# Theory Path_Connected

theory Path_Connected
imports Continuous_Extension Continuum_Not_Denumerable
```(*  Title:      HOL/Analysis/Path_Connected.thy
Authors:    LC Paulson and Robert Himmelmann (TU Muenchen), based on material from HOL Light
*)

section ‹Continuous paths and path-connected sets›

theory Path_Connected
imports Continuous_Extension Continuum_Not_Denumerable
begin

subsection ‹Paths and Arcs›

definition%important path :: "(real ⇒ 'a::topological_space) ⇒ bool"
where "path g ⟷ continuous_on {0..1} g"

definition%important pathstart :: "(real ⇒ 'a::topological_space) ⇒ 'a"
where "pathstart g = g 0"

definition%important pathfinish :: "(real ⇒ 'a::topological_space) ⇒ 'a"
where "pathfinish g = g 1"

definition%important path_image :: "(real ⇒ 'a::topological_space) ⇒ 'a set"
where "path_image g = g ` {0 .. 1}"

definition%important reversepath :: "(real ⇒ 'a::topological_space) ⇒ real ⇒ 'a"
where "reversepath g = (λx. g(1 - x))"

definition%important joinpaths :: "(real ⇒ 'a::topological_space) ⇒ (real ⇒ 'a) ⇒ real ⇒ 'a"
(infixr "+++" 75)
where "g1 +++ g2 = (λx. if x ≤ 1/2 then g1 (2 * x) else g2 (2 * x - 1))"

definition%important simple_path :: "(real ⇒ 'a::topological_space) ⇒ bool"
where "simple_path g ⟷
path g ∧ (∀x∈{0..1}. ∀y∈{0..1}. g x = g y ⟶ x = y ∨ x = 0 ∧ y = 1 ∨ x = 1 ∧ y = 0)"

definition%important arc :: "(real ⇒ 'a :: topological_space) ⇒ bool"
where "arc g ⟷ path g ∧ inj_on g {0..1}"

subsection%unimportant‹Invariance theorems›

lemma path_eq: "path p ⟹ (⋀t. t ∈ {0..1} ⟹ p t = q t) ⟹ path q"
using continuous_on_eq path_def by blast

lemma path_continuous_image: "path g ⟹ continuous_on (path_image g) f ⟹ path(f ∘ g)"
unfolding path_def path_image_def
using continuous_on_compose by blast

lemma path_translation_eq:
fixes g :: "real ⇒ 'a :: real_normed_vector"
shows "path((λx. a + x) ∘ g) = path g"
proof -
have g: "g = (λx. -a + x) ∘ ((λx. a + x) ∘ g)"
by (rule ext) simp
show ?thesis
unfolding path_def
apply safe
apply (subst g)
apply (rule continuous_on_compose)
apply (auto intro: continuous_intros)
done
qed

lemma path_linear_image_eq:
fixes f :: "'a::euclidean_space ⇒ 'b::euclidean_space"
assumes "linear f" "inj f"
shows "path(f ∘ g) = path g"
proof -
from linear_injective_left_inverse [OF assms]
obtain h where h: "linear h" "h ∘ f = id"
by blast
then have g: "g = h ∘ (f ∘ g)"
by (metis comp_assoc id_comp)
show ?thesis
unfolding path_def
using h assms
by (metis g continuous_on_compose linear_continuous_on linear_conv_bounded_linear)
qed

lemma pathstart_translation: "pathstart((λx. a + x) ∘ g) = a + pathstart g"

lemma pathstart_linear_image_eq: "linear f ⟹ pathstart(f ∘ g) = f(pathstart g)"

lemma pathfinish_translation: "pathfinish((λx. a + x) ∘ g) = a + pathfinish g"

lemma pathfinish_linear_image: "linear f ⟹ pathfinish(f ∘ g) = f(pathfinish g)"

lemma path_image_translation: "path_image((λx. a + x) ∘ g) = (λx. a + x) ` (path_image g)"

lemma path_image_linear_image: "linear f ⟹ path_image(f ∘ g) = f ` (path_image g)"

lemma reversepath_translation: "reversepath((λx. a + x) ∘ g) = (λx. a + x) ∘ reversepath g"
by (rule ext) (simp add: reversepath_def)

lemma reversepath_linear_image: "linear f ⟹ reversepath(f ∘ g) = f ∘ reversepath g"
by (rule ext) (simp add: reversepath_def)

lemma joinpaths_translation:
"((λx. a + x) ∘ g1) +++ ((λx. a + x) ∘ g2) = (λx. a + x) ∘ (g1 +++ g2)"
by (rule ext) (simp add: joinpaths_def)

lemma joinpaths_linear_image: "linear f ⟹ (f ∘ g1) +++ (f ∘ g2) = f ∘ (g1 +++ g2)"
by (rule ext) (simp add: joinpaths_def)

lemma simple_path_translation_eq:
fixes g :: "real ⇒ 'a::euclidean_space"
shows "simple_path((λx. a + x) ∘ g) = simple_path g"

lemma simple_path_linear_image_eq:
fixes f :: "'a::euclidean_space ⇒ 'b::euclidean_space"
assumes "linear f" "inj f"
shows "simple_path(f ∘ g) = simple_path g"
using assms inj_on_eq_iff [of f]
by (auto simp: path_linear_image_eq simple_path_def path_translation_eq)

lemma arc_translation_eq:
fixes g :: "real ⇒ 'a::euclidean_space"
shows "arc((λx. a + x) ∘ g) = arc g"
by (auto simp: arc_def inj_on_def path_translation_eq)

lemma arc_linear_image_eq:
fixes f :: "'a::euclidean_space ⇒ 'b::euclidean_space"
assumes "linear f" "inj f"
shows  "arc(f ∘ g) = arc g"
using assms inj_on_eq_iff [of f]
by (auto simp: arc_def inj_on_def path_linear_image_eq)

lemma continuous_on_path: "path f ⟹ t ⊆ {0..1} ⟹ continuous_on t f"
using continuous_on_subset path_def by blast

lemma arc_imp_simple_path: "arc g ⟹ simple_path g"
by (simp add: arc_def inj_on_def simple_path_def)

lemma arc_imp_path: "arc g ⟹ path g"
using arc_def by blast

lemma arc_imp_inj_on: "arc g ⟹ inj_on g {0..1}"
by (auto simp: arc_def)

lemma simple_path_imp_path: "simple_path g ⟹ path g"
using simple_path_def by blast

lemma simple_path_cases: "simple_path g ⟹ arc g ∨ pathfinish g = pathstart g"
unfolding simple_path_def arc_def inj_on_def pathfinish_def pathstart_def
by force

lemma simple_path_imp_arc: "simple_path g ⟹ pathfinish g ≠ pathstart g ⟹ arc g"
using simple_path_cases by auto

lemma arc_distinct_ends: "arc g ⟹ pathfinish g ≠ pathstart g"
unfolding arc_def inj_on_def pathfinish_def pathstart_def
by fastforce

lemma arc_simple_path: "arc g ⟷ simple_path g ∧ pathfinish g ≠ pathstart g"
using arc_distinct_ends arc_imp_simple_path simple_path_cases by blast

lemma simple_path_eq_arc: "pathfinish g ≠ pathstart g ⟹ (simple_path g = arc g)"

lemma path_image_const [simp]: "path_image (λt. a) = {a}"
by (force simp: path_image_def)

lemma path_image_nonempty [simp]: "path_image g ≠ {}"
unfolding path_image_def image_is_empty box_eq_empty
by auto

lemma pathstart_in_path_image[intro]: "pathstart g ∈ path_image g"
unfolding pathstart_def path_image_def
by auto

lemma pathfinish_in_path_image[intro]: "pathfinish g ∈ path_image g"
unfolding pathfinish_def path_image_def
by auto

lemma connected_path_image[intro]: "path g ⟹ connected (path_image g)"
unfolding path_def path_image_def
using connected_continuous_image connected_Icc by blast

lemma compact_path_image[intro]: "path g ⟹ compact (path_image g)"
unfolding path_def path_image_def
using compact_continuous_image connected_Icc by blast

lemma reversepath_reversepath[simp]: "reversepath (reversepath g) = g"
unfolding reversepath_def
by auto

lemma pathstart_reversepath[simp]: "pathstart (reversepath g) = pathfinish g"
unfolding pathstart_def reversepath_def pathfinish_def
by auto

lemma pathfinish_reversepath[simp]: "pathfinish (reversepath g) = pathstart g"
unfolding pathstart_def reversepath_def pathfinish_def
by auto

lemma pathstart_join[simp]: "pathstart (g1 +++ g2) = pathstart g1"
unfolding pathstart_def joinpaths_def pathfinish_def
by auto

lemma pathfinish_join[simp]: "pathfinish (g1 +++ g2) = pathfinish g2"
unfolding pathstart_def joinpaths_def pathfinish_def
by auto

lemma path_image_reversepath[simp]: "path_image (reversepath g) = path_image g"
proof -
have *: "⋀g. path_image (reversepath g) ⊆ path_image g"
unfolding path_image_def subset_eq reversepath_def Ball_def image_iff
by force
show ?thesis
using *[of g] *[of "reversepath g"]
unfolding reversepath_reversepath
by auto
qed

lemma path_reversepath [simp]: "path (reversepath g) ⟷ path g"
proof -
have *: "⋀g. path g ⟹ path (reversepath g)"
unfolding path_def reversepath_def
apply (rule continuous_on_compose[unfolded o_def, of _ "λx. 1 - x"])
apply (auto intro: continuous_intros continuous_on_subset[of "{0..1}"])
done
show ?thesis
using *[of "reversepath g"] *[of g]
unfolding reversepath_reversepath
by (rule iffI)
qed

lemma arc_reversepath:
assumes "arc g" shows "arc(reversepath g)"
proof -
have injg: "inj_on g {0..1}"
using assms
have **: "⋀x y::real. 1-x = 1-y ⟹ x = y"
by simp
show ?thesis
using assms  by (clarsimp simp: arc_def intro!: inj_onI) (simp add: inj_onD reversepath_def **)
qed

lemma simple_path_reversepath: "simple_path g ⟹ simple_path (reversepath g)"
apply (force simp: reversepath_def)
done

lemmas reversepath_simps =
path_reversepath path_image_reversepath pathstart_reversepath pathfinish_reversepath

lemma path_join[simp]:
assumes "pathfinish g1 = pathstart g2"
shows "path (g1 +++ g2) ⟷ path g1 ∧ path g2"
unfolding path_def pathfinish_def pathstart_def
proof safe
assume cont: "continuous_on {0..1} (g1 +++ g2)"
have g1: "continuous_on {0..1} g1 ⟷ continuous_on {0..1} ((g1 +++ g2) ∘ (λx. x / 2))"
by (intro continuous_on_cong refl) (auto simp: joinpaths_def)
have g2: "continuous_on {0..1} g2 ⟷ continuous_on {0..1} ((g1 +++ g2) ∘ (λx. x / 2 + 1/2))"
using assms
by (intro continuous_on_cong refl) (auto simp: joinpaths_def pathfinish_def pathstart_def)
show "continuous_on {0..1} g1" and "continuous_on {0..1} g2"
unfolding g1 g2
by (auto intro!: continuous_intros continuous_on_subset[OF cont] simp del: o_apply)
next
assume g1g2: "continuous_on {0..1} g1" "continuous_on {0..1} g2"
have 01: "{0 .. 1} = {0..1/2} ∪ {1/2 .. 1::real}"
by auto
{
fix x :: real
assume "0 ≤ x" and "x ≤ 1"
then have "x ∈ (λx. x * 2) ` {0..1 / 2}"
by (intro image_eqI[where x="x/2"]) auto
}
note 1 = this
{
fix x :: real
assume "0 ≤ x" and "x ≤ 1"
then have "x ∈ (λx. x * 2 - 1) ` {1 / 2..1}"
by (intro image_eqI[where x="x/2 + 1/2"]) auto
}
note 2 = this
show "continuous_on {0..1} (g1 +++ g2)"
using assms
unfolding joinpaths_def 01
apply (intro continuous_on_cases closed_atLeastAtMost g1g2[THEN continuous_on_compose2] continuous_intros)
apply (auto simp: field_simps pathfinish_def pathstart_def intro!: 1 2)
done
qed

section%unimportant ‹Path Images›

lemma bounded_path_image: "path g ⟹ bounded(path_image g)"

lemma closed_path_image:
fixes g :: "real ⇒ 'a::t2_space"
shows "path g ⟹ closed(path_image g)"
by (metis compact_path_image compact_imp_closed)

lemma connected_simple_path_image: "simple_path g ⟹ connected(path_image g)"
by (metis connected_path_image simple_path_imp_path)

lemma compact_simple_path_image: "simple_path g ⟹ compact(path_image g)"
by (metis compact_path_image simple_path_imp_path)

lemma bounded_simple_path_image: "simple_path g ⟹ bounded(path_image g)"
by (metis bounded_path_image simple_path_imp_path)

lemma closed_simple_path_image:
fixes g :: "real ⇒ 'a::t2_space"
shows "simple_path g ⟹ closed(path_image g)"
by (metis closed_path_image simple_path_imp_path)

lemma connected_arc_image: "arc g ⟹ connected(path_image g)"
by (metis connected_path_image arc_imp_path)

lemma compact_arc_image: "arc g ⟹ compact(path_image g)"
by (metis compact_path_image arc_imp_path)

lemma bounded_arc_image: "arc g ⟹ bounded(path_image g)"
by (metis bounded_path_image arc_imp_path)

lemma closed_arc_image:
fixes g :: "real ⇒ 'a::t2_space"
shows "arc g ⟹ closed(path_image g)"
by (metis closed_path_image arc_imp_path)

lemma path_image_join_subset: "path_image (g1 +++ g2) ⊆ path_image g1 ∪ path_image g2"
unfolding path_image_def joinpaths_def
by auto

lemma subset_path_image_join:
assumes "path_image g1 ⊆ s"
and "path_image g2 ⊆ s"
shows "path_image (g1 +++ g2) ⊆ s"
using path_image_join_subset[of g1 g2] and assms
by auto

lemma path_image_join:
"pathfinish g1 = pathstart g2 ⟹ path_image(g1 +++ g2) = path_image g1 ∪ path_image g2"
apply (rule subset_antisym [OF path_image_join_subset])
apply (auto simp: pathfinish_def pathstart_def path_image_def joinpaths_def image_def)
apply (drule sym)
apply (rule_tac x="xa/2" in bexI, auto)
apply (rule ccontr)
apply (drule_tac x="(xa+1)/2" in bspec)
apply (auto simp: field_simps)
apply (drule_tac x="1/2" in bspec, auto)
done

lemma not_in_path_image_join:
assumes "x ∉ path_image g1"
and "x ∉ path_image g2"
shows "x ∉ path_image (g1 +++ g2)"
using assms and path_image_join_subset[of g1 g2]
by auto

lemma pathstart_compose: "pathstart(f ∘ p) = f(pathstart p)"

lemma pathfinish_compose: "pathfinish(f ∘ p) = f(pathfinish p)"

lemma path_image_compose: "path_image (f ∘ p) = f ` (path_image p)"

lemma path_compose_join: "f ∘ (p +++ q) = (f ∘ p) +++ (f ∘ q)"
by (rule ext) (simp add: joinpaths_def)

lemma path_compose_reversepath: "f ∘ reversepath p = reversepath(f ∘ p)"
by (rule ext) (simp add: reversepath_def)

lemma joinpaths_eq:
"(⋀t. t ∈ {0..1} ⟹ p t = p' t) ⟹
(⋀t. t ∈ {0..1} ⟹ q t = q' t)
⟹  t ∈ {0..1} ⟹ (p +++ q) t = (p' +++ q') t"
by (auto simp: joinpaths_def)

lemma simple_path_inj_on: "simple_path g ⟹ inj_on g {0<..<1}"
by (auto simp: simple_path_def path_image_def inj_on_def less_eq_real_def Ball_def)

subsection%unimportant‹Simple paths with the endpoints removed›

lemma simple_path_endless:
"simple_path c ⟹ path_image c - {pathstart c,pathfinish c} = c ` {0<..<1}"
apply (auto simp: simple_path_def path_image_def pathstart_def pathfinish_def Ball_def Bex_def image_def)
apply (metis eq_iff le_less_linear)
apply (metis leD linear)
using less_eq_real_def zero_le_one apply blast
using less_eq_real_def zero_le_one apply blast
done

lemma connected_simple_path_endless:
"simple_path c ⟹ connected(path_image c - {pathstart c,pathfinish c})"
apply (rule connected_continuous_image)
