Isabelle/HOL Exercises
Arithmetic

Power, Sum

Power

Define a primitive recursive function $pow\ x\ n$ that computes x^n on natural numbers.

consts
 $pow :: \text{"nat => nat => nat"}$

Prove the well known equation $x^{m\cdot n} = (x^m)^n$:

theorem pow_mult: "$pow\ x\ (m\ *\ n) = pow\ (pow\ x\ m)\ n$"

Hint: prove a suitable lemma first. If you need to appeal to associativity and commutativity of multiplication: the corresponding simplification rules are named $mult_ac$.

Summation

Define a (primitive recursive) function $sum\ ns$ that sums a list of natural numbers: $sum[n_1, \ldots, n_k] = n_1 + \cdots + n_k$.

consts
 $sum :: \text{"nat list => nat"}$

Show that sum is compatible with rev. You may need a lemma.

theorem sum_rev: "$sum\ (rev\ ns) = sum\ ns$"

Define a function $Sum\ f\ k$ that sums f from 0 up to $k-1$: $Sum\ f\ k = f\ 0 + \cdots + f(k-1)$.

consts
 $Sum :: \text{"(nat => nat) => nat => nat"}$

Show the following equations for the pointwise summation of functions. Determine first what the expression $whatever$ should be.

theorem "$Sum\ (%i.\ f\ i\ +\ g\ i)\ k = Sum\ f\ k + Sum\ g\ k$"

theorem "$Sum\ f\ (k + l) = Sum\ f\ k + Sum\ whatever\ l$"

What is the relationship between sum and Sum? Prove the following equation, suitably instantiated.
Theorem "Sum f k = sum whatever"

Hint: familiarize yourself with the predefined functions `map` and `[i..<j]` on lists in theory `List`.