Theory Quickcheck_Random

theory Quickcheck_Random
imports Random Code_Evaluation
(*  Title:      HOL/Quickcheck_Random.thy
    Author:     Florian Haftmann & Lukas Bulwahn, TU Muenchen
*)

section ‹A simple counterexample generator performing random testing›

theory Quickcheck_Random
imports Random Code_Evaluation Enum
begin

notation fcomp (infixl "∘>" 60)
notation scomp (infixl "∘→" 60)

setup ‹Code_Target.add_derived_target ("Quickcheck", [(Code_Runtime.target, I)])›

subsection ‹Catching Match exceptions›

axiomatization catch_match :: "'a => 'a => 'a"

code_printing
  constant catch_match  (Quickcheck) "((_) handle Match => _)"

subsection ‹The ‹random› class›

class random = typerep +
  fixes random :: "natural ⇒ Random.seed ⇒ ('a × (unit ⇒ term)) × Random.seed"


subsection ‹Fundamental and numeric types›

instantiation bool :: random
begin

definition
  "random i = Random.range 2 ∘→
    (λk. Pair (if k = 0 then Code_Evaluation.valtermify False else Code_Evaluation.valtermify True))"

instance ..

end

instantiation itself :: (typerep) random
begin

definition
  random_itself :: "natural ⇒ Random.seed ⇒ ('a itself × (unit ⇒ term)) × Random.seed"
where "random_itself _ = Pair (Code_Evaluation.valtermify TYPE('a))"

instance ..

end

instantiation char :: random
begin

definition
  "random _ = Random.select (Enum.enum :: char list) ∘→ (λc. Pair (c, λu. Code_Evaluation.term_of c))"

instance ..

end

instantiation String.literal :: random
begin

definition 
  "random _ = Pair (STR '''', λu. Code_Evaluation.term_of (STR ''''))"

instance ..

end

instantiation nat :: random
begin

definition random_nat :: "natural ⇒ Random.seed
  ⇒ (nat × (unit ⇒ Code_Evaluation.term)) × Random.seed"
where
  "random_nat i = Random.range (i + 1) ∘→ (λk. Pair (
     let n = nat_of_natural k
     in (n, λ_. Code_Evaluation.term_of n)))"

instance ..

end

instantiation int :: random
begin

definition
  "random i = Random.range (2 * i + 1) ∘→ (λk. Pair (
     let j = (if k ≥ i then int (nat_of_natural (k - i)) else - (int (nat_of_natural (i - k))))
     in (j, λ_. Code_Evaluation.term_of j)))"

instance ..

end

instantiation natural :: random
begin

definition random_natural :: "natural ⇒ Random.seed
  ⇒ (natural × (unit ⇒ Code_Evaluation.term)) × Random.seed"
where
  "random_natural i = Random.range (i + 1) ∘→ (λn. Pair (n, λ_. Code_Evaluation.term_of n))"

instance ..

end

instantiation integer :: random
begin

definition random_integer :: "natural ⇒ Random.seed
  ⇒ (integer × (unit ⇒ Code_Evaluation.term)) × Random.seed"
where
  "random_integer i = Random.range (2 * i + 1) ∘→ (λk. Pair (
     let j = (if k ≥ i then integer_of_natural (k - i) else - (integer_of_natural (i - k)))
      in (j, λ_. Code_Evaluation.term_of j)))"

instance ..

end


subsection ‹Complex generators›

text ‹Towards @{typ "'a ⇒ 'b"}›

axiomatization random_fun_aux :: "typerep ⇒ typerep ⇒ ('a ⇒ 'a ⇒ bool) ⇒ ('a ⇒ term)
  ⇒ (Random.seed ⇒ ('b × (unit ⇒ term)) × Random.seed)
  ⇒ (Random.seed ⇒ Random.seed × Random.seed)
  ⇒ Random.seed ⇒ (('a ⇒ 'b) × (unit ⇒ term)) × Random.seed"

definition random_fun_lift :: "(Random.seed ⇒ ('b × (unit ⇒ term)) × Random.seed)
  ⇒ Random.seed ⇒ (('a::term_of ⇒ 'b::typerep) × (unit ⇒ term)) × Random.seed"
where
  "random_fun_lift f =
    random_fun_aux TYPEREP('a) TYPEREP('b) (op =) Code_Evaluation.term_of f Random.split_seed"

instantiation "fun" :: ("{equal, term_of}", random) random
begin

definition
  random_fun :: "natural ⇒ Random.seed ⇒ (('a ⇒ 'b) × (unit ⇒ term)) × Random.seed"
  where "random i = random_fun_lift (random i)"

instance ..

end

text ‹Towards type copies and datatypes›

definition collapse :: "('a ⇒ ('a ⇒ 'b × 'a) × 'a) ⇒ 'a ⇒ 'b × 'a"
  where "collapse f = (f ∘→ id)"

definition beyond :: "natural ⇒ natural ⇒ natural"
  where "beyond k l = (if l > k then l else 0)"

lemma beyond_zero: "beyond k 0 = 0"
  by (simp add: beyond_def)


definition (in term_syntax) [code_unfold]:
  "valterm_emptyset = Code_Evaluation.valtermify ({} :: ('a :: typerep) set)"

definition (in term_syntax) [code_unfold]:
  "valtermify_insert x s = Code_Evaluation.valtermify insert {⋅} (x :: ('a :: typerep * _)) {⋅} s"

instantiation set :: (random) random
begin

fun random_aux_set
where
  "random_aux_set 0 j = collapse (Random.select_weight [(1, Pair valterm_emptyset)])"
| "random_aux_set (Code_Numeral.Suc i) j =
    collapse (Random.select_weight
      [(1, Pair valterm_emptyset),
       (Code_Numeral.Suc i,
        random j ∘→ (%x. random_aux_set i j ∘→ (%s. Pair (valtermify_insert x s))))])"

lemma [code]:
  "random_aux_set i j =
    collapse (Random.select_weight [(1, Pair valterm_emptyset),
      (i, random j ∘→ (%x. random_aux_set (i - 1) j ∘→ (%s. Pair (valtermify_insert x s))))])"
proof (induct i rule: natural.induct)
  case zero
  show ?case by (subst select_weight_drop_zero [symmetric])
    (simp add: random_aux_set.simps [simplified] less_natural_def)
next
  case (Suc i)
  show ?case by (simp only: random_aux_set.simps(2) [of "i"] Suc_natural_minus_one)
qed

definition "random_set i = random_aux_set i i"

instance ..

end

lemma random_aux_rec:
  fixes random_aux :: "natural ⇒ 'a"
  assumes "random_aux 0 = rhs 0"
    and "⋀k. random_aux (Code_Numeral.Suc k) = rhs (Code_Numeral.Suc k)"
  shows "random_aux k = rhs k"
  using assms by (rule natural.induct)

subsection ‹Deriving random generators for datatypes›

ML_file "Tools/Quickcheck/quickcheck_common.ML" 
ML_file "Tools/Quickcheck/random_generators.ML"


subsection ‹Code setup›

code_printing
  constant random_fun_aux  (Quickcheck) "Random'_Generators.random'_fun"
   ‹With enough criminal energy this can be abused to derive @{prop False};
  for this reason we use a distinguished target ‹Quickcheck›
  not spoiling the regular trusted code generation›

code_reserved Quickcheck Random_Generators

no_notation fcomp (infixl "∘>" 60)
no_notation scomp (infixl "∘→" 60)
    
hide_const (open) catch_match random collapse beyond random_fun_aux random_fun_lift

hide_fact (open) collapse_def beyond_def random_fun_lift_def

end