Theory VCG_Total_EX2

theory VCG_Total_EX2
imports Hoare_Total_EX2
(* Author: Tobias Nipkow *)

theory VCG_Total_EX2
imports Hoare_Total_EX2
begin

subsection "Verification Conditions for Total Correctness"

text ‹
Theory ‹VCG_Total_EX› conatins a VCG built on top of a Hoare logic without logical variables.
As a result the completeness proof runs into a problem. This theory uses a Hoare logic
with logical variables and proves soundness and completeness.
›

text‹Annotated commands: commands where loops are annotated with
invariants.›

datatype acom =
  Askip                  ("SKIP") |
  Aassign vname aexp     ("(_ ::= _)" [1000, 61] 61) |
  Aseq   acom acom       ("_;;/ _"  [60, 61] 60) |
  Aif bexp acom acom     ("(IF _/ THEN _/ ELSE _)"  [0, 0, 61] 61) |
  Awhile assn2 lvname bexp acom
    ("({_'/_}/ WHILE _/ DO _)"  [0, 0, 0, 61] 61)

notation com.SKIP ("SKIP")

text‹Strip annotations:›

fun strip :: "acom ⇒ com" where
"strip SKIP = SKIP" |
"strip (x ::= a) = (x ::= a)" |
"strip (C1;; C2) = (strip C1;; strip C2)" |
"strip (IF b THEN C1 ELSE C2) = (IF b THEN strip C1 ELSE strip C2)" |
"strip ({_/_} WHILE b DO C) = (WHILE b DO strip C)"

text‹Weakest precondition from annotated commands:›

fun pre :: "acom ⇒ assn2 ⇒ assn2" where
"pre SKIP Q = Q" |
"pre (x ::= a) Q = (λl s. Q l (s(x := aval a s)))" |
"pre (C1;; C2) Q = pre C1 (pre C2 Q)" |
"pre (IF b THEN C1 ELSE C2) Q =
  (λl s. if bval b s then pre C1 Q l s else pre C2 Q l s)" |
"pre ({I/x} WHILE b DO C) Q = (λl s. ∃n. I (l(x:=n)) s)"

text‹Verification condition:›

fun vc :: "acom ⇒ assn2 ⇒ bool" where
"vc SKIP Q = True" |
"vc (x ::= a) Q = True" |
"vc (C1;; C2) Q = (vc C1 (pre C2 Q) ∧ vc C2 Q)" |
"vc (IF b THEN C1 ELSE C2) Q = (vc C1 Q ∧ vc C2 Q)" |
"vc ({I/x} WHILE b DO C) Q =
  (∀l s. (I (l(x:=Suc(l x))) s ⟶ pre C I l s) ∧
       (l x > 0 ∧ I l s ⟶ bval b s) ∧
       (I (l(x := 0)) s ⟶ ¬ bval b s ∧ Q l s) ∧
       vc C I)"

lemma vc_sound: "vc C Q ⟹ ⊢t {pre C Q} strip C {Q}"
proof(induction C arbitrary: Q)
  case (Awhile I x b C)
  show ?case
  proof(simp, rule weaken_post[OF While[of I x]], goal_cases)
    case 1 show ?case
      using Awhile.IH[of "I"] Awhile.prems by (auto intro: strengthen_pre)
  next
    case 3 show ?case
      using Awhile.prems by (simp) (metis fun_upd_triv)
  qed (insert Awhile.prems, auto)
qed (auto intro: conseq Seq If simp: Skip Assign)


text‹Completeness:›

lemma pre_mono:
  "∀l s. P l s ⟶ P' l s ⟹ pre C P l s ⟹ pre C P' l s"
proof (induction C arbitrary: P P' l s)
  case Aseq thus ?case by simp metis
qed simp_all

lemma vc_mono:
  "∀l s. P l s ⟶ P' l s ⟹ vc C P ⟹ vc C P'"
proof(induction C arbitrary: P P')
  case Aseq thus ?case by simp (metis pre_mono)
qed simp_all

lemma vc_complete:
 "⊢t {P}c{Q} ⟹ ∃C. strip C = c ∧ vc C Q ∧ (∀l s. P l s ⟶ pre C Q l s)"
  (is "_ ⟹ ∃C. ?G P c Q C")
proof (induction rule: hoaret.induct)
  case Skip
  show ?case (is "∃C. ?C C")
  proof show "?C Askip" by simp qed
next
  case (Assign P a x)
  show ?case (is "∃C. ?C C")
  proof show "?C(Aassign x a)" by simp qed
next
  case (Seq P c1 Q c2 R)
  from Seq.IH obtain C1 where ih1: "?G P c1 Q C1" by blast
  from Seq.IH obtain C2 where ih2: "?G Q c2 R C2" by blast
  show ?case (is "∃C. ?C C")
  proof
    show "?C(Aseq C1 C2)"
      using ih1 ih2 by (fastforce elim!: pre_mono vc_mono)
  qed
next
  case (If P b c1 Q c2)
  from If.IH obtain C1 where ih1: "?G (λl s. P l s ∧ bval b s) c1 Q C1"
    by blast
  from If.IH obtain C2 where ih2: "?G (λl s. P l s ∧ ¬bval b s) c2 Q C2"
    by blast
  show ?case (is "∃C. ?C C")
  proof
    show "?C(Aif b C1 C2)" using ih1 ih2 by simp
  qed
next
  case (While P x c b)
  from While.IH obtain C where
    ih: "?G (λl s. P (l(x:=Suc(l x))) s ∧ bval b s) c P C"
    by blast
  show ?case (is "∃C. ?C C")
  proof
    have "vc ({P/x} WHILE b DO C) (λl. P (l(x := 0)))"
      using ih While.hyps(2,3)
      by simp (metis fun_upd_same zero_less_Suc)
    thus "?C(Awhile P x b C)" using ih by simp
 qed
next
  case conseq thus ?case by(fast elim!: pre_mono vc_mono)
qed

end