apply (meson continuous_on_subset greaterThanLessThan_subseteq_atLeastAtMost_iff le_numeral_extra(3) le_numeral_extra(4) path_def simple_path_imp_path)
by auto

lemma nonempty_simple_path_endless:
"simple_path c ⟹ path_image c - {pathstart c,pathfinish c} ≠ {}"

subsection%unimportant‹The operations on paths›

lemma path_image_subset_reversepath: "path_image(reversepath g) ≤ path_image g"
by (auto simp: path_image_def reversepath_def)

lemma path_imp_reversepath: "path g ⟹ path(reversepath g)"
apply (auto simp: path_def reversepath_def)
using continuous_on_compose [of "{0..1}" "λx. 1 - x" g]
apply (auto simp: continuous_on_op_minus)
done

lemma half_bounded_equal: "1 ≤ x * 2 ⟹ x * 2 ≤ 1 ⟷ x = (1/2::real)"
by simp

lemma continuous_on_joinpaths:
assumes "continuous_on {0..1} g1" "continuous_on {0..1} g2" "pathfinish g1 = pathstart g2"
shows "continuous_on {0..1} (g1 +++ g2)"
proof -
have *: "{0..1::real} = {0..1/2} ∪ {1/2..1}"
by auto
have gg: "g2 0 = g1 1"
by (metis assms(3) pathfinish_def pathstart_def)
have 1: "continuous_on {0..1/2} (g1 +++ g2)"
apply (rule continuous_on_eq [of _ "g1 ∘ (λx. 2*x)"])
apply (rule continuous_intros | simp add: joinpaths_def assms)+
done
have "continuous_on {1/2..1} (g2 ∘ (λx. 2*x-1))"
apply (rule continuous_on_subset [of "{1/2..1}"])
apply (rule continuous_intros | simp add: image_affinity_atLeastAtMost_diff assms)+
done
then have 2: "continuous_on {1/2..1} (g1 +++ g2)"
apply (rule continuous_on_eq [of "{1/2..1}" "g2 ∘ (λx. 2*x-1)"])
apply (rule assms continuous_intros | simp add: joinpaths_def mult.commute half_bounded_equal gg)+
done
show ?thesis
apply (subst *)
apply (rule continuous_on_closed_Un)
using 1 2
apply auto
done
qed

lemma path_join_imp: "⟦path g1; path g2; pathfinish g1 = pathstart g2⟧ ⟹ path(g1 +++ g2)"

lemma simple_path_join_loop:
assumes "arc g1" "arc g2"
"pathfinish g1 = pathstart g2"  "pathfinish g2 = pathstart g1"
"path_image g1 ∩ path_image g2 ⊆ {pathstart g1, pathstart g2}"
shows "simple_path(g1 +++ g2)"
proof -
have injg1: "inj_on g1 {0..1}"
using assms
have injg2: "inj_on g2 {0..1}"
using assms
have g12: "g1 1 = g2 0"
and g21: "g2 1 = g1 0"
and sb:  "g1 ` {0..1} ∩ g2 ` {0..1} ⊆ {g1 0, g2 0}"
using assms
by (simp_all add: arc_def pathfinish_def pathstart_def path_image_def)
{ fix x and y::real
assume xyI: "x = 1 ⟶ y ≠ 0"
and xy: "x ≤ 1" "0 ≤ y" " y * 2 ≤ 1" "¬ x * 2 ≤ 1" "g2 (2 * x - 1) = g1 (2 * y)"
have g1im: "g1 (2 * y) ∈ g1 ` {0..1} ∩ g2 ` {0..1}"
using xy
apply simp
apply (rule_tac x="2 * x - 1" in image_eqI, auto)
done
have False
using subsetD [OF sb g1im] xy
apply auto
apply (drule inj_onD [OF injg1])
using g21 [symmetric] xyI
apply (auto dest: inj_onD [OF injg2])
done
} note * = this
{ fix x and y::real
assume xy: "y ≤ 1" "0 ≤ x" "¬ y * 2 ≤ 1" "x * 2 ≤ 1" "g1 (2 * x) = g2 (2 * y - 1)"
have g1im: "g1 (2 * x) ∈ g1 ` {0..1} ∩ g2 ` {0..1}"
using xy
apply simp
apply (rule_tac x="2 * x" in image_eqI, auto)
done
have "x = 0 ∧ y = 1"
using subsetD [OF sb g1im] xy
apply auto
apply (force dest: inj_onD [OF injg1])
using  g21 [symmetric]
apply (auto dest: inj_onD [OF injg2])
done
} note ** = this
show ?thesis
using assms
apply (simp add: arc_def simple_path_def path_join, clarify)
apply (simp add: joinpaths_def split: if_split_asm)
apply (force dest: inj_onD [OF injg1])
apply (metis *)
apply (metis **)
apply (force dest: inj_onD [OF injg2])
done
qed

lemma arc_join:
assumes "arc g1" "arc g2"
"pathfinish g1 = pathstart g2"
"path_image g1 ∩ path_image g2 ⊆ {pathstart g2}"
shows "arc(g1 +++ g2)"
proof -
have injg1: "inj_on g1 {0..1}"
using assms
have injg2: "inj_on g2 {0..1}"
using assms
have g11: "g1 1 = g2 0"
and sb:  "g1 ` {0..1} ∩ g2 ` {0..1} ⊆ {g2 0}"
using assms
by (simp_all add: arc_def pathfinish_def pathstart_def path_image_def)
{ fix x and y::real
assume xy: "x ≤ 1" "0 ≤ y" " y * 2 ≤ 1" "¬ x * 2 ≤ 1" "g2 (2 * x - 1) = g1 (2 * y)"
have g1im: "g1 (2 * y) ∈ g1 ` {0..1} ∩ g2 ` {0..1}"
using xy
apply simp
apply (rule_tac x="2 * x - 1" in image_eqI, auto)
done
have False
using subsetD [OF sb g1im] xy
by (auto dest: inj_onD [OF injg2])
} note * = this
show ?thesis
apply (clarsimp simp add: arc_imp_path assms path_join)
apply (simp add: joinpaths_def split: if_split_asm)
apply (force dest: inj_onD [OF injg1])
apply (metis *)
apply (metis *)
apply (force dest: inj_onD [OF injg2])
done
qed

lemma reversepath_joinpaths:
"pathfinish g1 = pathstart g2 ⟹ reversepath(g1 +++ g2) = reversepath g2 +++ reversepath g1"
unfolding reversepath_def pathfinish_def pathstart_def joinpaths_def
by (rule ext) (auto simp: mult.commute)

subsection%unimportant‹Some reversed and "if and only if" versions of joining theorems›

lemma path_join_path_ends:
fixes g1 :: "real ⇒ 'a::metric_space"
assumes "path(g1 +++ g2)" "path g2"
shows "pathfinish g1 = pathstart g2"
proof (rule ccontr)
define e where "e = dist (g1 1) (g2 0)"
assume Neg: "pathfinish g1 ≠ pathstart g2"
then have "0 < dist (pathfinish g1) (pathstart g2)"
by auto
then have "e > 0"
by (metis e_def pathfinish_def pathstart_def)
then obtain d1 where "d1 > 0"
and d1: "⋀x'. ⟦x'∈{0..1}; norm x' < d1⟧ ⟹ dist (g2 x') (g2 0) < e/2"
using assms(2) unfolding path_def continuous_on_iff
apply (drule_tac x=0 in bspec, simp)
by (metis half_gt_zero_iff norm_conv_dist)
obtain d2 where "d2 > 0"
and d2: "⋀x'. ⟦x'∈{0..1}; dist x' (1/2) < d2⟧
⟹ dist ((g1 +++ g2) x') (g1 1) < e/2"
using assms(1) ‹e > 0› unfolding path_def continuous_on_iff
apply (drule_tac x="1/2" in bspec, simp)
apply (drule_tac x="e/2" in spec)
apply (force simp: joinpaths_def)
done
have int01_1: "min (1/2) (min d1 d2) / 2 ∈ {0..1}"
using ‹d1 > 0› ‹d2 > 0› by (simp add: min_def)
have dist1: "norm (min (1 / 2) (min d1 d2) / 2) < d1"
using ‹d1 > 0› ‹d2 > 0› by (simp add: min_def dist_norm)
have int01_2: "1/2 + min (1/2) (min d1 d2) / 4 ∈ {0..1}"
using ‹d1 > 0› ‹d2 > 0› by (simp add: min_def)
have dist2: "dist (1 / 2 + min (1 / 2) (min d1 d2) / 4) (1 / 2) < d2"
using ‹d1 > 0› ‹d2 > 0› by (simp add: min_def dist_norm)
have [simp]: "~ min (1 / 2) (min d1 d2) ≤ 0"
using ‹d1 > 0› ‹d2 > 0› by (simp add: min_def)
have "dist (g2 (min (1 / 2) (min d1 d2) / 2)) (g1 1) < e/2"
"dist (g2 (min (1 / 2) (min d1 d2) / 2)) (g2 0) < e/2"
using d1 [OF int01_1 dist1] d2 [OF int01_2 dist2] by (simp_all add: joinpaths_def)
then have "dist (g1 1) (g2 0) < e/2 + e/2"
using dist_triangle_half_r e_def by blast
then show False
qed

lemma path_join_eq [simp]:
fixes g1 :: "real ⇒ 'a::metric_space"
assumes "path g1" "path g2"
shows "path(g1 +++ g2) ⟷ pathfinish g1 = pathstart g2"
using assms by (metis path_join_path_ends path_join_imp)

lemma simple_path_joinE:
assumes "simple_path(g1 +++ g2)" and "pathfinish g1 = pathstart g2"
obtains "arc g1" "arc g2"
"path_image g1 ∩ path_image g2 ⊆ {pathstart g1, pathstart g2}"
proof -
have *: "⋀x y. ⟦0 ≤ x; x ≤ 1; 0 ≤ y; y ≤ 1; (g1 +++ g2) x = (g1 +++ g2) y⟧
⟹ x = y ∨ x = 0 ∧ y = 1 ∨ x = 1 ∧ y = 0"
using assms by (simp add: simple_path_def)
have "path g1"
using assms path_join simple_path_imp_path by blast
moreover have "inj_on g1 {0..1}"
proof (clarsimp simp: inj_on_def)
fix x y
assume "g1 x = g1 y" "0 ≤ x" "x ≤ 1" "0 ≤ y" "y ≤ 1"
then show "x = y"
using * [of "x/2" "y/2"] by (simp add: joinpaths_def split_ifs)
qed
ultimately have "arc g1"
using assms  by (simp add: arc_def)
have [simp]: "g2 0 = g1 1"
using assms by (metis pathfinish_def pathstart_def)
have "path g2"
using assms path_join simple_path_imp_path by blast
moreover have "inj_on g2 {0..1}"
proof (clarsimp simp: inj_on_def)
fix x y
assume "g2 x = g2 y" "0 ≤ x" "x ≤ 1" "0 ≤ y" "y ≤ 1"
then show "x = y"
using * [of "(x + 1) / 2" "(y + 1) / 2"]
by (force simp: joinpaths_def split_ifs divide_simps)
qed
ultimately have "arc g2"
using assms  by (simp add: arc_def)
have "g2 y = g1 0 ∨ g2 y = g1 1"
if "g1 x = g2 y" "0 ≤ x" "x ≤ 1" "0 ≤ y" "y ≤ 1" for x y
using * [of "x / 2" "(y + 1) / 2"] that
by (auto simp: joinpaths_def split_ifs divide_simps)
then have "path_image g1 ∩ path_image g2 ⊆ {pathstart g1, pathstart g2}"
by (fastforce simp: pathstart_def pathfinish_def path_image_def)
with ‹arc g1› ‹arc g2› show ?thesis using that by blast
qed

lemma simple_path_join_loop_eq:
assumes "pathfinish g2 = pathstart g1" "pathfinish g1 = pathstart g2"
shows "simple_path(g1 +++ g2) ⟷
arc g1 ∧ arc g2 ∧ path_image g1 ∩ path_image g2 ⊆ {pathstart g1, pathstart g2}"
by (metis assms simple_path_joinE simple_path_join_loop)

lemma arc_join_eq:
assumes "pathfinish g1 = pathstart g2"
shows "arc(g1 +++ g2) ⟷
arc g1 ∧ arc g2 ∧ path_image g1 ∩ path_image g2 ⊆ {pathstart g2}"
(is "?lhs = ?rhs")
proof
assume ?lhs
then have "simple_path(g1 +++ g2)" by (rule arc_imp_simple_path)
then have *: "⋀x y. ⟦0 ≤ x; x ≤ 1; 0 ≤ y; y ≤ 1; (g1 +++ g2) x = (g1 +++ g2) y⟧
⟹ x = y ∨ x = 0 ∧ y = 1 ∨ x = 1 ∧ y = 0"
using assms by (simp add: simple_path_def)
have False if "g1 0 = g2 u" "0 ≤ u" "u ≤ 1" for u
using * [of 0 "(u + 1) / 2"] that assms arc_distinct_ends [OF ‹?lhs›]
by (auto simp: joinpaths_def pathstart_def pathfinish_def split_ifs divide_simps)
then have n1: "~ (pathstart g1 ∈ path_image g2)"
unfolding pathstart_def path_image_def
using atLeastAtMost_iff by blast
show ?rhs using ‹?lhs›
apply (rule simple_path_joinE [OF arc_imp_simple_path assms])
using n1 by force
next
assume ?rhs then show ?lhs
using assms
by (fastforce simp: pathfinish_def pathstart_def intro!: arc_join)
qed

lemma arc_join_eq_alt:
"pathfinish g1 = pathstart g2
⟹ (arc(g1 +++ g2) ⟷
arc g1 ∧ arc g2 ∧
path_image g1 ∩ path_image g2 = {pathstart g2})"
using pathfinish_in_path_image by (fastforce simp: arc_join_eq)

subsection%unimportant‹The joining of paths is associative›

lemma path_assoc:
"⟦pathfinish p = pathstart q; pathfinish q = pathstart r⟧
⟹ path(p +++ (q +++ r)) ⟷ path((p +++ q) +++ r)"
by simp

lemma simple_path_assoc:
assumes "pathfinish p = pathstart q" "pathfinish q = pathstart r"
shows "simple_path (p +++ (q +++ r)) ⟷ simple_path ((p +++ q) +++ r)"
proof (cases "pathstart p = pathfinish r")
case True show ?thesis
proof
assume "simple_path (p +++ q +++ r)"
with assms True show "simple_path ((p +++ q) +++ r)"
by (fastforce simp add: simple_path_join_loop_eq arc_join_eq path_image_join
dest: arc_distinct_ends [of r])
next
assume 0: "simple_path ((p +++ q) +++ r)"
with assms True have q: "pathfinish r ∉ path_image q"
using arc_distinct_ends
by (fastforce simp add: simple_path_join_loop_eq arc_join_eq path_image_join)
have "pathstart r ∉ path_image p"
using assms
by (metis 0 IntI arc_distinct_ends arc_join_eq_alt empty_iff insert_iff
pathfinish_in_path_image pathfinish_join simple_path_joinE)
with assms 0 q True show "simple_path (p +++ q +++ r)"
by (auto simp: simple_path_join_loop_eq arc_join_eq path_image_join
dest!: subsetD [OF _ IntI])
qed
next
case False
{ fix x :: 'a
assume a: "path_image p ∩ path_image q ⊆ {pathstart q}"
"(path_image p ∪ path_image q) ∩ path_image r ⊆ {pathstart r}"
"x ∈ path_image p" "x ∈ path_image r"
have "pathstart r ∈ path_image q"
by (metis assms(2) pathfinish_in_path_image)
with a have "x = pathstart q"
by blast
}
with False assms show ?thesis
by (auto simp: simple_path_eq_arc simple_path_join_loop_eq arc_join_eq path_image_join)
qed

lemma arc_assoc:
"⟦pathfinish p = pathstart q; pathfinish q = pathstart r⟧
⟹ arc(p +++ (q +++ r)) ⟷ arc((p +++ q) +++ r)"

subsubsection%unimportant‹Symmetry and loops›

lemma path_sym:
"⟦pathfinish p = pathstart q; pathfinish q = pathstart p⟧ ⟹ path(p +++ q) ⟷ path(q +++ p)"
by auto

lemma simple_path_sym:
"⟦pathfinish p = pathstart q; pathfinish q = pathstart p⟧
⟹ simple_path(p +++ q) ⟷ simple_path(q +++ p)"
by (metis (full_types) inf_commute insert_commute simple_path_joinE simple_path_join_loop)

lemma path_image_sym:
"⟦pathfinish p = pathstart q; pathfinish q = pathstart p⟧
⟹ path_image(p +++ q) = path_image(q +++ p)"

section‹Choosing a subpath of an existing path›

definition%important subpath :: "real ⇒ real ⇒ (real ⇒ 'a) ⇒ real ⇒ 'a::real_normed_vector"
where "subpath a b g ≡ λx. g((b - a) * x + a)"

lemma path_image_subpath_gen:
fixes g :: "_ ⇒ 'a::real_normed_vector"
shows "path_image(subpath u v g) = g ` (closed_segment u v)"
apply (simp add: closed_segment_real_eq path_image_def subpath_def)
apply (subst o_def [of g, symmetric])
done

lemma path_image_subpath:
fixes g :: "real ⇒ 'a::real_normed_vector"
shows "path_image(subpath u v g) = (if u ≤ v then g ` {u..v} else g ` {v..u})"

lemma path_image_subpath_commute:
fixes g :: "real ⇒ 'a::real_normed_vector"
shows "path_image(subpath u v g) = path_image(subpath v u g)"

lemma path_subpath [simp]:
fixes g :: "real ⇒ 'a::real_normed_vector"
assumes "path g" "u ∈ {0..1}" "v ∈ {0..1}"
shows "path(subpath u v g)"
proof -
have "continuous_on {0..1} (g ∘ (λx. ((v-u) * x+ u)))"
apply (rule continuous_intros | simp)+
apply (simp add: image_affinity_atLeastAtMost [where c=u])
using assms
apply (auto simp: path_def continuous_on_subset)
done
then show ?thesis
qed

lemma pathstart_subpath [simp]: "pathstart(subpath u v g) = g(u)"

lemma pathfinish_subpath [simp]: "pathfinish(subpath u v g) = g(v)"

