Theory Bij

theory Bij
imports Group
(*  Title:      HOL/Algebra/Bij.thy
    Author:     Florian Kammueller, with new proofs by L C Paulson

theory Bij
imports Group

section ‹Bijections of a Set, Permutation and Automorphism Groups›

  Bij :: "'a set ⇒ ('a ⇒ 'a) set"
    ― ‹Only extensional functions, since otherwise we get too many.›
   where "Bij S = extensional S ∩ {f. bij_betw f S S}"

  BijGroup :: "'a set ⇒ ('a ⇒ 'a) monoid"
  where "BijGroup S =
    ⦇carrier = Bij S,
     mult = λg ∈ Bij S. λf ∈ Bij S. compose S g f,
     one = λx ∈ S. x⦈"

declare Id_compose [simp] compose_Id [simp]

lemma Bij_imp_extensional: "f ∈ Bij S ⟹ f ∈ extensional S"
  by (simp add: Bij_def)

lemma Bij_imp_funcset: "f ∈ Bij S ⟹ f ∈ S → S"
  by (auto simp add: Bij_def bij_betw_imp_funcset)

subsection ‹Bijections Form a Group›

lemma restrict_inv_into_Bij: "f ∈ Bij S ⟹ (λx ∈ S. (inv_into S f) x) ∈ Bij S"
  by (simp add: Bij_def bij_betw_inv_into)

lemma id_Bij: "(λx∈S. x) ∈ Bij S "
  by (auto simp add: Bij_def bij_betw_def inj_on_def)

lemma compose_Bij: "⟦x ∈ Bij S; y ∈ Bij S⟧ ⟹ compose S x y ∈ Bij S"
  by (auto simp add: Bij_def bij_betw_compose) 

lemma Bij_compose_restrict_eq:
     "f ∈ Bij S ⟹ compose S (restrict (inv_into S f) S) f = (λx∈S. x)"
  by (simp add: Bij_def compose_inv_into_id)

theorem group_BijGroup: "group (BijGroup S)"
apply (simp add: BijGroup_def)
apply (rule groupI)
    apply (simp add: compose_Bij)
   apply (simp add: id_Bij)
  apply (simp add: compose_Bij)
  apply (blast intro: compose_assoc [symmetric] dest: Bij_imp_funcset)
 apply (simp add: id_Bij Bij_imp_funcset Bij_imp_extensional, simp)
apply (blast intro: Bij_compose_restrict_eq restrict_inv_into_Bij)

subsection‹Automorphisms Form a Group›

lemma Bij_inv_into_mem: "⟦ f ∈ Bij S;  x ∈ S⟧ ⟹ inv_into S f x ∈ S"
by (simp add: Bij_def bij_betw_def inv_into_into)

lemma Bij_inv_into_lemma:
 assumes eq: "⋀x y. ⟦x ∈ S; y ∈ S⟧ ⟹ h(g x y) = g (h x) (h y)"
 shows "⟦h ∈ Bij S;  g ∈ S → S → S;  x ∈ S;  y ∈ S⟧
        ⟹ inv_into S h (g x y) = g (inv_into S h x) (inv_into S h y)"
apply (simp add: Bij_def bij_betw_def)
apply (subgoal_tac "∃x'∈S. ∃y'∈S. x = h x' ∧ y = h y'", clarify)
 apply (simp add: eq [symmetric] inv_f_f funcset_mem [THEN funcset_mem], blast)

  auto :: "('a, 'b) monoid_scheme ⇒ ('a ⇒ 'a) set"
  where "auto G = hom G G ∩ Bij (carrier G)"

  AutoGroup :: "('a, 'c) monoid_scheme ⇒ ('a ⇒ 'a) monoid"
  where "AutoGroup G = BijGroup (carrier G) ⦇carrier := auto G⦈"

lemma (in group) id_in_auto: "(λx ∈ carrier G. x) ∈ auto G"
  by (simp add: auto_def hom_def restrictI group.axioms id_Bij)

lemma (in group) mult_funcset: "mult G ∈ carrier G → carrier G → carrier G"
  by (simp add:  Pi_I group.axioms)

lemma (in group) restrict_inv_into_hom:
      "⟦h ∈ hom G G; h ∈ Bij (carrier G)⟧
       ⟹ restrict (inv_into (carrier G) h) (carrier G) ∈ hom G G"
  by (simp add: hom_def Bij_inv_into_mem restrictI mult_funcset
                group.axioms Bij_inv_into_lemma)

lemma inv_BijGroup:
     "f ∈ Bij S ⟹ m_inv (BijGroup S) f = (λx ∈ S. (inv_into S f) x)"
apply (rule group.inv_equality)
apply (rule group_BijGroup)
apply (simp_all add:BijGroup_def restrict_inv_into_Bij Bij_compose_restrict_eq)

lemma (in group) subgroup_auto:
      "subgroup (auto G) (BijGroup (carrier G))"
proof (rule subgroup.intro)
  show "auto G ⊆ carrier (BijGroup (carrier G))"
    by (force simp add: auto_def BijGroup_def)
  fix x y
  assume "x ∈ auto G" "y ∈ auto G" 
  thus "x ⊗BijGroup (carrier G) y ∈ auto G"
    by (force simp add: BijGroup_def is_group auto_def Bij_imp_funcset 
                        group.hom_compose compose_Bij)
  show "𝟭BijGroup (carrier G) ∈ auto G" by (simp add:  BijGroup_def id_in_auto)
  fix x 
  assume "x ∈ auto G" 
  thus "invBijGroup (carrier G) x ∈ auto G"
    by (simp del: restrict_apply
        add: inv_BijGroup auto_def restrict_inv_into_Bij restrict_inv_into_hom)

theorem (in group) AutoGroup: "group (AutoGroup G)"
by (simp add: AutoGroup_def subgroup.subgroup_is_group subgroup_auto