Theory Galois_Connection

theory Galois_Connection
imports Complete_Lattice
(*  Title:      HOL/Algebra/Galois_Connection.thy
    Author:     Alasdair Armstrong and Simon Foster
    Copyright:  Alasdair Armstrong and Simon Foster
*)

theory Galois_Connection
  imports Complete_Lattice
begin

section ‹Galois connections›

subsection ‹Definition and basic properties›

record ('a, 'b, 'c, 'd) galcon =
  orderA :: "('a, 'c) gorder_scheme" ("𝒳ı")
  orderB :: "('b, 'd) gorder_scheme" ("𝒴ı")
  lower  :: "'a ⇒ 'b" (*ı")
  upper  :: "'b ⇒ 'a" (*ı")

type_synonym ('a, 'b) galois = "('a, 'b, unit, unit) galcon"

abbreviation "inv_galcon G ≡ ⦇ orderA = inv_gorder 𝒴G, orderB = inv_gorder 𝒳G, lower = upper G, upper = lower G ⦈"

definition comp_galcon :: "('b, 'c) galois ⇒ ('a, 'b) galois ⇒ ('a, 'c) galois" (infixr "∘g" 85)
  where "G ∘g F = ⦇ orderA = orderA F, orderB = orderB G, lower = lower G ∘ lower F, upper = upper F ∘ upper G ⦈"

definition id_galcon :: "'a gorder ⇒ ('a, 'a) galois" ("Ig") where
"Ig(A) = ⦇ orderA = A, orderB = A, lower = id, upper = id ⦈"


subsection ‹Well-typed connections›

locale connection =
  fixes G (structure)
  assumes is_order_A: "partial_order 𝒳"
  and is_order_B: "partial_order 𝒴"
  and lower_closure: * ∈ carrier 𝒳 → carrier 𝒴"
  and upper_closure: * ∈ carrier 𝒴 → carrier 𝒳"
begin

  lemma lower_closed: "x ∈ carrier 𝒳 ⟹ π* x ∈ carrier 𝒴"
    using lower_closure by auto

  lemma upper_closed: "y ∈ carrier 𝒴 ⟹ π* y ∈ carrier 𝒳"
    using upper_closure by auto

end


subsection ‹Galois connections›
  
locale galois_connection = connection +
  assumes galois_property: "⟦x ∈ carrier 𝒳; y ∈ carrier 𝒴⟧ ⟹ π* x ⊑𝒴 y ⟷ x ⊑𝒳 π* y"
begin

  lemma is_weak_order_A: "weak_partial_order 𝒳"
  proof -
    interpret po: partial_order 𝒳
      by (metis is_order_A)
    show ?thesis ..
  qed

  lemma is_weak_order_B: "weak_partial_order 𝒴"
  proof -
    interpret po: partial_order 𝒴
      by (metis is_order_B)
    show ?thesis ..
  qed

  lemma right: "⟦x ∈ carrier 𝒳; y ∈ carrier 𝒴; π* x ⊑𝒴 y⟧ ⟹ x ⊑𝒳 π* y"
    by (metis galois_property)

  lemma left: "⟦x ∈ carrier 𝒳; y ∈ carrier 𝒴; x ⊑𝒳 π* y⟧ ⟹ π* x ⊑𝒴 y"
    by (metis galois_property)

  lemma deflation: "y ∈ carrier 𝒴 ⟹ π** y) ⊑𝒴 y"
    by (metis Pi_iff is_weak_order_A left upper_closure weak_partial_order.le_refl)

  lemma inflation: "x ∈ carrier 𝒳 ⟹ x ⊑𝒳 π** x)"
    by (metis (no_types, lifting) PiE galois_connection.right galois_connection_axioms is_weak_order_B lower_closure weak_partial_order.le_refl)

  lemma lower_iso: "isotone 𝒳 𝒴 π*"
  proof (auto simp add:isotone_def)
    show "weak_partial_order 𝒳"
      by (metis is_weak_order_A)
    show "weak_partial_order 𝒴"
      by (metis is_weak_order_B)
    fix x y
    assume a: "x ∈ carrier 𝒳" "y ∈ carrier 𝒳" "x ⊑𝒳 y"
    have b: * y ∈ carrier 𝒴"
      using a(2) lower_closure by blast
    then have ** y) ∈ carrier 𝒳"
      using upper_closure by blast
    then have "x ⊑𝒳 π** y)"
      by (meson a inflation is_weak_order_A weak_partial_order.le_trans)
    thus * x ⊑𝒴 π* y"
      by (meson b a(1) Pi_iff galois_property lower_closure upper_closure)
  qed