lemma subpath_trivial [simp]: "subpath 0 1 g = g"

lemma subpath_reversepath: "subpath 1 0 g = reversepath g"

lemma reversepath_subpath: "reversepath(subpath u v g) = subpath v u g"
by (simp add: reversepath_def subpath_def algebra_simps)

lemma subpath_translation: "subpath u v ((λx. a + x) ∘ g) = (λx. a + x) ∘ subpath u v g"
by (rule ext) (simp add: subpath_def)

lemma subpath_linear_image: "linear f ⟹ subpath u v (f ∘ g) = f ∘ subpath u v g"
by (rule ext) (simp add: subpath_def)

lemma affine_ineq:
fixes x :: "'a::linordered_idom"
assumes "x ≤ 1" "v ≤ u"
shows "v + x * u ≤ u + x * v"
proof -
have "(1-x)*(u-v) ≥ 0"
using assms by auto
then show ?thesis
qed

lemma sum_le_prod1:
fixes a::real shows "⟦a ≤ 1; b ≤ 1⟧ ⟹ a + b ≤ 1 + a * b"
by (metis add.commute affine_ineq less_eq_real_def mult.right_neutral)

lemma simple_path_subpath_eq:
"simple_path(subpath u v g) ⟷
path(subpath u v g) ∧ u≠v ∧
(∀x y. x ∈ closed_segment u v ∧ y ∈ closed_segment u v ∧ g x = g y
⟶ x = y ∨ x = u ∧ y = v ∨ x = v ∧ y = u)"
(is "?lhs = ?rhs")
proof (rule iffI)
assume ?lhs
then have p: "path (λx. g ((v - u) * x + u))"
and sim: "(⋀x y. ⟦x∈{0..1}; y∈{0..1}; g ((v - u) * x + u) = g ((v - u) * y + u)⟧
⟹ x = y ∨ x = 0 ∧ y = 1 ∨ x = 1 ∧ y = 0)"
by (auto simp: simple_path_def subpath_def)
{ fix x y
assume "x ∈ closed_segment u v" "y ∈ closed_segment u v" "g x = g y"
then have "x = y ∨ x = u ∧ y = v ∨ x = v ∧ y = u"
using sim [of "(x-u)/(v-u)" "(y-u)/(v-u)"] p
by (auto simp: closed_segment_real_eq image_affinity_atLeastAtMost divide_simps
split: if_split_asm)
} moreover
have "path(subpath u v g) ∧ u≠v"
using sim [of "1/3" "2/3"] p
by (auto simp: subpath_def)
ultimately show ?rhs
by metis
next
assume ?rhs
then
have d1: "⋀x y. ⟦g x = g y; u ≤ x; x ≤ v; u ≤ y; y ≤ v⟧ ⟹ x = y ∨ x = u ∧ y = v ∨ x = v ∧ y = u"
and d2: "⋀x y. ⟦g x = g y; v ≤ x; x ≤ u; v ≤ y; y ≤ u⟧ ⟹ x = y ∨ x = u ∧ y = v ∨ x = v ∧ y = u"
and ne: "u < v ∨ v < u"
and psp: "path (subpath u v g)"
by (auto simp: closed_segment_real_eq image_affinity_atLeastAtMost)
have [simp]: "⋀x. u + x * v = v + x * u ⟷ u=v ∨ x=1"
by algebra
show ?lhs using psp ne
unfolding simple_path_def subpath_def
by (fastforce simp add: algebra_simps affine_ineq mult_left_mono crossproduct_eq dest: d1 d2)
qed

lemma arc_subpath_eq:
"arc(subpath u v g) ⟷ path(subpath u v g) ∧ u≠v ∧ inj_on g (closed_segment u v)"
(is "?lhs = ?rhs")
proof (rule iffI)
assume ?lhs
then have p: "path (λx. g ((v - u) * x + u))"
and sim: "(⋀x y. ⟦x∈{0..1}; y∈{0..1}; g ((v - u) * x + u) = g ((v - u) * y + u)⟧
⟹ x = y)"
by (auto simp: arc_def inj_on_def subpath_def)
{ fix x y
assume "x ∈ closed_segment u v" "y ∈ closed_segment u v" "g x = g y"
then have "x = y"
using sim [of "(x-u)/(v-u)" "(y-u)/(v-u)"] p
by (force simp: inj_on_def closed_segment_real_eq image_affinity_atLeastAtMost divide_simps
split: if_split_asm)
} moreover
have "path(subpath u v g) ∧ u≠v"
using sim [of "1/3" "2/3"] p
by (auto simp: subpath_def)
ultimately show ?rhs
unfolding inj_on_def
by metis
next
assume ?rhs
then
have d1: "⋀x y. ⟦g x = g y; u ≤ x; x ≤ v; u ≤ y; y ≤ v⟧ ⟹ x = y"
and d2: "⋀x y. ⟦g x = g y; v ≤ x; x ≤ u; v ≤ y; y ≤ u⟧ ⟹ x = y"
and ne: "u < v ∨ v < u"
and psp: "path (subpath u v g)"
by (auto simp: inj_on_def closed_segment_real_eq image_affinity_atLeastAtMost)
show ?lhs using psp ne
unfolding arc_def subpath_def inj_on_def
by (auto simp: algebra_simps affine_ineq mult_left_mono crossproduct_eq dest: d1 d2)
qed

lemma simple_path_subpath:
assumes "simple_path g" "u ∈ {0..1}" "v ∈ {0..1}" "u ≠ v"
shows "simple_path(subpath u v g)"
using assms
apply (simp add: simple_path_def closed_segment_real_eq image_affinity_atLeastAtMost, fastforce)
done

lemma arc_simple_path_subpath:
"⟦simple_path g; u ∈ {0..1}; v ∈ {0..1}; g u ≠ g v⟧ ⟹ arc(subpath u v g)"
by (force intro: simple_path_subpath simple_path_imp_arc)

lemma arc_subpath_arc:
"⟦arc g; u ∈ {0..1}; v ∈ {0..1}; u ≠ v⟧ ⟹ arc(subpath u v g)"
by (meson arc_def arc_imp_simple_path arc_simple_path_subpath inj_onD)

lemma arc_simple_path_subpath_interior:
"⟦simple_path g; u ∈ {0..1}; v ∈ {0..1}; u ≠ v; ¦u-v¦ < 1⟧ ⟹ arc(subpath u v g)"
apply (rule arc_simple_path_subpath)
apply (force simp: simple_path_def)+
done

lemma path_image_subpath_subset:
"⟦u ∈ {0..1}; v ∈ {0..1}⟧ ⟹ path_image(subpath u v g) ⊆ path_image g"
apply (simp add: closed_segment_real_eq image_affinity_atLeastAtMost path_image_subpath)
apply (auto simp: path_image_def)
done

lemma join_subpaths_middle: "subpath (0) ((1 / 2)) p +++ subpath ((1 / 2)) 1 p = p"
by (rule ext) (simp add: joinpaths_def subpath_def divide_simps)

subsection%unimportant‹There is a subpath to the frontier›

lemma subpath_to_frontier_explicit:
fixes S :: "'a::metric_space set"
assumes g: "path g" and "pathfinish g ∉ S"
obtains u where "0 ≤ u" "u ≤ 1"
"⋀x. 0 ≤ x ∧ x < u ⟹ g x ∈ interior S"
"(g u ∉ interior S)" "(u = 0 ∨ g u ∈ closure S)"
proof -
have gcon: "continuous_on {0..1} g"     using g by (simp add: path_def)
then have com: "compact ({0..1} ∩ {u. g u ∈ closure (- S)})"
apply (simp add: Int_commute [of "{0..1}"] compact_eq_bounded_closed closed_vimage_Int [unfolded vimage_def])
using compact_eq_bounded_closed apply fastforce
done
have "1 ∈ {u. g u ∈ closure (- S)}"
using assms by (simp add: pathfinish_def closure_def)
then have dis: "{0..1} ∩ {u. g u ∈ closure (- S)} ≠ {}"
using atLeastAtMost_iff zero_le_one by blast
then obtain u where "0 ≤ u" "u ≤ 1" and gu: "g u ∈ closure (- S)"
and umin: "⋀t. ⟦0 ≤ t; t ≤ 1; g t ∈ closure (- S)⟧ ⟹ u ≤ t"
using compact_attains_inf [OF com dis] by fastforce
then have umin': "⋀t. ⟦0 ≤ t; t ≤ 1; t < u⟧ ⟹  g t ∈ S"
using closure_def by fastforce
{ assume "u ≠ 0"
then have "u > 0" using ‹0 ≤ u› by auto
{ fix e::real assume "e > 0"
obtain d where "d>0" and d: "⋀x'. ⟦x' ∈ {0..1}; dist x' u ≤ d⟧ ⟹ dist (g x') (g u) < e"
using continuous_onE [OF gcon _ ‹e > 0›] ‹0 ≤ _› ‹_ ≤ 1› atLeastAtMost_iff by auto
have *: "dist (max 0 (u - d / 2)) u ≤ d"
using ‹0 ≤ u› ‹u ≤ 1› ‹d > 0› by (simp add: dist_real_def)
have "∃y∈S. dist y (g u) < e"
using ‹0 < u› ‹u ≤ 1› ‹d > 0›
by (force intro: d [OF _ *] umin')
}
then have "g u ∈ closure S"
}
then show ?thesis
apply (rule_tac u=u in that)
apply (auto simp: ‹0 ≤ u› ‹u ≤ 1› gu interior_closure umin)
using ‹_ ≤ 1› interior_closure umin apply fastforce
done
qed

lemma subpath_to_frontier_strong:
assumes g: "path g" and "pathfinish g ∉ S"
obtains u where "0 ≤ u" "u ≤ 1" "g u ∉ interior S"
"u = 0 ∨ (∀x. 0 ≤ x ∧ x < 1 ⟶ subpath 0 u g x ∈ interior S)  ∧  g u ∈ closure S"
proof -
obtain u where "0 ≤ u" "u ≤ 1"
and gxin: "⋀x. 0 ≤ x ∧ x < u ⟹ g x ∈ interior S"
and gunot: "(g u ∉ interior S)" and u0: "(u = 0 ∨ g u ∈ closure S)"
using subpath_to_frontier_explicit [OF assms] by blast
show ?thesis
apply (rule that [OF ‹0 ≤ u› ‹u ≤ 1›])
using ‹0 ≤ u› u0 by (force simp: subpath_def gxin)
qed

lemma subpath_to_frontier:
assumes g: "path g" and g0: "pathstart g ∈ closure S" and g1: "pathfinish g ∉ S"
obtains u where "0 ≤ u" "u ≤ 1" "g u ∈ frontier S" "(path_image(subpath 0 u g) - {g u}) ⊆ interior S"
proof -
obtain u where "0 ≤ u" "u ≤ 1"
and notin: "g u ∉ interior S"
and disj: "u = 0 ∨
(∀x. 0 ≤ x ∧ x < 1 ⟶ subpath 0 u g x ∈ interior S) ∧ g u ∈ closure S"
using subpath_to_frontier_strong [OF g g1] by blast
show ?thesis
apply (rule that [OF ‹0 ≤ u› ‹u ≤ 1›])
apply (metis DiffI disj frontier_def g0 notin pathstart_def)
using ‹0 ≤ u› g0 disj
apply (auto simp: closed_segment_eq_real_ivl pathstart_def pathfinish_def subpath_def)
apply (rename_tac y)
apply (drule_tac x="y/u" in spec)
apply (auto split: if_split_asm)
done
qed

lemma exists_path_subpath_to_frontier:
fixes S :: "'a::real_normed_vector set"
assumes "path g" "pathstart g ∈ closure S" "pathfinish g ∉ S"
obtains h where "path h" "pathstart h = pathstart g" "path_image h ⊆ path_image g"
"path_image h - {pathfinish h} ⊆ interior S"
"pathfinish h ∈ frontier S"
proof -
obtain u where u: "0 ≤ u" "u ≤ 1" "g u ∈ frontier S" "(path_image(subpath 0 u g) - {g u}) ⊆ interior S"
using subpath_to_frontier [OF assms] by blast
show ?thesis
apply (rule that [of "subpath 0 u g"])
using assms u
apply (force simp: closed_segment_eq_real_ivl path_image_def)
done
qed

lemma exists_path_subpath_to_frontier_closed:
fixes S :: "'a::real_normed_vector set"
assumes S: "closed S" and g: "path g" and g0: "pathstart g ∈ S" and g1: "pathfinish g ∉ S"
obtains h where "path h" "pathstart h = pathstart g" "path_image h ⊆ path_image g ∩ S"
"pathfinish h ∈ frontier S"
proof -
obtain h where h: "path h" "pathstart h = pathstart g" "path_image h ⊆ path_image g"
"path_image h - {pathfinish h} ⊆ interior S"
"pathfinish h ∈ frontier S"
using exists_path_subpath_to_frontier [OF g _ g1] closure_closed [OF S] g0 by auto
show ?thesis
apply (rule that [OF ‹path h›])
using assms h
apply auto
apply (metis Diff_single_insert frontier_subset_eq insert_iff interior_subset subset_iff)
done
qed

subsection ‹shiftpath: Reparametrizing a closed curve to start at some chosen point›

definition%important shiftpath :: "real ⇒ (real ⇒ 'a::topological_space) ⇒ real ⇒ 'a"
where "shiftpath a f = (λx. if (a + x) ≤ 1 then f (a + x) else f (a + x - 1))"

lemma pathstart_shiftpath: "a ≤ 1 ⟹ pathstart (shiftpath a g) = g a"
unfolding pathstart_def shiftpath_def by auto

lemma pathfinish_shiftpath:
assumes "0 ≤ a"
and "pathfinish g = pathstart g"
shows "pathfinish (shiftpath a g) = g a"
using assms
unfolding pathstart_def pathfinish_def shiftpath_def
by auto

lemma endpoints_shiftpath:
assumes "pathfinish g = pathstart g"
and "a ∈ {0 .. 1}"
shows "pathfinish (shiftpath a g) = g a"
and "pathstart (shiftpath a g) = g a"
using assms
by (auto intro!: pathfinish_shiftpath pathstart_shiftpath)

lemma closed_shiftpath:
assumes "pathfinish g = pathstart g"
and "a ∈ {0..1}"
shows "pathfinish (shiftpath a g) = pathstart (shiftpath a g)"
using endpoints_shiftpath[OF assms]
by auto

lemma path_shiftpath:
assumes "path g"
and "pathfinish g = pathstart g"
and "a ∈ {0..1}"
shows "path (shiftpath a g)"
proof -
have *: "{0 .. 1} = {0 .. 1-a} ∪ {1-a .. 1}"
using assms(3) by auto
have **: "⋀x. x + a = 1 ⟹ g (x + a - 1) = g (x + a)"
using assms(2)[unfolded pathfinish_def pathstart_def]
by auto
show ?thesis
unfolding path_def shiftpath_def *
proof (rule continuous_on_closed_Un)
have contg: "continuous_on {0..1} g"
using ‹path g› path_def by blast
show "continuous_on {0..1-a} (λx. if a + x ≤ 1 then g (a + x) else g (a + x - 1))"
proof (rule continuous_on_eq)
show "continuous_on {0..1-a} (g ∘ (+) a)"
by (intro continuous_intros continuous_on_subset [OF contg]) (use ‹a ∈ {0..1}› in auto)
qed auto
show "continuous_on {1-a..1} (λx. if a + x ≤ 1 then g (a + x) else g (a + x - 1))"
proof (rule continuous_on_eq)
show "continuous_on {1-a..1} (g ∘ (+) (a - 1))"
by (intro continuous_intros continuous_on_subset [OF contg]) (use ‹a ∈ {0..1}› in auto)
qed auto
qed

lemma shiftpath_shiftpath:
assumes "pathfinish g = pathstart g"
and "a ∈ {0..1}"
and "x ∈ {0..1}"
shows "shiftpath (1 - a) (shiftpath a g) x = g x"
using assms
unfolding pathfinish_def pathstart_def shiftpath_def
by auto

lemma path_image_shiftpath:
assumes a: "a ∈ {0..1}"
and "pathfinish g = pathstart g"
shows "path_image (shiftpath a g) = path_image g"
proof -
{ fix x
assume g: "g 1 = g 0" "x ∈ {0..1::real}" and gne: "⋀y. y∈{0..1} ∩ {x. ¬ a + x ≤ 1} ⟹ g x ≠ g (a + y - 1)"
then have "∃y∈{0..1} ∩ {x. a + x ≤ 1}. g x = g (a + y)"
proof (cases "a ≤ x")
case False
then show ?thesis
apply (rule_tac x="1 + x - a" in bexI)
using g gne[of "1 + x - a"] a
apply (force simp: field_simps)+
done
next
case True
then show ?thesis
using g a  by (rule_tac x="x - a" in bexI) (auto simp: field_simps)
qed
}
then show ?thesis
using assms
unfolding shiftpath_def path_image_def pathfinish_def pathstart_def
by (auto simp: image_iff)
qed

lemma simple_path_shiftpath:
assumes "simple_path g" "pathfinish g = pathstart g" and a: "0 ≤ a" "a ≤ 1"
shows "simple_path (shiftpath a g)"
unfolding simple_path_def
proof (intro conjI impI ballI)
show "path (shiftpath a g)"
by (simp add: assms path_shiftpath simple_path_imp_path)
have *: "⋀x y. ⟦g x = g y; x ∈ {0..1}; y ∈ {0..1}⟧ ⟹ x = y ∨ x = 0 ∧ y = 1 ∨ x = 1 ∧ y = 0"
using assms by (simp add:  simple_path_def)
show "x = y ∨ x = 0 ∧ y = 1 ∨ x = 1 ∧ y = 0"
if "x ∈ {0..1}" "y ∈ {0..1}" "shiftpath a g x = shiftpath a g y" for x y
using that a unfolding shiftpath_def
by (force split: if_split_asm dest!: *)
qed

subsection ‹Special case of straight-line paths›

definition%important linepath :: "'a::real_normed_vector ⇒ 'a ⇒ real ⇒ 'a"
where "linepath a b = (λx. (1 - x) *⇩R a + x *⇩R b)"

lemma pathstart_linepath[simp]: "pathstart (linepath a b) = a"
unfolding pathstart_def linepath_def
by auto

lemma pathfinish_linepath[simp]: "pathfinish (linepath a b) = b"
unfolding pathfinish_def linepath_def
by auto

lemma continuous_linepath_at[intro]: "continuous (at x) (linepath a b)"
unfolding linepath_def
by (intro continuous_intros)

lemma continuous_on_linepath [intro,continuous_intros]: "continuous_on s (linepath a b)"
