟶ pre C Q s)"
  (is "_ ⟹ ∃C. ?G P c Q C")
proof (induction rule: hoare.induct)
  case Skip
  show ?case (is "∃C. ?C C")
  proof show "?C Askip" by simp qed
next
  case (Assign P a x)
  show ?case (is "∃C. ?C C")
  proof show "?C(Aassign x a)" by simp qed
next
  case (Seq P c1 Q c2 R)
  from Seq.IH obtain C1 where ih1: "?G P c1 Q C1" by blast
  from Seq.IH obtain C2 where ih2: "?G Q c2 R C2" by blast
  show ?case (is "∃C. ?C C")
  proof
    show "?C(Aseq C1 C2)"
      using ih1 ih2 by (fastforce elim!: pre_mono vc_mono)
  qed
next
  case (If P b c1 Q c2)
  from If.IH obtain C1 where ih1: "?G (λs. P s ∧ bval b s) c1 Q C1"
    by blast
  from If.IH obtain C2 where ih2: "?G (λs. P s ∧ ¬bval b s) c2 Q C2"
    by blast
  show ?case (is "∃C. ?C C")
  proof
    show "?C(Aif b C1 C2)" using ih1 ih2 by simp
  qed
next
  case (While P b c)
  from While.IH obtain C where ih: "?G (λs. P s ∧ bval b s) c P C" by blast
  show ?case (is "∃C. ?C C")
  proof show "?C(Awhile P b C)" using ih by simp qed
next
  case conseq thus ?case by(fast elim!: pre_mono vc_mono)
qed

end