  lemma upper_iso: "isotone 𝒴 𝒳 π*"
    apply (auto simp add:isotone_def)
    apply (metis is_weak_order_B)
    apply (metis is_weak_order_A)
    apply (metis (no_types, lifting) Pi_mem deflation is_weak_order_B lower_closure right upper_closure weak_partial_order.le_trans)
  done

  lemma lower_comp: "x ∈ carrier 𝒳 ⟹ π*** x)) = π* x"
    by (meson deflation funcset_mem inflation is_order_B lower_closure lower_iso partial_order.le_antisym upper_closure use_iso2)

  lemma lower_comp': "x ∈ carrier 𝒳 ⟹ (π* ∘ π* ∘ π*) x = π* x"
    by (simp add: lower_comp)

  lemma upper_comp: "y ∈ carrier 𝒴 ⟹ π*** y)) = π* y"
  proof -
    assume a1: "y ∈ carrier 𝒴"
    hence f1: * y ∈ carrier 𝒳" using upper_closure by blast 
    have f2: ** y) ⊑𝒴 y" using a1 deflation by blast
    have f3: *** y)) ∈ carrier 𝒳"
      using f1 lower_closure upper_closure by auto 
    have ** y) ∈ carrier 𝒴" using f1 lower_closure by blast   
    thus *** y)) = π* y"
      by (meson a1 f1 f2 f3 inflation is_order_A partial_order.le_antisym upper_iso use_iso2) 
  qed

  lemma upper_comp': "y ∈ carrier 𝒴 ⟹ (π* ∘ π* ∘ π*) y = π* y"
    by (simp add: upper_comp)

  lemma adjoint_idem1: "idempotent 𝒴 (π* ∘ π*)"
    by (simp add: idempotent_def is_order_B partial_order.eq_is_equal upper_comp)

  lemma adjoint_idem2: "idempotent 𝒳 (π* ∘ π*)"
    by (simp add: idempotent_def is_order_A partial_order.eq_is_equal lower_comp)

  lemma fg_iso: "isotone 𝒴 𝒴 (π* ∘ π*)"
    by (metis iso_compose lower_closure lower_iso upper_closure upper_iso)

  lemma gf_iso: "isotone 𝒳 𝒳 (π* ∘ π*)"
    by (metis iso_compose lower_closure lower_iso upper_closure upper_iso)

  lemma semi_inverse1: "x ∈ carrier 𝒳 ⟹ π* x = π*** x))"
    by (metis lower_comp)

  lemma semi_inverse2: "x ∈ carrier 𝒴 ⟹ π* x = π*** x))"
    by (metis upper_comp)

  theorem lower_by_complete_lattice:
    assumes "complete_lattice 𝒴" "x ∈ carrier 𝒳"
    shows *(x) = ⨅𝒴 { y ∈ carrier 𝒴. x ⊑𝒳 π*(y) }"
  proof -
    interpret Y: complete_lattice 𝒴
      by (simp add: assms)

    show ?thesis
    proof (rule Y.le_antisym)
      show x: * x ∈ carrier 𝒴"
        using assms(2) lower_closure by blast
      show * x ⊑𝒴𝒴{y ∈ carrier 𝒴. x ⊑𝒳 π* y}"
      proof (rule Y.weak.inf_greatest)
        show "{y ∈ carrier 𝒴. x ⊑𝒳 π* y} ⊆ carrier 𝒴"
          by auto
        show * x ∈ carrier 𝒴" by (fact x)
        fix z
        assume "z ∈ {y ∈ carrier 𝒴. x ⊑𝒳 π* y}" 
        thus * x ⊑𝒴 z"
          using assms(2) left by auto
      qed
      show "⨅𝒴{y ∈ carrier 𝒴. x ⊑𝒳 π* y} ⊑𝒴 π* x"
      proof (rule Y.weak.inf_lower)
        show "{y ∈ carrier 𝒴. x ⊑𝒳 π* y} ⊆ carrier 𝒴"
          by auto
        show * x ∈ {y ∈ carrier 𝒴. x ⊑𝒳 π* y}"
        proof (auto)
          show * x ∈ carrier 𝒴" by (fact x)
          show "x ⊑𝒳 π** x)"
            using assms(2) inflation by blast
        qed
      qed
      show "⨅𝒴{y ∈ carrier 𝒴. x ⊑𝒳 π* y} ∈ carrier 𝒴"
       by (auto intro: Y.weak.inf_closed)
    qed
  qed