using continuous_linepath_at
by (auto intro!: continuous_at_imp_continuous_on)

lemma path_linepath[iff]: "path (linepath a b)"
unfolding path_def
by (rule continuous_on_linepath)

lemma path_image_linepath[simp]: "path_image (linepath a b) = closed_segment a b"
unfolding path_image_def segment linepath_def
by auto

lemma reversepath_linepath[simp]: "reversepath (linepath a b) = linepath b a"
unfolding reversepath_def linepath_def
by auto

lemma linepath_0 [simp]: "linepath 0 b x = x *⇩R b"

lemma arc_linepath:
assumes "a ≠ b" shows [simp]: "arc (linepath a b)"
proof -
{
fix x y :: "real"
assume "x *⇩R b + y *⇩R a = x *⇩R a + y *⇩R b"
then have "(x - y) *⇩R a = (x - y) *⇩R b"
with assms have "x = y"
by simp
}
then show ?thesis
unfolding arc_def inj_on_def
by (fastforce simp: algebra_simps linepath_def)
qed

lemma simple_path_linepath[intro]: "a ≠ b ⟹ simple_path (linepath a b)"

lemma linepath_trivial [simp]: "linepath a a x = a"

lemma linepath_refl: "linepath a a = (λx. a)"
by auto

lemma subpath_refl: "subpath a a g = linepath (g a) (g a)"
by (simp add: subpath_def linepath_def algebra_simps)

lemma linepath_of_real: "(linepath (of_real a) (of_real b) x) = of_real ((1 - x)*a + x*b)"

lemma of_real_linepath: "of_real (linepath a b x) = linepath (of_real a) (of_real b) x"
by (metis linepath_of_real mult.right_neutral of_real_def real_scaleR_def)

lemma inj_on_linepath:
assumes "a ≠ b" shows "inj_on (linepath a b) {0..1}"
proof (clarsimp simp: inj_on_def linepath_def)
fix x y
assume "(1 - x) *⇩R a + x *⇩R b = (1 - y) *⇩R a + y *⇩R b" "0 ≤ x" "x ≤ 1" "0 ≤ y" "y ≤ 1"
then have "x *⇩R (a - b) = y *⇩R (a - b)"
by (auto simp: algebra_simps)
then show "x=y"
using assms by auto
qed

subsection%unimportant‹Segments via convex hulls›

lemma segments_subset_convex_hull:
"closed_segment a b ⊆ (convex hull {a,b,c})"
"closed_segment a c ⊆ (convex hull {a,b,c})"
"closed_segment b c ⊆ (convex hull {a,b,c})"
"closed_segment b a ⊆ (convex hull {a,b,c})"
"closed_segment c a ⊆ (convex hull {a,b,c})"
"closed_segment c b ⊆ (convex hull {a,b,c})"
by (auto simp: segment_convex_hull linepath_of_real  elim!: rev_subsetD [OF _ hull_mono])

lemma midpoints_in_convex_hull:
assumes "x ∈ convex hull s" "y ∈ convex hull s"
shows "midpoint x y ∈ convex hull s"
proof -
have "(1 - inverse(2)) *⇩R x + inverse(2) *⇩R y ∈ convex hull s"
by (rule convexD_alt) (use assms in auto)
then show ?thesis
qed

lemma not_in_interior_convex_hull_3:
fixes a :: "complex"
shows "a ∉ interior(convex hull {a,b,c})"
"b ∉ interior(convex hull {a,b,c})"
"c ∉ interior(convex hull {a,b,c})"
by (auto simp: card_insert_le_m1 not_in_interior_convex_hull)

lemma midpoint_in_closed_segment [simp]: "midpoint a b ∈ closed_segment a b"
using midpoints_in_convex_hull segment_convex_hull by blast

lemma midpoint_in_open_segment [simp]: "midpoint a b ∈ open_segment a b ⟷ a ≠ b"

lemma continuous_IVT_local_extremum:
fixes f :: "'a::euclidean_space ⇒ real"
assumes contf: "continuous_on (closed_segment a b) f"
and "a ≠ b" "f a = f b"
obtains z where "z ∈ open_segment a b"
"(∀w ∈ closed_segment a b. (f w) ≤ (f z)) ∨
(∀w ∈ closed_segment a b. (f z) ≤ (f w))"
proof -
obtain c where "c ∈ closed_segment a b" and c: "⋀y. y ∈ closed_segment a b ⟹ f y ≤ f c"
using continuous_attains_sup [of "closed_segment a b" f] contf by auto
obtain d where "d ∈ closed_segment a b" and d: "⋀y. y ∈ closed_segment a b ⟹ f d ≤ f y"
using continuous_attains_inf [of "closed_segment a b" f] contf by auto
show ?thesis
proof (cases "c ∈ open_segment a b ∨ d ∈ open_segment a b")
case True
then show ?thesis
using c d that by blast
next
case False
then have "(c = a ∨ c = b) ∧ (d = a ∨ d = b)"
by (simp add: ‹c ∈ closed_segment a b› ‹d ∈ closed_segment a b› open_segment_def)
with ‹a ≠ b› ‹f a = f b› c d show ?thesis
by (rule_tac z = "midpoint a b" in that) (fastforce+)
qed
qed

text‹An injective map into R is also an open map w.r.T. the universe, and conversely. ›
proposition injective_eq_1d_open_map_UNIV:
fixes f :: "real ⇒ real"
assumes contf: "continuous_on S f" and S: "is_interval S"
shows "inj_on f S ⟷ (∀T. open T ∧ T ⊆ S ⟶ open(f ` T))"
(is "?lhs = ?rhs")
proof safe
fix T
assume injf: ?lhs and "open T" and "T ⊆ S"
have "∃U. open U ∧ f x ∈ U ∧ U ⊆ f ` T" if "x ∈ T" for x
proof -
obtain δ where "δ > 0" and δ: "cball x δ ⊆ T"
using ‹open T› ‹x ∈ T› open_contains_cball_eq by blast
show ?thesis
proof (intro exI conjI)
have "closed_segment (x-δ) (x+δ) = {x-δ..x+δ}"
using ‹0 < δ› by (auto simp: closed_segment_eq_real_ivl)
also have "… ⊆ S"
using δ ‹T ⊆ S› by (auto simp: dist_norm subset_eq)
finally have "f ` (open_segment (x-δ) (x+δ)) = open_segment (f (x-δ)) (f (x+δ))"
using continuous_injective_image_open_segment_1
by (metis continuous_on_subset [OF contf] inj_on_subset [OF injf])
then show "open (f ` {x-δ<..<x+δ})"
using ‹0 < δ› by (simp add: open_segment_eq_real_ivl)
show "f x ∈ f ` {x - δ<..<x + δ}"
by (auto simp: ‹δ > 0›)
show "f ` {x - δ<..<x + δ} ⊆ f ` T"
using δ by (auto simp: dist_norm subset_iff)
qed
qed
with open_subopen show "open (f ` T)"
by blast
next
assume R: ?rhs
have False if xy: "x ∈ S" "y ∈ S" and "f x = f y" "x ≠ y" for x y
proof -
have "open (f ` open_segment x y)"
using R
by (metis S convex_contains_open_segment is_interval_convex open_greaterThanLessThan open_segment_eq_real_ivl xy)
moreover
have "continuous_on (closed_segment x y) f"
by (meson S closed_segment_subset contf continuous_on_subset is_interval_convex that)
then obtain ξ where "ξ ∈ open_segment x y"
and ξ: "(∀w ∈ closed_segment x y. (f w) ≤ (f ξ)) ∨
(∀w ∈ closed_segment x y. (f ξ) ≤ (f w))"
using continuous_IVT_local_extremum [of x y f] ‹f x = f y› ‹x ≠ y› by blast
ultimately obtain e where "e>0" and e: "⋀u. dist u (f ξ) < e ⟹ u ∈ f ` open_segment x y"
using open_dist by (metis image_eqI)
have fin: "f ξ + (e/2) ∈ f ` open_segment x y" "f ξ - (e/2) ∈ f ` open_segment x y"
using e [of "f ξ + (e/2)"] e [of "f ξ - (e/2)"] ‹e > 0› by (auto simp: dist_norm)
show ?thesis
using ξ ‹0 < e› fin open_closed_segment by fastforce
qed
then show ?lhs
by (force simp: inj_on_def)
qed

subsection%unimportant ‹Bounding a point away from a path›

lemma not_on_path_ball:
fixes g :: "real ⇒ 'a::heine_borel"
assumes "path g"
and z: "z ∉ path_image g"
shows "∃e > 0. ball z e ∩ path_image g = {}"
proof -
have "closed (path_image g)"
by (simp add: ‹path g› closed_path_image)
then obtain a where "a ∈ path_image g" "∀y ∈ path_image g. dist z a ≤ dist z y"
by (auto intro: distance_attains_inf[OF _ path_image_nonempty, of g z])
then show ?thesis
by (rule_tac x="dist z a" in exI) (use dist_commute z in auto)
qed

lemma not_on_path_cball:
fixes g :: "real ⇒ 'a::heine_borel"
assumes "path g"
and "z ∉ path_image g"
shows "∃e>0. cball z e ∩ (path_image g) = {}"
proof -
obtain e where "ball z e ∩ path_image g = {}" "e > 0"
using not_on_path_ball[OF assms] by auto
moreover have "cball z (e/2) ⊆ ball z e"
using ‹e > 0› by auto
ultimately show ?thesis
by (rule_tac x="e/2" in exI) auto
qed

section ‹Path component, considered as a "joinability" relation (from Tom Hales)›

definition%important "path_component s x y ⟷
(∃g. path g ∧ path_image g ⊆ s ∧ pathstart g = x ∧ pathfinish g = y)"

abbreviation%important
"path_component_set s x ≡ Collect (path_component s x)"

lemmas path_defs = path_def pathstart_def pathfinish_def path_image_def path_component_def

lemma path_component_mem:
assumes "path_component s x y"
shows "x ∈ s" and "y ∈ s"
using assms
unfolding path_defs
by auto

lemma path_component_refl:
assumes "x ∈ s"
shows "path_component s x x"
unfolding path_defs
apply (rule_tac x="λu. x" in exI)
using assms
apply (auto intro!: continuous_intros)
done

lemma path_component_refl_eq: "path_component s x x ⟷ x ∈ s"
by (auto intro!: path_component_mem path_component_refl)

lemma path_component_sym: "path_component s x y ⟹ path_component s y x"
unfolding path_component_def
apply (erule exE)
apply (rule_tac x="reversepath g" in exI, auto)
done

lemma path_component_trans:
assumes "path_component s x y" and "path_component s y z"
shows "path_component s x z"
using assms
unfolding path_component_def
apply (elim exE)
apply (rule_tac x="g +++ ga" in exI)
apply (auto simp: path_image_join)
done

lemma path_component_of_subset: "s ⊆ t ⟹ path_component s x y ⟹ path_component t x y"
unfolding path_component_def by auto

lemma path_connected_linepath:
fixes s :: "'a::real_normed_vector set"
shows "closed_segment a b ⊆ s ⟹ path_component s a b"
unfolding path_component_def
by (rule_tac x="linepath a b" in exI, auto)

subsubsection%unimportant ‹Path components as sets›

lemma path_component_set:
"path_component_set s x =
{y. (∃g. path g ∧ path_image g ⊆ s ∧ pathstart g = x ∧ pathfinish g = y)}"
by (auto simp: path_component_def)

lemma path_component_subset: "path_component_set s x ⊆ s"
by (auto simp: path_component_mem(2))

lemma path_component_eq_empty: "path_component_set s x = {} ⟷ x ∉ s"
using path_component_mem path_component_refl_eq
by fastforce

lemma path_component_mono:
"s ⊆ t ⟹ (path_component_set s x) ⊆ (path_component_set t x)"

lemma path_component_eq:
"y ∈ path_component_set s x ⟹ path_component_set s y = path_component_set s x"
by (metis (no_types, lifting) Collect_cong mem_Collect_eq path_component_sym path_component_trans)

subsection ‹Path connectedness of a space›

definition%important "path_connected s ⟷
(∀x∈s. ∀y∈s. ∃g. path g ∧ path_image g ⊆ s ∧ pathstart g = x ∧ pathfinish g = y)"

lemma path_connected_component: "path_connected s ⟷ (∀x∈s. ∀y∈s. path_component s x y)"
unfolding path_connected_def path_component_def by auto

lemma path_connected_component_set: "path_connected s ⟷ (∀x∈s. path_component_set s x = s)"
unfolding path_connected_component path_component_subset
using path_component_mem by blast

lemma path_component_maximal:
"⟦x ∈ t; path_connected t; t ⊆ s⟧ ⟹ t ⊆ (path_component_set s x)"
by (metis path_component_mono path_connected_component_set)

lemma convex_imp_path_connected:
fixes s :: "'a::real_normed_vector set"
assumes "convex s"
shows "path_connected s"
unfolding path_connected_def
using assms convex_contains_segment by fastforce

lemma path_connected_UNIV [iff]: "path_connected (UNIV :: 'a::real_normed_vector set)"

lemma path_component_UNIV: "path_component_set UNIV x = (UNIV :: 'a::real_normed_vector set)"
using path_connected_component_set by auto

lemma path_connected_imp_connected:
assumes "path_connected S"
shows "connected S"
proof (rule connectedI)
fix e1 e2
assume as: "open e1" "open e2" "S ⊆ e1 ∪ e2" "e1 ∩ e2 ∩ S = {}" "e1 ∩ S ≠ {}" "e2 ∩ S ≠ {}"
then obtain x1 x2 where obt:"x1 ∈ e1 ∩ S" "x2 ∈ e2 ∩ S"
by auto
then obtain g where g: "path g" "path_image g ⊆ S" "pathstart g = x1" "pathfinish g = x2"
using assms[unfolded path_connected_def,rule_format,of x1 x2] by auto
have *: "connected {0..1::real}"
by (auto intro!: convex_connected convex_real_interval)
have "{0..1} ⊆ {x ∈ {0..1}. g x ∈ e1} ∪ {x ∈ {0..1}. g x ∈ e2}"
using as(3) g(2)[unfolded path_defs] by blast
moreover have "{x ∈ {0..1}. g x ∈ e1} ∩ {x ∈ {0..1}. g x ∈ e2} = {}"
using as(4) g(2)[unfolded path_defs]
unfolding subset_eq
by auto
moreover have "{x ∈ {0..1}. g x ∈ e1} ≠ {} ∧ {x ∈ {0..1}. g x ∈ e2} ≠ {}"
using g(3,4)[unfolded path_defs]
using obt
by (simp add: ex_in_conv [symmetric], metis zero_le_one order_refl)
ultimately show False
using *[unfolded connected_local not_ex, rule_format,
of "{0..1} ∩ g -` e1" "{0..1} ∩ g -` e2"]
using continuous_openin_preimage_gen[OF g(1)[unfolded path_def] as(1)]
using continuous_openin_preimage_gen[OF g(1)[unfolded path_def] as(2)]
by auto
qed

lemma open_path_component:
fixes S :: "'a::real_normed_vector set"
assumes "open S"
shows "open (path_component_set S x)"
unfolding open_contains_ball
proof
fix y
assume as: "y ∈ path_component_set S x"
then have "y ∈ S"
then obtain e where e: "e > 0" "ball y e ⊆ S"
using assms[unfolded open_contains_ball]
by auto
have "⋀u. dist y u < e ⟹ path_component S x u"
by (metis (full_types) as centre_in_ball convex_ball convex_imp_path_connected e mem_Collect_eq mem_ball path_component_eq path_component_of_subset path_connected_component)
then show "∃e > 0. ball y e ⊆ path_component_set S x"
using ‹e>0› by auto
qed

lemma open_non_path_component:
fixes S :: "'a::real_normed_vector set"
assumes "open S"
shows "open (S - path_component_set S x)"
unfolding open_contains_ball
proof
fix y
assume y: "y ∈ S - path_component_set S x"
then obtain e where e: "e > 0" "ball y e ⊆ S"
using assms openE by auto
show "∃e>0. ball y e ⊆ S - path_component_set S x"
proof (intro exI conjI subsetI DiffI notI)
show "⋀x. x ∈ ball y e ⟹ x ∈ S"
using e by blast
show False if "z ∈ ball y e" "z ∈ path_component_set S x" for z
proof -
have "y ∈ path_component_set S z"
by (meson assms convex_ball convex_imp_path_connected e open_contains_ball_eq open_path_component path_component_maximal that(1))
then have "y ∈ path_component_set S x"
using path_component_eq that(2) by blast
then show False
