Magical Methods (Computing with Natural Numbers)

A book about Vedic mathematics describes three methods to make the calculation of squares of natural numbers easier:

- **MM1**: Numbers whose predecessors have squares that are known or can easily be calculated. For example:
 - Needed: 61^2
 - Given: $60^2 = 3600$
 - Observe: $61^2 = 3600 + 60 + 61 = 3721$

- **MM2**: Numbers greater than, but near 100. For example:
 - Needed: 102^2
 - Let $h = 102 - 100 = 2$, $h^2 = 4$
 - Observe: $102^2 = (102 + h)$ shifted two places to the left $+h^2 = 10404$

- **MM3**: Numbers ending in 5. For example:
 - Needed: 85^2
 - Observe: $85^2 = (8*9)$ appended to $25 = 7225$
 - Needed: 995^2
 - Observe: $995^2 = (99*100)$ appended to $25 = 990025$

In this exercise we will show that these methods are not so magical after all!

- Based on **MM1** define a function sq that calculates the square of a natural number.

- Prove the correctness of sq (i.e. $sq \ n = n \ * \ n$).

- Formulate and prove the correctness of **MM2**.
 - Hints:
 - Generalise **MM2** for an arbitrary constant (instead of 100).
 - Universally quantify all variables other than the induction variable.

- Formulate and prove the correctness of **MM3**.
 - Hints:
– Try to formulate the property ‘numbers ending in 5’ such that it is easy to get to the rest of the number.

– Proving the binomial formula for \((a + b)^2\) can be of some help.