  theorem upper_by_complete_lattice:
    assumes "complete_lattice 𝒳" "y ∈ carrier 𝒴"
    shows *(y) = ⨆𝒳 { x ∈ carrier 𝒳. π*(x) ⊑𝒴 y }"
  proof -
    interpret X: complete_lattice 𝒳
      by (simp add: assms)
    show ?thesis
    proof (rule X.le_antisym)
      show y: * y ∈ carrier 𝒳"
        using assms(2) upper_closure by blast
      show * y ⊑𝒳𝒳{x ∈ carrier 𝒳. π* x ⊑𝒴 y}"
      proof (rule X.weak.sup_upper)
        show "{x ∈ carrier 𝒳. π* x ⊑𝒴 y} ⊆ carrier 𝒳"
          by auto
        show * y ∈ {x ∈ carrier 𝒳. π* x ⊑𝒴 y}"
        proof (auto)
          show * y ∈ carrier 𝒳" by (fact y)
          show ** y) ⊑𝒴 y"
            by (simp add: assms(2) deflation)
        qed
      qed
      show "⨆𝒳{x ∈ carrier 𝒳. π* x ⊑𝒴 y} ⊑𝒳 π* y"
      proof (rule X.weak.sup_least)
        show "{x ∈ carrier 𝒳. π* x ⊑𝒴 y} ⊆ carrier 𝒳"
          by auto
        show * y ∈ carrier 𝒳" by (fact y)
        fix z
        assume "z ∈ {x ∈ carrier 𝒳. π* x ⊑𝒴 y}" 
        thus "z ⊑𝒳 π* y"
          by (simp add: assms(2) right)
      qed
      show "⨆𝒳{x ∈ carrier 𝒳. π* x ⊑𝒴 y} ∈ carrier 𝒳"
       by (auto intro: X.weak.sup_closed)
    qed
  qed

end

lemma dual_galois [simp]: " galois_connection ⦇ orderA = inv_gorder B, orderB = inv_gorder A, lower = f, upper = g ⦈ 
                          = galois_connection ⦇ orderA = A, orderB = B, lower = g, upper = f ⦈"
  by (auto simp add: galois_connection_def galois_connection_axioms_def connection_def dual_order_iff)

definition lower_adjoint :: "('a, 'c) gorder_scheme ⇒ ('b, 'd) gorder_scheme ⇒ ('a ⇒ 'b) ⇒ bool" where
  "lower_adjoint A B f ≡ ∃g. galois_connection ⦇ orderA = A, orderB = B, lower = f, upper = g ⦈"

definition upper_adjoint :: "('a, 'c) gorder_scheme ⇒ ('b, 'd) gorder_scheme ⇒ ('b ⇒ 'a) ⇒ bool" where
  "upper_adjoint A B g ≡ ∃f. galois_connection ⦇ orderA = A, orderB = B, lower = f, upper = g ⦈"

lemma lower_adjoint_dual [simp]: "lower_adjoint (inv_gorder A) (inv_gorder B) f = upper_adjoint B A f"
  by (simp add: lower_adjoint_def upper_adjoint_def)

lemma upper_adjoint_dual [simp]: "upper_adjoint (inv_gorder A) (inv_gorder B) f = lower_adjoint B A f"
  by (simp add: lower_adjoint_def upper_adjoint_def)

lemma lower_type: "lower_adjoint A B f ⟹ f ∈ carrier A → carrier B"
  by (auto simp add:lower_adjoint_def galois_connection_def galois_connection_axioms_def connection_def)

lemma upper_type: "upper_adjoint A B g ⟹ g ∈ carrier B → carrier A"
  by (auto simp add:upper_adjoint_def galois_connection_def galois_connection_axioms_def connection_def)


subsection ‹Composition of Galois connections›

lemma id_galois: "partial_order A ⟹ galois_connection (Ig(A))"
  by (simp add: id_galcon_def galois_connection_def galois_connection_axioms_def connection_def)