using y by blast
qed
qed (use e in auto)
qed

lemma connected_open_path_connected:
fixes S :: "'a::real_normed_vector set"
assumes "open S"
and "connected S"
shows "path_connected S"
unfolding path_connected_component_set
proof (rule, rule, rule path_component_subset, rule)
fix x y
assume "x ∈ S" and "y ∈ S"
show "y ∈ path_component_set S x"
proof (rule ccontr)
assume "¬ ?thesis"
moreover have "path_component_set S x ∩ S ≠ {}"
using ‹x ∈ S› path_component_eq_empty path_component_subset[of S x]
by auto
ultimately
show False
using ‹y ∈ S› open_non_path_component[OF assms(1)] open_path_component[OF assms(1)]
using assms(2)[unfolded connected_def not_ex, rule_format,
of "path_component_set S x" "S - path_component_set S x"]
by auto
qed
qed

lemma path_connected_continuous_image:
assumes "continuous_on S f"
and "path_connected S"
shows "path_connected (f ` S)"
unfolding path_connected_def
proof (rule, rule)
fix x' y'
assume "x' ∈ f ` S" "y' ∈ f ` S"
then obtain x y where x: "x ∈ S" and y: "y ∈ S" and x': "x' = f x" and y': "y' = f y"
by auto
from x y obtain g where "path g ∧ path_image g ⊆ S ∧ pathstart g = x ∧ pathfinish g = y"
using assms(2)[unfolded path_connected_def] by fast
then show "∃g. path g ∧ path_image g ⊆ f ` S ∧ pathstart g = x' ∧ pathfinish g = y'"
unfolding x' y'
apply (rule_tac x="f ∘ g" in exI)
unfolding path_defs
apply (intro conjI continuous_on_compose continuous_on_subset[OF assms(1)])
apply auto
done
qed

lemma path_connected_translationI:
fixes a :: "'a :: topological_group_add"
assumes "path_connected S" shows "path_connected ((λx. a + x) ` S)"
by (intro path_connected_continuous_image assms continuous_intros)

lemma path_connected_translation:
fixes a :: "'a :: topological_group_add"
shows "path_connected ((λx. a + x) ` S) = path_connected S"
proof -
have "∀x y. (+) (x::'a) ` (+) (0 - x) ` y = y"
then show ?thesis
by (metis (no_types) path_connected_translationI)
qed

lemma path_connected_segment [simp]:
fixes a :: "'a::real_normed_vector"
shows "path_connected (closed_segment a b)"

lemma path_connected_open_segment [simp]:
fixes a :: "'a::real_normed_vector"
shows "path_connected (open_segment a b)"

lemma homeomorphic_path_connectedness:
"S homeomorphic T ⟹ path_connected S ⟷ path_connected T"
unfolding homeomorphic_def homeomorphism_def by (metis path_connected_continuous_image)

lemma path_connected_empty [simp]: "path_connected {}"
unfolding path_connected_def by auto

lemma path_connected_singleton [simp]: "path_connected {a}"
unfolding path_connected_def pathstart_def pathfinish_def path_image_def
apply clarify
apply (rule_tac x="λx. a" in exI)
done

lemma path_connected_Un:
assumes "path_connected S"
and "path_connected T"
and "S ∩ T ≠ {}"
shows "path_connected (S ∪ T)"
unfolding path_connected_component
proof (intro ballI)
fix x y
assume x: "x ∈ S ∪ T" and y: "y ∈ S ∪ T"
from assms obtain z where z: "z ∈ S" "z ∈ T"
by auto
show "path_component (S ∪ T) x y"
using x y
proof safe
assume "x ∈ S" "y ∈ S"
then show "path_component (S ∪ T) x y"
by (meson Un_upper1 ‹path_connected S› path_component_of_subset path_connected_component)
next
assume "x ∈ S" "y ∈ T"
then show "path_component (S ∪ T) x y"
by (metis z assms(1-2) le_sup_iff order_refl path_component_of_subset path_component_trans path_connected_component)
next
assume "x ∈ T" "y ∈ S"
then show "path_component (S ∪ T) x y"
by (metis z assms(1-2) le_sup_iff order_refl path_component_of_subset path_component_trans path_connected_component)
next
assume "x ∈ T" "y ∈ T"
then show "path_component (S ∪ T) x y"
by (metis Un_upper1 assms(2) path_component_of_subset path_connected_component sup_commute)
qed
qed

lemma path_connected_UNION:
assumes "⋀i. i ∈ A ⟹ path_connected (S i)"
and "⋀i. i ∈ A ⟹ z ∈ S i"
shows "path_connected (⋃i∈A. S i)"
unfolding path_connected_component
proof clarify
fix x i y j
assume *: "i ∈ A" "x ∈ S i" "j ∈ A" "y ∈ S j"
then have "path_component (S i) x z" and "path_component (S j) z y"
using assms by (simp_all add: path_connected_component)
then have "path_component (⋃i∈A. S i) x z" and "path_component (⋃i∈A. S i) z y"
using *(1,3) by (auto elim!: path_component_of_subset [rotated])
then show "path_component (⋃i∈A. S i) x y"
by (rule path_component_trans)
qed

lemma path_component_path_image_pathstart:
assumes p: "path p" and x: "x ∈ path_image p"
shows "path_component (path_image p) (pathstart p) x"
proof -
obtain y where x: "x = p y" and y: "0 ≤ y" "y ≤ 1"
using x by (auto simp: path_image_def)
show ?thesis
unfolding path_component_def
proof (intro exI conjI)
have "continuous_on {0..1} (p ∘ (( *) y))"
apply (rule continuous_intros)+
using p [unfolded path_def] y
apply (auto simp: mult_le_one intro: continuous_on_subset [of _ p])
done
then show "path (λu. p (y * u))"
show "path_image (λu. p (y * u)) ⊆ path_image p"
using y mult_le_one by (fastforce simp: path_image_def image_iff)
qed (auto simp: pathstart_def pathfinish_def x)
qed

lemma path_connected_path_image: "path p ⟹ path_connected(path_image p)"
unfolding path_connected_component
by (meson path_component_path_image_pathstart path_component_sym path_component_trans)

lemma path_connected_path_component [simp]:
"path_connected (path_component_set s x)"
proof -
{ fix y z
assume pa: "path_component s x y" "path_component s x z"
then have pae: "path_component_set s x = path_component_set s y"
using path_component_eq by auto
have yz: "path_component s y z"
using pa path_component_sym path_component_trans by blast
then have "∃g. path g ∧ path_image g ⊆ path_component_set s x ∧ pathstart g = y ∧ pathfinish g = z"
apply (rule_tac x=g in exI)
by (simp add: pae path_component_maximal path_connected_path_image pathstart_in_path_image)
}
then show ?thesis
qed

lemma path_component: "path_component S x y ⟷ (∃t. path_connected t ∧ t ⊆ S ∧ x ∈ t ∧ y ∈ t)"
apply (intro iffI)
apply (metis path_connected_path_image path_defs(5) pathfinish_in_path_image pathstart_in_path_image)
using path_component_of_subset path_connected_component by blast

lemma path_component_path_component [simp]:
"path_component_set (path_component_set S x) x = path_component_set S x"
proof (cases "x ∈ S")
case True show ?thesis
apply (rule subset_antisym)
by (simp add: True path_component_maximal path_component_refl path_connected_path_component)
next
case False then show ?thesis
by (metis False empty_iff path_component_eq_empty)
qed

lemma path_component_subset_connected_component:
"(path_component_set S x) ⊆ (connected_component_set S x)"
proof (cases "x ∈ S")
case True show ?thesis
apply (rule connected_component_maximal)
apply (auto simp: True path_component_subset path_component_refl path_connected_imp_connected)
done
next
case False then show ?thesis
using path_component_eq_empty by auto
qed

lemma path_connected_linear_image:
fixes f :: "'a::real_normed_vector ⇒ 'b::real_normed_vector"
assumes "path_connected S" "bounded_linear f"
shows "path_connected(f ` S)"
by (auto simp: linear_continuous_on assms path_connected_continuous_image)

lemma is_interval_path_connected: "is_interval S ⟹ path_connected S"

lemma linear_homeomorphism_image:
fixes f :: "'a::euclidean_space ⇒ 'b::euclidean_space"
assumes "linear f" "inj f"
obtains g where "homeomorphism (f ` S) S g f"
using linear_injective_left_inverse [OF assms]
apply clarify
apply (rule_tac g=g in that)
using assms
apply (auto simp: homeomorphism_def eq_id_iff [symmetric] image_comp comp_def linear_conv_bounded_linear linear_continuous_on)
done

lemma linear_homeomorphic_image:
fixes f :: "'a::euclidean_space ⇒ 'b::euclidean_space"
assumes "linear f" "inj f"
shows "S homeomorphic f ` S"
by (meson homeomorphic_def homeomorphic_sym linear_homeomorphism_image [OF assms])

lemma path_connected_Times:
assumes "path_connected s" "path_connected t"
shows "path_connected (s × t)"
proof (simp add: path_connected_def Sigma_def, clarify)
fix x1 y1 x2 y2
assume "x1 ∈ s" "y1 ∈ t" "x2 ∈ s" "y2 ∈ t"
obtain g where "path g" and g: "path_image g ⊆ s" and gs: "pathstart g = x1" and gf: "pathfinish g = x2"
using ‹x1 ∈ s› ‹x2 ∈ s› assms by (force simp: path_connected_def)
obtain h where "path h" and h: "path_image h ⊆ t" and hs: "pathstart h = y1" and hf: "pathfinish h = y2"
using ‹y1 ∈ t› ‹y2 ∈ t› assms by (force simp: path_connected_def)
have "path (λz. (x1, h z))"
using ‹path h›
apply (rule continuous_on_compose2 [where f = h])
apply (rule continuous_intros | force)+
done
moreover have "path (λz. (g z, y2))"
using ‹path g›
apply (rule continuous_on_compose2 [where f = g])
apply (rule continuous_intros | force)+
done
ultimately have 1: "path ((λz. (x1, h z)) +++ (λz. (g z, y2)))"
by (metis hf gs path_join_imp pathstart_def pathfinish_def)
have "path_image ((λz. (x1, h z)) +++ (λz. (g z, y2))) ⊆ path_image (λz. (x1, h z)) ∪ path_image (λz. (g z, y2))"
by (rule Path_Connected.path_image_join_subset)
also have "… ⊆ (⋃x∈s. ⋃x1∈t. {(x, x1)})"
using g h ‹x1 ∈ s› ‹y2 ∈ t› by (force simp: path_image_def)
finally have 2: "path_image ((λz. (x1, h z)) +++ (λz. (g z, y2))) ⊆ (⋃x∈s. ⋃x1∈t. {(x, x1)})" .
show "∃g. path g ∧ path_image g ⊆ (⋃x∈s. ⋃x1∈t. {(x, x1)}) ∧
pathstart g = (x1, y1) ∧ pathfinish g = (x2, y2)"
apply (intro exI conjI)
apply (rule 1)
apply (rule 2)
apply (metis hs pathstart_def pathstart_join)
by (metis gf pathfinish_def pathfinish_join)
qed

lemma is_interval_path_connected_1:
fixes s :: "real set"
shows "is_interval s ⟷ path_connected s"
using is_interval_connected_1 is_interval_path_connected path_connected_imp_connected by blast

subsection%unimportant‹Path components›

lemma Union_path_component [simp]:
"Union {path_component_set S x |x. x ∈ S} = S"
apply (rule subset_antisym)
using path_component_subset apply force
using path_component_refl by auto

lemma path_component_disjoint:
"disjnt (path_component_set S a) (path_component_set S b) ⟷
(a ∉ path_component_set S b)"
apply (auto simp: disjnt_def)
using path_component_eq apply fastforce
using path_component_sym path_component_trans by blast

lemma path_component_eq_eq:
"path_component S x = path_component S y ⟷
(x ∉ S) ∧ (y ∉ S) ∨ x ∈ S ∧ y ∈ S ∧ path_component S x y"
apply (rule iffI, metis (no_types) path_component_mem(1) path_component_refl)
apply (erule disjE, metis Collect_empty_eq_bot path_component_eq_empty)
apply (rule ext)
apply (metis path_component_trans path_component_sym)
done

lemma path_component_unique:
assumes "x ∈ c" "c ⊆ S" "path_connected c"
"⋀c'. ⟦x ∈ c'; c' ⊆ S; path_connected c'⟧ ⟹ c' ⊆ c"
shows "path_component_set S x = c"
apply (rule subset_antisym)
using assms
apply (metis mem_Collect_eq subsetCE path_component_eq_eq path_component_subset path_connected_path_component)

lemma path_component_intermediate_subset:
"path_component_set u a ⊆ t ∧ t ⊆ u
⟹ path_component_set t a = path_component_set u a"
by (metis (no_types) path_component_mono path_component_path_component subset_antisym)

lemma complement_path_component_Union:
fixes x :: "'a :: topological_space"
shows "S - path_component_set S x =
⋃({path_component_set S y| y. y ∈ S} - {path_component_set S x})"
proof -
have *: "(⋀x. x ∈ S - {a} ⟹ disjnt a x) ⟹ ⋃S - a = ⋃(S - {a})"
for a::"'a set" and S
by (auto simp: disjnt_def)
have "⋀y. y ∈ {path_component_set S x |x. x ∈ S} - {path_component_set S x}
⟹ disjnt (path_component_set S x) y"
using path_component_disjoint path_component_eq by fastforce
then have "⋃{path_component_set S x |x. x ∈ S} - path_component_set S x =
⋃({path_component_set S y |y. y ∈ S} - {path_component_set S x})"
by (meson *)
then show ?thesis by simp
qed

subsection ‹Sphere is path-connected›

lemma path_connected_punctured_universe:
assumes "2 ≤ DIM('a::euclidean_space)"
shows "path_connected (- {a::'a})"
proof -
let ?A = "{x::'a. ∃i∈Basis. x ∙ i < a ∙ i}"
let ?B = "{x::'a. ∃i∈Basis. a ∙ i < x ∙ i}"

have A: "path_connected ?A"
unfolding Collect_bex_eq
proof (rule path_connected_UNION)
fix i :: 'a
assume "i ∈ Basis"
then show "(∑i∈Basis. (a ∙ i - 1)*⇩R i) ∈ {x::'a. x ∙ i < a ∙ i}"
by simp
show "path_connected {x. x ∙ i < a ∙ i}"
using convex_imp_path_connected [OF convex_halfspace_lt, of i "a ∙ i"]
qed
have B: "path_connected ?B"
unfolding Collect_bex_eq
proof (rule path_connected_UNION)
fix i :: 'a
assume "i ∈ Basis"
then show "(∑i∈Basis. (a ∙ i + 1) *⇩R i) ∈ {x::'a. a ∙ i < x ∙ i}"
by simp
show "path_connected {x. a ∙ i < x ∙ i}"
using convex_imp_path_connected [OF convex_halfspace_gt, of "a ∙ i" i]
qed
obtain S :: "'a set" where "S ⊆ Basis" and "card S = Suc (Suc 0)"
using ex_card[OF assms]
by auto
then obtain b0 b1 :: 'a where "b0 ∈ Basis" and "b1 ∈ Basis" and "b0 ≠ b1"
unfolding card_Suc_eq by auto
then have "a + b0 - b1 ∈ ?A ∩ ?B"
by (auto simp: inner_simps inner_Basis)
then have "?A ∩ ?B ≠ {}"
by fast
with A B have "path_connected (?A ∪ ?B)"
by (rule path_connected_Un)
also have "?A ∪ ?B = {x. ∃i∈Basis. x ∙ i ≠ a ∙ i}"
unfolding neq_iff bex_disj_distrib Collect_disj_eq ..
also have "… = {x. x ≠ a}"
unfolding euclidean_eq_iff [where 'a='a]
also have "… = - {a}"
by auto
finally show ?thesis .
qed

corollary connected_punctured_universe:
"2 ≤ DIM('N::euclidean_space) ⟹ connected(- {a::'N})"

proposition path_connected_sphere:
fixes a :: "'a :: euclidean_space"
assumes "2 ≤ DIM('a)"
shows "path_connected(sphere a r)"
proof (cases r "0::real" rule: linorder_cases)
case less
then show ?thesis
next
case equal
then show ?thesis
next
case greater
then have eq: "(sphere (0::'a) r) = (λx. (r / norm x) *⇩R x) ` (- {0::'a})"
by (force simp: image_iff split: if_split_asm)
have "continuous_on (- {0::'a}) (λx. (r / norm x) *⇩R x)"
by (intro continuous_intros) auto
then have "path_connected ((λx. (r / norm x) *⇩R x) ` (- {0::'a}))"
by (intro path_connected_continuous_image path_connected_punctured_universe assms)
with eq have "path_connected (sphere (0::'a) r)"
by auto
then have "path_connected((+) a ` (sphere (0::'a) r))"
then show ?thesis
qed

lemma connected_sphere:
fixes a :: "'a :: euclidean_space"
assumes "2 ≤ DIM('a)"
shows "connected(sphere a r)"
using path_connected_sphere [OF assms]

corollary path_connected_complement_bounded_convex:
fixes s :: "'a :: euclidean_space set"
assumes "bounded s" "convex s" and 2: "2 ≤ DIM('a)"
shows "path_connected (- s)"
proof (cases "s = {}")
case True then show ?thesis
using convex_imp_path_connected by auto
next
case False
then obtain a where "a ∈ s" by auto
{ fix x y assume "x ∉ s" "y ∉ s"
then have "x ≠ a" "y ≠ a" using ‹a ∈ s› by auto
then have bxy: "bounded(insert x (insert y s))"
then obtain B::real where B: "0 < B" and Bx: "norm (a - x) < B" and By: "norm (a - y) < B"
and "s ⊆ ball a B"
using bounded_subset_ballD [OF bxy, of a] by (auto simp: dist_norm)
define C where "C = B / norm(x - a)"
{ fix u
assume u: "(1 - u) *⇩R x + u *⇩R (a + C *⇩R (x - a)) ∈ s" and "0 ≤ u" "u ≤ 1"
have CC: "1 ≤ 1 + (C - 1) * u"
using ‹x ≠ a› ‹0 ≤ u›
apply (simp add: C_def divide_simps norm_minus_commute)
using Bx by auto
have *: "⋀v. (1 - u) *⇩R x + u *⇩R (a + v *⇩R (x - a)) = a + (1 + (v - 1) * u) *⇩R (x - a)"
have "a + ((1 / (1 + C * u - u)) *⇩R x + ((u / (1 + C * u - u)) *⇩R a + (C * u / (1 + C * u - u)) *⇩R x)) =
(1 + (u / (1 + C * u - u))) *⇩R a + ((1 / (1 + C * u - u)) + (C * u / (1 + C * u - u))) *⇩R x"
also have "… = (1 + (u / (1 + C * u - u))) *⇩R a + (1 + (u / (1 + C * u - u))) *⇩R x"
using CC by (simp add: field_simps)
also have "… = x + (1 + (u / (1 + C * u - u))) *⇩R a + (u / (1 + C * u - u)) *⇩R x"
also have "… = x + ((1 / (1 + C * u - u)) *⇩R a +
((u / (1 + C * u - u)) *⇩R x + (C * u / (1 + C * u - u)) *⇩R a))"
finally have xeq: "(1 - 1 / (1 + (C - 1) * u)) *⇩R a + (1 / (1 + (C - 1) * u)) *⇩R (a + (1 + (C - 1) * u) *⇩R (x - a)) = x"
have False
using ‹convex s›
apply (drule_tac x=a in bspec)
apply (rule  ‹a ∈ s›)
apply (drule_tac x="a + (1 + (C - 1) * u) *⇩R (x - a)" in bspec)
using u apply (simp add: *)
apply (drule_tac x="1 / (1 + (C - 1) * u)" in spec)
using ‹x ≠ a› ‹x ∉ s› ‹0 ≤ u› CC
apply (auto simp: xeq)
done
}
then have pcx: "path_component (- s) x (a + C *⇩R (x - a))"
by (force simp: closed_segment_def intro!: path_connected_linepath)
define D where "D = B / norm(y - a)"  ― ‹massive duplication with the proof above›
{ fix u
assume u: "(1 - u) *⇩R y + u *⇩R (a + D *⇩R (y - a)) ∈ s" and "0 ≤ u" "u ≤ 1"
have DD: "1 ≤ 1 + (D - 1) * u"
using ‹y ≠ a› ‹0 ≤ u›
apply (simp add: D_def divide_simps norm_minus_commute)
using By by auto
have *: "⋀v. (1 - u) *⇩R y + u *⇩R (a + v *⇩R (y - a)) = a + (1 + (v - 1) * u) *⇩R (y - a)"
have "a + ((1 / (1 + D * u - u)) *⇩R y + ((u / (1 + D * u - u)) *⇩R a + (D * u / (1 + D * u - u)) *⇩R y)) =
(1 + (u / (1 + D * u - u))) *⇩R a + ((1 / (1 + D * u - u)) + (D * u / (1 + D * u - u))) *⇩R y"
also have "… = (1 + (u / (1 + D * u - u))) *⇩R a + (1 + (u / (1 + D * u - u))) *⇩R y"
using DD by (simp add: field_simps)
also have "… = y + (1 + (u / (1 + D * u - u))) *⇩R a + (u / (1 + D * u - u)) *⇩R y"
also have "… = y + ((1 / (1 + D * u - u)) *⇩R a +
((u / (1 + D * u - u)) *⇩R y + (D * u / (1 + D * u - u)) *⇩R a))"
finally have xeq: "(1 - 1 / (1 + (D - 1) * u)) *⇩R a + (1 / (1 + (D - 1) * u)) *⇩R (a + (1 + (D - 1) * u) *⇩R (y - a)) = y"
have False
using ‹convex s›
apply (drule_tac x=a in bspec)
apply (rule  ‹a ∈ s›)
apply (drule_tac x="a + (1 + (D - 1) * u) *⇩R (y - a)" in bspec)
using u apply (simp add: *)
apply (drule_tac x="1 / (1 + (D - 1) * u)" in spec)
using ‹y ≠ a› ‹y ∉ s› ‹0 ≤ u› DD
apply (auto simp: xeq)
done
}
then have pdy: "path_component (- s) y (a + D *⇩R (y - a))"
by (force simp: closed_segment_def intro!: path_connected_linepath)
have pyx: "path_component (- s) (a + D *⇩R (y - a)) (a + C *⇩R (x - a))"
apply (rule path_component_of_subset [of "sphere a B"])
using ‹s ⊆ ball a B›
apply (force simp: ball_def dist_norm norm_minus_commute)
apply (rule path_connected_sphere [OF 2, of a B, simplified path_connected_component, rule_format])
using ‹x ≠ a›  using ‹y ≠ a›  B apply (auto simp: dist_norm C_def D_def)
done
have "path_component (- s) x y"
by (metis path_component_trans path_component_sym pcx pdy pyx)
}
then show ?thesis
by (auto simp: path_connected_component)
qed

lemma connected_complement_bounded_convex:
fixes s :: "'a :: euclidean_space set"
assumes "bounded s" "convex s" "2 ≤ DIM('a)"
shows  "connected (- s)"
using path_connected_complement_bounded_convex [OF assms] path_connected_imp_connected by blast

lemma connected_diff_ball:
fixes s :: "'a :: euclidean_space set"
assumes "connected s" "cball a r ⊆ s" "2 ≤ DIM('a)"
shows "connected (s - ball a r)"
apply (rule connected_diff_open_from_closed [OF ball_subset_cball])
using assms connected_sphere
apply (auto simp: cball_diff_eq_sphere dist_norm)
done

proposition connected_open_delete:
assumes "open S" "connected S" and 2: "2 ≤ DIM('N::euclidean_space)"
shows "connected(S - {a::'N})"
proof (cases "a ∈ S")
case True
with ‹open S› obtain ε where "ε > 0" and ε: "cball a ε ⊆ S"
using open_contains_cball_eq by blast
have "dist a (a + ε *⇩R (SOME i. i ∈ Basis)) = ε"
by (simp add: dist_norm SOME_Basis ‹0 < ε› less_imp_le)
with ε have "⋂{S - ball a r |r. 0 < r ∧ r < ε} ⊆ {} ⟹ False"
apply (drule_tac c="a + scaleR (ε) ((SOME i. i ∈ Basis))" in subsetD)
by auto
then have nonemp: "(⋂{S - ball a r |r. 0 < r ∧ r < ε}) = {} ⟹ False"
by auto
have con: "⋀r. r < ε ⟹ connected (S - ball a r)"
using ε by (force intro: connected_diff_ball [OF ‹connected S› _ 2])
have "x ∈ ⋃{S - ball a r |r. 0 < r ∧ r < ε}" if "x ∈ S - {a}" for x
apply (rule UnionI [of "S - ball a (min ε (dist a x) / 2)"])
using that ‹0 < ε› apply simp_all
apply (rule_tac x="min ε (dist a x) / 2" in exI)
apply auto
done
then have "S - {a} = ⋃{S - ball a r | r. 0 < r ∧ r < ε}"
by auto
then show ?thesis
by (auto intro: connected_Union con dest!: nonemp)
next
case False then show ?thesis
qed

corollary path_connected_open_delete:
assumes "open S" "connected S" and 2: "2 ≤ DIM('N::euclidean_space)"
shows "path_connected(S - {a::'N})"
by (simp add: assms connected_open_delete connected_open_path_connected open_delete)

corollary path_connected_punctured_ball:
"2 ≤ DIM('N::euclidean_space) ⟹ path_connected(ball a r - {a::'N})"

corollary connected_punctured_ball:
"2 ≤ DIM('N::euclidean_space) ⟹ connected(ball a r - {a::'N})"

corollary connected_open_delete_finite:
fixes S T::"'a::euclidean_space set"
assumes S: "open S" "connected S" and 2: "2 ≤ DIM('a)" and "finite T"
shows "connected(S - T)"
using ‹finite T› S
proof (induct T)
case empty
show ?case using ‹connected S› by simp
next
case (insert x F)
then have "connected (S-F)" by auto
moreover have "open (S - F)" using finite_imp_closed[OF ‹finite F›] ‹open S› by auto
ultimately have "connected (S - F - {x})" using connected_open_delete[OF _ _ 2] by auto
thus ?case by (metis Diff_insert)
qed

lemma sphere_1D_doubleton_zero:
assumes 1: "DIM('a) = 1" and "r > 0"
obtains x y::"'a::euclidean_space"
where "sphere 0 r = {x,y} ∧ dist x y = 2*r"
proof -
obtain b::'a where b: "Basis = {b}"
using 1 card_1_singletonE by blast
show ?thesis
proof (intro that conjI)
have "x = norm x *⇩R b ∨ x = - norm x *⇩R b" if "r = norm x" for x
proof -
have xb: "(x ∙ b) *⇩R b = x"
using euclidean_representation [of x, unfolded b] by force
then have "norm ((x ∙ b) *⇩R b) = norm x"
by simp
with b have "¦x ∙ b¦ = norm x"
using norm_Basis by (simp add: b)
with xb show ?thesis
apply (simp add: abs_if split: if_split_asm)
done
qed
with ‹r > 0› b show "sphere 0 r = {r *⇩R b, - r *⇩R b}"
by (force simp: sphere_def dist_norm)
have "dist (r *⇩R b) (- r *⇩R b) = norm (r *⇩R b + r *⇩R b)"
also have "… = norm ((2*r) *⇩R b)"
also have "… = 2*r"
using ‹r > 0› b norm_Basis by fastforce
finally show "dist (r *⇩R b) (- r *⇩R b) = 2*r" .
qed
qed

lemma sphere_1D_doubleton:
fixes a :: "'a :: euclidean_space"
assumes "DIM('a) = 1" and "r > 0"
obtains x y where "sphere a r = {x,y} ∧ dist x y = 2*r"
proof -
have "sphere a r = (+) a ` sphere 0 r"
then show ?thesis
using sphere_1D_doubleton_zero [OF assms]
by (metis (mono_tags, lifting) dist_add_cancel image_empty image_insert that)
qed

lemma psubset_sphere_Compl_connected:
fixes S :: "'a::euclidean_space set"
assumes S: "S ⊂ sphere a r" and "0 < r" and 2: "2 ≤ DIM('a)"
shows "connected(- S)"
proof -
have "S ⊆ sphere a r"
using S by blast
obtain b where "dist a b = r" and "b ∉ S"
using S mem_sphere by blast
have CS: "- S = {x. dist a x ≤ r ∧ (x ∉ S)} ∪ {x. r ≤ dist a x ∧ (x ∉ S)}"
by auto
have "{x. dist a x ≤ r ∧ x ∉ S} ∩ {x. r ≤ dist a x ∧ x ∉ S} ≠ {}"
using ‹b ∉ S› ‹dist a b = r› by blast
moreover have "connected {x. dist a x ≤ r ∧ x ∉ S}"
apply (rule connected_intermediate_closure [of "ball a r"])
using assms by auto
moreover
have "connected {x. r ≤ dist a x ∧ x ∉ S}"
apply (rule connected_intermediate_closure [of "- cball a r"])
using assms apply (auto intro: connected_complement_bounded_convex)
apply (metis ComplI interior_cball interior_closure mem_ball not_less)
done
ultimately show ?thesis
qed

subsection‹Every annulus is a connected set›

lemma path_connected_2DIM_I:
fixes a :: "'N::euclidean_space"
assumes 2: "2 ≤ DIM('N)" and pc: "path_connected {r. 0 ≤ r ∧ P r}"
shows "path_connected {x. P(norm(x - a))}"
proof -
have "{x. P(norm(x - a))} = (+) a ` {x. P(norm x)}"
by force
moreover have "path_connected {x::'N. P(norm x)}"
proof -
let ?D = "{x. 0 ≤ x ∧ P x} × sphere (0::'N) 1"
have "x ∈ (λz. fst z *⇩R snd z) ` ?D"
if "P (norm x)" for x::'N
proof (cases "x=0")
case True
with that show ?thesis
apply (rule_tac x=0 in exI, simp)
using vector_choose_size zero_le_one by blast
next
case False
with that show ?thesis
by (rule_tac x="(norm x, x /⇩R norm x)" in image_eqI) auto
qed
then have *: "{x::'N. P(norm x)} =  (λz. fst z *⇩R snd z) ` ?D"
by auto
have "continuous_on ?D (λz:: real×'N. fst z *⇩R snd z)"
by (intro continuous_intros)
moreover have "path_connected ?D"
by (metis path_connected_Times [OF pc] path_connected_sphere 2)
ultimately show ?thesis
apply (subst *)
apply (rule path_connected_continuous_image, auto)
done
qed
ultimately show ?thesis
using path_connected_translation by metis
qed

proposition path_connected_annulus:
fixes a :: "'N::euclidean_space"
assumes "2 ≤ DIM('N)"
shows "path_connected {x. r1 < norm(x - a) ∧ norm(x - a) < r2}"
"path_connected {x. r1 < norm(x - a) ∧ norm(x - a) ≤ r2}"
"path_connected {x. r1 ≤ norm(x - a) ∧ norm(x - a) < r2}"
"path_connected {x. r1 ≤ norm(x - a) ∧ norm(x - a) ≤ r2}"
by (auto simp: is_interval_def intro!: is_interval_convex convex_imp_path_connected path_connected_2DIM_I [OF assms])

proposition connected_annulus:
fixes a :: "'N::euclidean_space"
assumes "2 ≤ DIM('N::euclidean_space)"
shows "connected {x. r1 < norm(x - a) ∧ norm(x - a) < r2}"
"connected {x. r1 < norm(x - a) ∧ norm(x - a) ≤ r2}"
"connected {x. r1 ≤ norm(x - a) ∧ norm(x - a) < r2}"
"connected {x. r1 ≤ norm(x - a) ∧ norm(x - a) ≤ r2}"
by (auto simp: path_connected_annulus [OF assms] path_connected_imp_connected)

subsection%unimportant‹Relations between components and path components›

lemma open_connected_component:
fixes s :: "'a::real_normed_vector set"
shows "open s ⟹ open (connected_component_set s x)"
apply (rename_tac y)
apply (drule_tac x=y in bspec)
apply (rule_tac x=e in exI)
by (metis mem_Collect_eq connected_component_eq connected_component_maximal centre_in_ball connected_ball)

corollary open_components:
fixes s :: "'a::real_normed_vector set"
shows "⟦open u; s ∈ components u⟧ ⟹ open s"
by (simp add: components_iff) (metis open_connected_component)

lemma in_closure_connected_component:
fixes s :: "'a::real_normed_vector set"
assumes x: "x ∈ s" and s: "open s"
shows "x ∈ closure (connected_component_set s y) ⟷  x ∈ connected_component_set s y"
proof -
{ assume "x ∈ closure (connected_component_set s y)"
moreover have "x ∈ connected_component_set s x"
using x by simp
ultimately have "x ∈ connected_component_set s y"
using s by (meson Compl_disjoint closure_iff_nhds_not_empty connected_component_disjoint disjoint_eq_subset_Compl open_connected_component)
}
then show ?thesis
by (auto simp: closure_def)
qed

lemma connected_disjoint_Union_open_pick:
assumes "pairwise disjnt B"
"⋀S. S ∈ A ⟹ connected S ∧ S ≠ {}"
"⋀S. S ∈ B ⟹ open S"
"⋃A ⊆ ⋃B"
"S ∈ A"
obtains T where "T ∈ B" "S ⊆ T" "S ∩ ⋃(B - {T}) = {}"
proof -
have "S ⊆ ⋃B" "connected S" "S ≠ {}"
using assms ‹S ∈ A› by blast+
then obtain T where "T ∈ B" "S ∩ T ≠ {}"
by (metis Sup_inf_eq_bot_iff inf.absorb_iff2 inf_commute)
have 1: "open T" by (simp add: ‹T ∈ B› assms)
have 2: "open (⋃(B-{T}))" using assms by blast
have 3: "S ⊆ T ∪ ⋃(B - {T})" using ‹S ⊆ ⋃B› by blast
have "T ∩ ⋃(B - {T}) = {}" using ‹T ∈ B› ‹pairwise disjnt B›
by (auto simp: pairwise_def disjnt_def)
then have 4: "T ∩ ⋃(B - {T}) ∩ S = {}" by auto