lemma comp_galcon_closed:
  assumes "galois_connection G" "galois_connection F" "𝒴F = 𝒳G"
  shows "galois_connection (G ∘g F)"
proof -
  interpret F: galois_connection F
    by (simp add: assms)
  interpret G: galois_connection G
    by (simp add: assms)
  
  have "partial_order 𝒳G ∘g F"
    by (simp add: F.is_order_A comp_galcon_def)
  moreover have "partial_order 𝒴G ∘g F"
    by (simp add: G.is_order_B comp_galcon_def)
  moreover have *G ∘ π*F ∈ carrier 𝒳F → carrier 𝒴G"
    using F.lower_closure G.lower_closure assms(3) by auto
  moreover have *F ∘ π*G ∈ carrier 𝒴G → carrier 𝒳F"
    using F.upper_closure G.upper_closure assms(3) by auto
  moreover 
  have "⋀ x y. ⟦x ∈ carrier 𝒳F; y ∈ carrier 𝒴G ⟧ ⟹ 
               (π*G*F x) ⊑𝒴G y) = (x ⊑𝒳F π*F*G y))"
    by (metis F.galois_property F.lower_closure G.galois_property G.upper_closure assms(3) Pi_iff)
  ultimately show ?thesis
    by (simp add: comp_galcon_def galois_connection_def galois_connection_axioms_def connection_def)
qed

lemma comp_galcon_right_unit [simp]: "F ∘g Ig(𝒳F) = F"
  by (simp add: comp_galcon_def id_galcon_def)

lemma comp_galcon_left_unit [simp]: "Ig(𝒴F) ∘g F = F"
  by (simp add: comp_galcon_def id_galcon_def)

lemma galois_connectionI:
  assumes
    "partial_order A" "partial_order B"
    "L ∈ carrier A → carrier B" "R ∈ carrier B → carrier A"
    "isotone A B L" "isotone B A R" 
    "⋀ x y. ⟦ x ∈ carrier A; y ∈ carrier B ⟧ ⟹ L x ⊑B y ⟷ x ⊑A R y"
  shows "galois_connection ⦇ orderA = A, orderB = B, lower = L, upper = R ⦈"
  using assms by (simp add: galois_connection_def connection_def galois_connection_axioms_def)

lemma galois_connectionI':
  assumes
    "partial_order A" "partial_order B"
    "L ∈ carrier A → carrier B" "R ∈ carrier B → carrier A"
    "isotone A B L" "isotone B A R" 
    "⋀ X. X ∈ carrier(B) ⟹ L(R(X)) ⊑B X"
    "⋀ X. X ∈ carrier(A) ⟹ X ⊑A R(L(X))"
  shows "galois_connection ⦇ orderA = A, orderB = B, lower = L, upper = R ⦈"
  using assms
  by (auto simp add: galois_connection_def connection_def galois_connection_axioms_def, (meson PiE isotone_def weak_partial_order.le_trans)+)


subsection ‹Retracts›

locale retract = galois_connection +
  assumes retract_property: "x ∈ carrier 𝒳 ⟹ π** x) ⊑𝒳 x"
begin
  lemma retract_inverse: "x ∈ carrier 𝒳 ⟹ π** x) = x"
    by (meson funcset_mem inflation is_order_A lower_closure partial_order.le_antisym retract_axioms retract_axioms_def retract_def upper_closure)

  lemma retract_injective: "inj_on π* (carrier 𝒳)"
    by (metis inj_onI retract_inverse)
end  

theorem comp_retract_closed:
  assumes "retract G" "retract F" "𝒴F = 𝒳G"
  shows "retract (G ∘g F)"
proof -
  interpret f: retract F
    by (simp add: assms)
  interpret g: retract G
    by (simp add: assms)
  interpret gf: galois_connection "(G ∘g F)"
    by (simp add: assms(1) assms(2) assms(3) comp_galcon_closed retract.axioms(1))
  show ?thesis
  proof
    fix x
    assume "x ∈ carrier 𝒳G ∘g F"
    thus "le 𝒳G ∘g F*G ∘g F*G ∘g F x)) x"
      using assms(3) f.inflation f.lower_closed f.retract_inverse g.retract_inverse by (auto simp add: comp_galcon_def)
  qed
qed