from connectedD [OF ‹connected S› 1 2 3 4]
have "S ∩ ⋃(B-{T}) = {}"
by (auto simp: Int_commute ‹S ∩ T ≠ {}›)
with ‹T ∈ B› have "S ⊆ T"
using "3" by auto
show ?thesis
using ‹S ∩ ⋃(B - {T}) = {}› ‹S ⊆ T› ‹T ∈ B› that by auto
qed

lemma connected_disjoint_Union_open_subset:
assumes A: "pairwise disjnt A" and B: "pairwise disjnt B"
and SA: "⋀S. S ∈ A ⟹ open S ∧ connected S ∧ S ≠ {}"
and SB: "⋀S. S ∈ B ⟹ open S ∧ connected S ∧ S ≠ {}"
and eq [simp]: "⋃A = ⋃B"
shows "A ⊆ B"
proof
fix S
assume "S ∈ A"
obtain T where "T ∈ B" "S ⊆ T" "S ∩ ⋃(B - {T}) = {}"
apply (rule connected_disjoint_Union_open_pick [OF B, of A])
using SA SB ‹S ∈ A› by auto
moreover obtain S' where "S' ∈ A" "T ⊆ S'" "T ∩ ⋃(A - {S'}) = {}"
apply (rule connected_disjoint_Union_open_pick [OF A, of B])
using SA SB ‹T ∈ B› by auto
ultimately have "S' = S"
by (metis A Int_subset_iff SA ‹S ∈ A› disjnt_def inf.orderE pairwise_def)
with ‹T ⊆ S'› have "T ⊆ S" by simp
with ‹S ⊆ T› have "S = T" by blast
with ‹T ∈ B› show "S ∈ B" by simp
qed

lemma connected_disjoint_Union_open_unique:
assumes A: "pairwise disjnt A" and B: "pairwise disjnt B"
and SA: "⋀S. S ∈ A ⟹ open S ∧ connected S ∧ S ≠ {}"
and SB: "⋀S. S ∈ B ⟹ open S ∧ connected S ∧ S ≠ {}"
and eq [simp]: "⋃A = ⋃B"
shows "A = B"
by (rule subset_antisym; metis connected_disjoint_Union_open_subset assms)

proposition components_open_unique:
fixes S :: "'a::real_normed_vector set"
assumes "pairwise disjnt A" "⋃A = S"
"⋀X. X ∈ A ⟹ open X ∧ connected X ∧ X ≠ {}"
shows "components S = A"
proof -
have "open S" using assms by blast
show ?thesis
apply (rule connected_disjoint_Union_open_unique)
apply (simp add: components_eq disjnt_def pairwise_def)
using ‹open S›
apply (simp_all add: assms open_components in_components_connected in_components_nonempty)
done
qed

subsection%unimportant‹Existence of unbounded components›

lemma cobounded_unbounded_component:
fixes s :: "'a :: euclidean_space set"
assumes "bounded (-s)"
shows "∃x. x ∈ s ∧ ~ bounded (connected_component_set s x)"
proof -
obtain i::'a where i: "i ∈ Basis"
using nonempty_Basis by blast
obtain B where B: "B>0" "-s ⊆ ball 0 B"
using bounded_subset_ballD [OF assms, of 0] by auto
then have *: "⋀x. B ≤ norm x ⟹ x ∈ s"
by (force simp: ball_def dist_norm)
have unbounded_inner: "~ bounded {x. inner i x ≥ B}"
apply (auto simp: bounded_def dist_norm)
apply (rule_tac x="x + (max B e + 1 + ¦i ∙ x¦) *⇩R i" in exI)
apply simp
using i
apply (auto simp: algebra_simps)
done
have **: "{x. B ≤ i ∙ x} ⊆ connected_component_set s (B *⇩R i)"
apply (rule connected_component_maximal)
apply (auto simp: i intro: convex_connected convex_halfspace_ge [of B])
apply (rule *)
apply (rule order_trans [OF _ Basis_le_norm [OF i]])
have "B *⇩R i ∈ s"
by (rule *) (simp add: norm_Basis [OF i])
then show ?thesis
apply (rule_tac x="B *⇩R i" in exI, clarify)
apply (frule bounded_subset [of _ "{x. B ≤ i ∙ x}", OF _ **])
using unbounded_inner apply blast
done
qed

lemma cobounded_unique_unbounded_component:
fixes s :: "'a :: euclidean_space set"
assumes bs: "bounded (-s)" and "2 ≤ DIM('a)"
and bo: "~ bounded(connected_component_set s x)"
"~ bounded(connected_component_set s y)"
shows "connected_component_set s x = connected_component_set s y"
proof -
obtain i::'a where i: "i ∈ Basis"
using nonempty_Basis by blast
obtain B where B: "B>0" "-s ⊆ ball 0 B"
using bounded_subset_ballD [OF bs, of 0] by auto
then have *: "⋀x. B ≤ norm x ⟹ x ∈ s"
by (force simp: ball_def dist_norm)
have ccb: "connected (- ball 0 B :: 'a set)"
using assms by (auto intro: connected_complement_bounded_convex)
obtain x' where x': "connected_component s x x'" "norm x' > B"
using bo [unfolded bounded_def dist_norm, simplified, rule_format]
by (metis diff_zero norm_minus_commute not_less)
obtain y' where y': "connected_component s y y'" "norm y' > B"
using bo [unfolded bounded_def dist_norm, simplified, rule_format]
by (metis diff_zero norm_minus_commute not_less)
have x'y': "connected_component s x' y'"
apply (rule_tac x="- ball 0 B" in exI)
using x' y'
apply (auto simp: ccb dist_norm *)
done
show ?thesis
apply (rule connected_component_eq)
using x' y' x'y'
by (metis (no_types, lifting) connected_component_eq_empty connected_component_eq_eq connected_component_idemp connected_component_in)
qed

lemma cobounded_unbounded_components:
fixes s :: "'a :: euclidean_space set"
shows "bounded (-s) ⟹ ∃c. c ∈ components s ∧ ~bounded c"
by (metis cobounded_unbounded_component components_def imageI)

lemma cobounded_unique_unbounded_components:
fixes s :: "'a :: euclidean_space set"
shows  "⟦bounded (- s); c ∈ components s; ¬ bounded c; c' ∈ components s; ¬ bounded c'; 2 ≤ DIM('a)⟧ ⟹ c' = c"
unfolding components_iff
by (metis cobounded_unique_unbounded_component)

lemma cobounded_has_bounded_component:
fixes S :: "'a :: euclidean_space set"
assumes "bounded (- S)" "¬ connected S" "2 ≤ DIM('a)"
obtains C where "C ∈ components S" "bounded C"
by (meson cobounded_unique_unbounded_components connected_eq_connected_components_eq assms)

section‹The "inside" and "outside" of a set›

text%important‹The inside comprises the points in a bounded connected component of the set's complement.
The outside comprises the points in unbounded connected component of the complement.›

definition%important inside where
"inside S ≡ {x. (x ∉ S) ∧ bounded(connected_component_set ( - S) x)}"

definition%important outside where
"outside S ≡ -S ∩ {x. ~ bounded(connected_component_set (- S) x)}"

lemma outside: "outside S = {x. ~ bounded(connected_component_set (- S) x)}"
by (auto simp: outside_def) (metis Compl_iff bounded_empty connected_component_eq_empty)

lemma inside_no_overlap [simp]: "inside S ∩ S = {}"
by (auto simp: inside_def)

lemma outside_no_overlap [simp]:
"outside S ∩ S = {}"
by (auto simp: outside_def)

lemma inside_Int_outside [simp]: "inside S ∩ outside S = {}"
by (auto simp: inside_def outside_def)

lemma inside_Un_outside [simp]: "inside S ∪ outside S = (- S)"
by (auto simp: inside_def outside_def)

lemma inside_eq_outside:
"inside S = outside S ⟷ S = UNIV"
by (auto simp: inside_def outside_def)

lemma inside_outside: "inside S = (- (S ∪ outside S))"
by (force simp: inside_def outside)

lemma outside_inside: "outside S = (- (S ∪ inside S))"
by (auto simp: inside_outside) (metis IntI equals0D outside_no_overlap)

lemma union_with_inside: "S ∪ inside S = - outside S"
by (auto simp: inside_outside) (simp add: outside_inside)

lemma union_with_outside: "S ∪ outside S = - inside S"

lemma outside_mono: "S ⊆ T ⟹ outside T ⊆ outside S"
by (auto simp: outside bounded_subset connected_component_mono)

lemma inside_mono: "S ⊆ T ⟹ inside S - T ⊆ inside T"
by (auto simp: inside_def bounded_subset connected_component_mono)

lemma segment_bound_lemma:
fixes u::real
assumes "x ≥ B" "y ≥ B" "0 ≤ u" "u ≤ 1"
shows "(1 - u) * x + u * y ≥ B"
proof -
obtain dx dy where "dx ≥ 0" "dy ≥ 0" "x = B + dx" "y = B + dy"
with ‹0 ≤ u› ‹u ≤ 1› show ?thesis
qed

lemma cobounded_outside:
fixes S :: "'a :: real_normed_vector set"
assumes "bounded S" shows "bounded (- outside S)"
proof -
obtain B where B: "B>0" "S ⊆ ball 0 B"
using bounded_subset_ballD [OF assms, of 0] by auto
{ fix x::'a and C::real
assume Bno: "B ≤ norm x" and C: "0 < C"
have "∃y. connected_component (- S) x y ∧ norm y > C"
proof (cases "x = 0")
case True with B Bno show ?thesis by force
next
case False
with B C
have "closed_segment x (((B + C) / norm x) *⇩R x) ⊆ - ball 0 B"
using segment_bound_lemma [of B "norm x" "B+C" ] Bno
also have "... ⊆ -S"
finally have "∃T. connected T ∧ T ⊆ - S ∧ x ∈ T ∧ ((B + C) / norm x) *⇩R x ∈ T"
by (rule_tac x="closed_segment x (((B+C)/norm x) *⇩R x)" in exI) simp
with False B
show ?thesis
by (rule_tac x="((B+C)/norm x) *⇩R x" in exI) (simp add: connected_component_def)
qed
}
then show ?thesis
apply (rule bounded_subset [OF bounded_ball [of 0 B]])
apply (force simp: dist_norm not_less bounded_pos)
done
qed

lemma unbounded_outside:
fixes S :: "'a::{real_normed_vector, perfect_space} set"
shows "bounded S ⟹ ~ bounded(outside S)"
using cobounded_imp_unbounded cobounded_outside by blast

lemma bounded_inside:
fixes S :: "'a::{real_normed_vector, perfect_space} set"
shows "bounded S ⟹ bounded(inside S)"
by (simp add: bounded_Int cobounded_outside inside_outside)

lemma connected_outside:
fixes S :: "'a::euclidean_space set"
assumes "bounded S" "2 ≤ DIM('a)"
shows "connected(outside S)"
apply (clarsimp simp add: connected_iff_connected_component outside)
apply (rule_tac s="connected_component_set (- S) x" in connected_component_of_subset)
apply (metis (no_types) assms cobounded_unbounded_component cobounded_unique_unbounded_component connected_component_eq_eq connected_component_idemp double_complement mem_Collect_eq)
apply clarify
apply (metis connected_component_eq_eq connected_component_in)
done

lemma outside_connected_component_lt:
"outside S = {x. ∀B. ∃y. B < norm(y) ∧ connected_component (- S) x y}"
apply (auto simp: outside bounded_def dist_norm)
apply (metis diff_0 norm_minus_cancel not_less)
by (metis less_diff_eq norm_minus_commute norm_triangle_ineq2 order.trans pinf(6))

lemma outside_connected_component_le:
"outside S =
{x. ∀B. ∃y. B ≤ norm(y) ∧
connected_component (- S) x y}"
by (meson gt_ex leD le_less_linear less_imp_le order.trans)

lemma not_outside_connected_component_lt:
fixes S :: "'a::euclidean_space set"
assumes S: "bounded S" and "2 ≤ DIM('a)"
shows "- (outside S) = {x. ∀B. ∃y. B < norm(y) ∧ ~ (connected_component (- S) x y)}"
proof -
obtain B::real where B: "0 < B" and Bno: "⋀x. x ∈ S ⟹ norm x ≤ B"
using S [simplified bounded_pos] by auto
{ fix y::'a and z::'a
assume yz: "B < norm z" "B < norm y"
have "connected_component (- cball 0 B) y z"
apply (rule connected_componentI [OF _ subset_refl])
apply (rule connected_complement_bounded_convex)
using assms yz
by (auto simp: dist_norm)
then have "connected_component (- S) y z"
apply (rule connected_component_of_subset)
apply (metis Bno Compl_anti_mono mem_cball_0 subset_iff)
done
} note cyz = this
show ?thesis
apply (auto simp: outside)
apply (metis Compl_iff bounded_iff cobounded_imp_unbounded mem_Collect_eq not_le)
by (metis B connected_component_trans cyz not_le)
qed

lemma not_outside_connected_component_le:
fixes S :: "'a::euclidean_space set"
assumes S: "bounded S"  "2 ≤ DIM('a)"
shows "- (outside S) = {x. ∀B. ∃y. B ≤ norm(y) ∧ ~ (connected_component (- S) x y)}"
apply (auto intro: less_imp_le simp: not_outside_connected_component_lt [OF assms])
by (meson gt_ex less_le_trans)

lemma inside_connected_component_lt:
fixes S :: "'a::euclidean_space set"
assumes S: "bounded S"  "2 ≤ DIM('a)"
shows "inside S = {x. (x ∉ S) ∧ (∀B. ∃y. B < norm(y) ∧ ~(connected_component (- S) x y))}"
by (auto simp: inside_outside not_outside_connected_component_lt [OF assms])

lemma inside_connected_component_le:
fixes S :: "'a::euclidean_space set"
assumes S: "bounded S"  "2 ≤ DIM('a)"
shows "inside S = {x. (x ∉ S) ∧ (∀B. ∃y. B ≤ norm(y) ∧ ~(connected_component (- S) x y))}"
by (auto simp: inside_outside not_outside_connected_component_le [OF assms])

lemma inside_subset:
assumes "connected U" and "~bounded U" and "T ∪ U = - S"
shows "inside S ⊆ T"
apply (auto simp: inside_def)
by (metis bounded_subset [of "connected_component_set (- S) _"] connected_component_maximal
Compl_iff Un_iff assms subsetI)

lemma frontier_not_empty:
fixes S :: "'a :: real_normed_vector set"
shows "⟦S ≠ {}; S ≠ UNIV⟧ ⟹ frontier S ≠ {}"
using connected_Int_frontier [of UNIV S] by auto

lemma frontier_eq_empty:
fixes S :: "'a :: real_normed_vector set"
shows "frontier S = {} ⟷ S = {} ∨ S = UNIV"
using frontier_UNIV frontier_empty frontier_not_empty by blast

lemma frontier_of_connected_component_subset:
fixes S :: "'a::real_normed_vector set"
shows "frontier(connected_component_set S x) ⊆ frontier S"
proof -
{ fix y
assume y1: "y ∈ closure (connected_component_set S x)"
and y2: "y ∉ interior (connected_component_set S x)"
have "y ∈ closure S"
using y1 closure_mono connected_component_subset by blast
moreover have "z ∈ interior (connected_component_set S x)"
if "0 < e" "ball y e ⊆ interior S" "dist y z < e" for e z
proof -
have "ball y e ⊆ connected_component_set S y"
apply (rule connected_component_maximal)
using that interior_subset mem_ball apply auto
done
then show ?thesis
using y1 apply (simp add: closure_approachable open_contains_ball_eq [OF open_interior])
by (metis connected_component_eq dist_commute mem_Collect_eq mem_ball mem_interior subsetD ‹0 < e› y2)
qed
then have "y ∉ interior S"
using y2 by (force simp: open_contains_ball_eq [OF open_interior])
ultimately have "y ∈ frontier S"
by (auto simp: frontier_def)
}
then show ?thesis by (auto simp: frontier_def)
qed

lemma frontier_Union_subset_closure:
fixes F :: "'a::real_normed_vector set set"
shows "frontier(⋃F) ⊆ closure(⋃t ∈ F. frontier t)"
proof -
have "∃y∈F. ∃y∈frontier y. dist y x < e"
if "T ∈ F" "y ∈ T" "dist y x < e"
"x ∉ interior (⋃F)" "0 < e" for x y e T
proof (cases "x ∈ T")
case True with that show ?thesis
by (metis Diff_iff Sup_upper closure_subset contra_subsetD dist_self frontier_def interior_mono)
next
case False
have 1: "closed_segment x y ∩ T ≠ {}" using ‹y ∈ T› by blast
have 2: "closed_segment x y - T ≠ {}"
using False by blast
obtain c where "c ∈ closed_segment x y" "c ∈ frontier T"
using False connected_Int_frontier [OF connected_segment 1 2] by auto
then show ?thesis
proof -
have "norm (y - x) < e"
by (metis dist_norm ‹dist y x < e›)
moreover have "norm (c - x) ≤ norm (y - x)"
by (simp add: ‹c ∈ closed_segment x y› segment_bound(1))
ultimately have "norm (c - x) < e"
by linarith