subsection ‹Coretracts›
  
locale coretract = galois_connection +
  assumes coretract_property: "y ∈ carrier 𝒴 ⟹ y ⊑𝒴 π** y)"
begin
  lemma coretract_inverse: "y ∈ carrier 𝒴 ⟹ π** y) = y"
    by (meson coretract_axioms coretract_axioms_def coretract_def deflation funcset_mem is_order_B lower_closure partial_order.le_antisym upper_closure)
 
  lemma retract_injective: "inj_on π* (carrier 𝒴)"
    by (metis coretract_inverse inj_onI)
end  

theorem comp_coretract_closed:
  assumes "coretract G" "coretract F" "𝒴F = 𝒳G"
  shows "coretract (G ∘g F)"
proof -
  interpret f: coretract F
    by (simp add: assms)
  interpret g: coretract G
    by (simp add: assms)
  interpret gf: galois_connection "(G ∘g F)"
    by (simp add: assms(1) assms(2) assms(3) comp_galcon_closed coretract.axioms(1))
  show ?thesis
  proof
    fix y
    assume "y ∈ carrier 𝒴G ∘g F"
    thus "le 𝒴G ∘g F y (π*G ∘g F*G ∘g F y))"
      by (simp add: comp_galcon_def assms(3) f.coretract_inverse g.coretract_property g.upper_closed)
  qed
qed


subsection ‹Galois Bijections›
  
locale galois_bijection = connection +
  assumes lower_iso: "isotone 𝒳 𝒴 π*" 
  and upper_iso: "isotone 𝒴 𝒳 π*"
  and lower_inv_eq: "x ∈ carrier 𝒳 ⟹ π** x) = x"
  and upper_inv_eq: "y ∈ carrier 𝒴 ⟹ π** y) = y"
begin

  lemma lower_bij: "bij_betw π* (carrier 𝒳) (carrier 𝒴)"
    by (rule bij_betwI[where g=*"], auto intro: upper_inv_eq lower_inv_eq upper_closed lower_closed)  

  lemma upper_bij: "bij_betw π* (carrier 𝒴) (carrier 𝒳)"
    by (rule bij_betwI[where g=*"], auto intro: upper_inv_eq lower_inv_eq upper_closed lower_closed)  

sublocale gal_bij_conn: galois_connection
  apply (unfold_locales, auto)
  using lower_closed lower_inv_eq upper_iso use_iso2 apply fastforce
  using lower_iso upper_closed upper_inv_eq use_iso2 apply fastforce
done

sublocale gal_bij_ret: retract
  by (unfold_locales, simp add: gal_bij_conn.is_weak_order_A lower_inv_eq weak_partial_order.le_refl)

sublocale gal_bij_coret: coretract
  by (unfold_locales, simp add: gal_bij_conn.is_weak_order_B upper_inv_eq weak_partial_order.le_refl)

end

theorem comp_galois_bijection_closed:
  assumes "galois_bijection G" "galois_bijection F" "𝒴F = 𝒳G"
  shows "galois_bijection (G ∘g F)"
proof -
  interpret f: galois_bijection F
    by (simp add: assms)
  interpret g: galois_bijection G
    by (simp add: assms)
  interpret gf: galois_connection "(G ∘g F)"
    by (simp add: assms(3) comp_galcon_closed f.gal_bij_conn.galois_connection_axioms g.gal_bij_conn.galois_connection_axioms galois_connection.axioms(1))
  show ?thesis
  proof
    show "isotone 𝒳G ∘g F 𝒴G ∘g F π*G ∘g F"
      by (simp add: comp_galcon_def, metis comp_galcon_def galcon.select_convs(1) galcon.select_convs(2) galcon.select_convs(3) gf.lower_iso)
    show "isotone 𝒴G ∘g F 𝒳G ∘g F π*G ∘g F"
      by (simp add: gf.upper_iso)
    fix x
    assume "x ∈ carrier 𝒳G ∘g F"
    thus *G ∘g F*G ∘g F x) = x"
      using assms(3) f.lower_closed f.lower_inv_eq g.lower_inv_eq by (auto simp add: comp_galcon_def)
  next
    fix y
    assume "y ∈ carrier 𝒴G ∘g F"
    thus *G ∘g F*G ∘g F y) = y"
      by (simp add: comp_galcon_def assms(3) f.upper_inv_eq g.upper_closed g.upper_inv_eq)
  qed
qed

end