then show ?thesis
by (metis (no_types) ‹c ∈ frontier T› dist_norm that(1))
qed
qed
then show ?thesis
by (fastforce simp add: frontier_def closure_approachable)
qed

lemma frontier_Union_subset:
fixes F :: "'a::real_normed_vector set set"
shows "finite F ⟹ frontier(⋃F) ⊆ (⋃t ∈ F. frontier t)"
by (rule order_trans [OF frontier_Union_subset_closure])
(auto simp: closure_subset_eq)

lemma frontier_of_components_subset:
fixes S :: "'a::real_normed_vector set"
shows "C ∈ components S ⟹ frontier C ⊆ frontier S"
by (metis Path_Connected.frontier_of_connected_component_subset components_iff)

lemma frontier_of_components_closed_complement:
fixes S :: "'a::real_normed_vector set"
shows "⟦closed S; C ∈ components (- S)⟧ ⟹ frontier C ⊆ S"
using frontier_complement frontier_of_components_subset frontier_subset_eq by blast

lemma frontier_minimal_separating_closed:
fixes S :: "'a::real_normed_vector set"
assumes "closed S"
and nconn: "~ connected(- S)"
and C: "C ∈ components (- S)"
and conn: "⋀T. ⟦closed T; T ⊂ S⟧ ⟹ connected(- T)"
shows "frontier C = S"
proof (rule ccontr)
assume "frontier C ≠ S"
then have "frontier C ⊂ S"
using frontier_of_components_closed_complement [OF ‹closed S› C] by blast
then have "connected(- (frontier C))"
have "¬ connected(- (frontier C))"
unfolding connected_def not_not
proof (intro exI conjI)
show "open C"
using C ‹closed S› open_components by blast
show "open (- closure C)"
by blast
show "C ∩ - closure C ∩ - frontier C = {}"
using closure_subset by blast
show "C ∩ - frontier C ≠ {}"
using C ‹open C› components_eq frontier_disjoint_eq by fastforce
show "- frontier C ⊆ C ∪ - closure C"
by (simp add: ‹open C› closed_Compl frontier_closures)
then show "- closure C ∩ - frontier C ≠ {}"
by (metis (no_types, lifting) C Compl_subset_Compl_iff ‹frontier C ⊂ S› compl_sup frontier_closures in_components_subset psubsetE sup.absorb_iff2 sup.boundedE sup_bot.right_neutral sup_inf_absorb)
qed
then show False
using ‹connected (- frontier C)› by blast
qed

lemma connected_component_UNIV [simp]:
fixes x :: "'a::real_normed_vector"
shows "connected_component_set UNIV x = UNIV"
using connected_iff_eq_connected_component_set [of "UNIV::'a set"] connected_UNIV
by auto

lemma connected_component_eq_UNIV:
fixes x :: "'a::real_normed_vector"
shows "connected_component_set s x = UNIV ⟷ s = UNIV"
using connected_component_in connected_component_UNIV by blast

lemma components_UNIV [simp]: "components UNIV = {UNIV :: 'a::real_normed_vector set}"
by (auto simp: components_eq_sing_iff)

lemma interior_inside_frontier:
fixes s :: "'a::real_normed_vector set"
assumes "bounded s"
shows "interior s ⊆ inside (frontier s)"
proof -
{ fix x y
assume x: "x ∈ interior s" and y: "y ∉ s"
and cc: "connected_component (- frontier s) x y"
have "connected_component_set (- frontier s) x ∩ frontier s ≠ {}"
apply (rule connected_Int_frontier, simp)
apply (metis IntI cc connected_component_in connected_component_refl empty_iff interiorE mem_Collect_eq set_rev_mp x)
using  y cc
by blast
then have "bounded (connected_component_set (- frontier s) x)"
using connected_component_in by auto
}
then show ?thesis
apply (auto simp: inside_def frontier_def)
apply (rule classical)
apply (rule bounded_subset [OF assms], blast)
done
qed

lemma inside_empty [simp]: "inside {} = ({} :: 'a :: {real_normed_vector, perfect_space} set)"

lemma outside_empty [simp]: "outside {} = (UNIV :: 'a :: {real_normed_vector, perfect_space} set)"
using inside_empty inside_Un_outside by blast

lemma inside_same_component:
"⟦connected_component (- s) x y; x ∈ inside s⟧ ⟹ y ∈ inside s"
using connected_component_eq connected_component_in

lemma outside_same_component:
"⟦connected_component (- s) x y; x ∈ outside s⟧ ⟹ y ∈ outside s"
using connected_component_eq connected_component_in

lemma convex_in_outside:
fixes s :: "'a :: {real_normed_vector, perfect_space} set"
assumes s: "convex s" and z: "z ∉ s"
shows "z ∈ outside s"
proof (cases "s={}")
case True then show ?thesis by simp
next
case False then obtain a where "a ∈ s" by blast
with z have zna: "z ≠ a" by auto
{ assume "bounded (connected_component_set (- s) z)"
with bounded_pos_less obtain B where "B>0" and B: "⋀x. connected_component (- s) z x ⟹ norm x < B"
by (metis mem_Collect_eq)
define C where "C = (B + 1 + norm z) / norm (z-a)"
have "C > 0"
have "¦norm (z + C *⇩R (z-a)) - norm (C *⇩R (z-a))¦ ≤ norm z"
moreover have "norm (C *⇩R (z-a)) > norm z + B"
using zna ‹B>0› by (simp add: C_def le_max_iff_disj field_simps)
ultimately have C: "norm (z + C *⇩R (z-a)) > B" by linarith
{ fix u::real
assume u: "0≤u" "u≤1" and ins: "(1 - u) *⇩R z + u *⇩R (z + C *⇩R (z - a)) ∈ s"
then have Cpos: "1 + u * C > 0"
by (meson ‹0 < C› add_pos_nonneg less_eq_real_def zero_le_mult_iff zero_less_one)
then have *: "(1 / (1 + u * C)) *⇩R z + (u * C / (1 + u * C)) *⇩R z = z"
then have False
using convexD_alt [OF s ‹a ∈ s› ins, of "1/(u*C + 1)"] ‹C>0› ‹z ∉ s› Cpos u
by (simp add: * divide_simps algebra_simps)
} note contra = this
have "connected_component (- s) z (z + C *⇩R (z-a))"
apply (rule connected_componentI [OF connected_segment [of z "z + C *⇩R (z-a)"]])
using contra
apply auto
done
then have False
using zna B [of "z + C *⇩R (z-a)"] C
by (auto simp: divide_simps max_mult_distrib_right)
}
then show ?thesis
by (auto simp: outside_def z)
qed

lemma outside_convex:
fixes s :: "'a :: {real_normed_vector, perfect_space} set"
assumes "convex s"
shows "outside s = - s"
by (metis ComplD assms convex_in_outside equalityI inside_Un_outside subsetI sup.cobounded2)

lemma outside_singleton [simp]:
fixes x :: "'a :: {real_normed_vector, perfect_space}"
shows "outside {x} = -{x}"
by (auto simp: outside_convex)

lemma inside_convex:
fixes s :: "'a :: {real_normed_vector, perfect_space} set"
shows "convex s ⟹ inside s = {}"

lemma inside_singleton [simp]:
fixes x :: "'a :: {real_normed_vector, perfect_space}"
shows "inside {x} = {}"
by (auto simp: inside_convex)

lemma outside_subset_convex:
fixes s :: "'a :: {real_normed_vector, perfect_space} set"
shows "⟦convex t; s ⊆ t⟧ ⟹ - t ⊆ outside s"
using outside_convex outside_mono by blast

lemma outside_Un_outside_Un:
fixes S :: "'a::real_normed_vector set"
assumes "S ∩ outside(T ∪ U) = {}"
shows "outside(T ∪ U) ⊆ outside(T ∪ S)"
proof
fix x
assume x: "x ∈ outside (T ∪ U)"
have "Y ⊆ - S" if "connected Y" "Y ⊆ - T" "Y ⊆ - U" "x ∈ Y" "u ∈ Y" for u Y
proof -
have "Y ⊆ connected_component_set (- (T ∪ U)) x"
also have "… ⊆ outside(T ∪ U)"
by (metis (mono_tags, lifting) Collect_mono mem_Collect_eq outside outside_same_component x)
finally have "Y ⊆ outside(T ∪ U)" .
with assms show ?thesis by auto
qed
with x show "x ∈ outside (T ∪ S)"
by (simp add: outside_connected_component_lt connected_component_def) meson
qed

lemma outside_frontier_misses_closure:
fixes s :: "'a::real_normed_vector set"
assumes "bounded s"
shows  "outside(frontier s) ⊆ - closure s"
unfolding outside_inside Lattices.boolean_algebra_class.compl_le_compl_iff
proof -
{ assume "interior s ⊆ inside (frontier s)"
hence "interior s ∪ inside (frontier s) = inside (frontier s)"
then have "closure s ⊆ frontier s ∪ inside (frontier s)"
using frontier_def by auto
}
then show "closure s ⊆ frontier s ∪ inside (frontier s)"
using interior_inside_frontier [OF assms] by blast
qed

lemma outside_frontier_eq_complement_closure:
fixes s :: "'a :: {real_normed_vector, perfect_space} set"
assumes "bounded s" "convex s"
shows "outside(frontier s) = - closure s"
by (metis Diff_subset assms convex_closure frontier_def outside_frontier_misses_closure
outside_subset_convex subset_antisym)

lemma inside_frontier_eq_interior:
fixes s :: "'a :: {real_normed_vector, perfect_space} set"
shows "⟦bounded s; convex s⟧ ⟹ inside(frontier s) = interior s"
using closure_subset interior_subset
apply (auto simp: frontier_def)
done

lemma open_inside:
fixes s :: "'a::real_normed_vector set"
assumes "closed s"
shows "open (inside s)"
proof -
{ fix x assume x: "x ∈ inside s"
have "open (connected_component_set (- s) x)"
using assms open_connected_component by blast
then obtain e where e: "e>0" and e: "⋀y. dist y x < e ⟶ connected_component (- s) x y"
using dist_not_less_zero
by (metis (no_types, lifting) Compl_iff connected_component_refl_eq inside_def mem_Collect_eq x)
then have "∃e>0. ball x e ⊆ inside s"
by (metis e dist_commute inside_same_component mem_ball subsetI x)
}
then show ?thesis
qed

lemma open_outside:
fixes s :: "'a::real_normed_vector set"
assumes "closed s"
shows "open (outside s)"
proof -
{ fix x assume x: "x ∈ outside s"
have "open (connected_component_set (- s) x)"
using assms open_connected_component by blast
then obtain e where e: "e>0" and e: "⋀y. dist y x < e ⟶ connected_component (- s) x y"
using dist_not_less_zero
by (metis Int_iff outside_def connected_component_refl_eq  x)
then have "∃e>0. ball x e ⊆ outside s"
by (metis e dist_commute outside_same_component mem_ball subsetI x)
}
then show ?thesis
qed

lemma closure_inside_subset:
fixes s :: "'a::real_normed_vector set"
assumes "closed s"
shows "closure(inside s) ⊆ s ∪ inside s"
by (metis assms closure_minimal open_closed open_outside sup.cobounded2 union_with_inside)

lemma frontier_inside_subset:
fixes s :: "'a::real_normed_vector set"
assumes "closed s"
shows "frontier(inside s) ⊆ s"
proof -
have "closure (inside s) ∩ - inside s = closure (inside s) - interior (inside s)"
by (metis (no_types) Diff_Compl assms closure_closed interior_closure open_closed open_inside)
moreover have "- inside s ∩ - outside s = s"
by (metis (no_types) compl_sup double_compl inside_Un_outside)
moreover have "closure (inside s) ⊆ - outside s"
by (metis (no_types) assms closure_inside_subset union_with_inside)
ultimately have "closure (inside s) - interior (inside s) ⊆ s"
by blast
then show ?thesis
by (simp add: frontier_def open_inside interior_open)
qed

lemma closure_outside_subset:
fixes s :: "'a::real_normed_vector set"
assumes "closed s"
shows "closure(outside s) ⊆ s ∪ outside s"
apply (rule closure_minimal, simp)
by (metis assms closed_open inside_outside open_inside)

lemma frontier_outside_subset:
fixes s :: "'a::real_normed_vector set"
assumes "closed s"
shows "frontier(outside s) ⊆ s"
apply (simp add: frontier_def open_outside interior_open)
by (metis Diff_subset_conv assms closure_outside_subset interior_eq open_outside sup.commute)

lemma inside_complement_unbounded_connected_empty:
"⟦connected (- s); ¬ bounded (- s)⟧ ⟹ inside s = {}"
by (meson Compl_iff bounded_subset connected_component_maximal order_refl)

lemma inside_bounded_complement_connected_empty:
fixes s :: "'a::{real_normed_vector, perfect_space} set"
shows "⟦connected (- s); bounded s⟧ ⟹ inside s = {}"
by (metis inside_complement_unbounded_connected_empty cobounded_imp_unbounded)

lemma inside_inside:
assumes "s ⊆ inside t"
shows "inside s - t ⊆ inside t"
unfolding inside_def
proof clarify
fix x
assume x: "x ∉ t" "x ∉ s" and bo: "bounded (connected_component_set (- s) x)"
show "bounded (connected_component_set (- t) x)"
proof (cases "s ∩ connected_component_set (- t) x = {}")
case True show ?thesis
apply (rule bounded_subset [OF bo])
apply (rule connected_component_maximal)
using x True apply auto
done
next
case False then show ?thesis
using assms [unfolded inside_def] x
apply (drule subsetD, assumption, auto)
by (metis (no_types, hide_lams) ComplI connected_component_eq_eq)
qed
qed

lemma inside_inside_subset: "inside(inside s) ⊆ s"
using inside_inside union_with_outside by fastforce

lemma inside_outside_intersect_connected:
"⟦connected t; inside s ∩ t ≠ {}; outside s ∩ t ≠ {}⟧ ⟹ s ∩ t ≠ {}"
apply (simp add: inside_def outside_def ex_in_conv [symmetric] disjoint_eq_subset_Compl, clarify)
by (metis (no_types, hide_lams) Compl_anti_mono connected_component_eq connected_component_maximal contra_subsetD double_compl)

lemma outside_bounded_nonempty:
fixes s :: "'a :: {real_normed_vector, perfect_space} set"
assumes "bounded s" shows "outside s ≠ {}"
by (metis (no_types, lifting) Collect_empty_eq Collect_mem_eq Compl_eq_Diff_UNIV Diff_cancel
Diff_disjoint UNIV_I assms ball_eq_empty bounded_diff cobounded_outside convex_ball
double_complement order_refl outside_convex outside_def)

lemma outside_compact_in_open:
fixes s :: "'a :: {real_normed_vector,perfect_space} set"
assumes s: "compact s" and t: "open t" and "s ⊆ t" "t ≠ {}"
shows "outside s ∩ t ≠ {}"
proof -
have "outside s ≠ {}"
by (simp add: compact_imp_bounded outside_bounded_nonempty s)
with assms obtain a b where a: "a ∈ outside s" and b: "b ∈ t" by auto
show ?thesis
proof (cases "a ∈ t")
case True with a show ?thesis by blast
next
case False
have front: "frontier t ⊆ - s"
using ‹s ⊆ t› frontier_disjoint_eq t by auto
{ fix γ
assume "path γ" and pimg_sbs: "path_image γ - {pathfinish γ} ⊆ interior (- t)"
and pf: "pathfinish γ ∈ frontier t" and ps: "pathstart γ = a"
define c where "c = pathfinish γ"
have "c ∈ -s" unfolding c_def using front pf by blast
moreover have "open (-s)" using s compact_imp_closed by blast
ultimately obtain ε::real where "ε > 0" and ε: "cball c ε ⊆ -s"
using open_contains_cball[of "-s"] s by blast
then obtain d where "d ∈ t" and d: "dist d c < ε"
using closure_approachable [of c t] pf unfolding c_def
by (metis Diff_iff frontier_def)
then have "d ∈ -s" using ε
using dist_commute by (metis contra_subsetD mem_cball not_le not_less_iff_gr_or_eq)
have pimg_sbs_cos: "path_image γ ⊆ -s"
using pimg_sbs apply (auto simp: path_image_def)
apply (drule subsetD)
using ‹c ∈ - s› ‹s ⊆ t› interior_subset apply (auto simp: c_def)
done
have "closed_segment c d ≤ cball c ε"
apply (rule hull_minimal)
using  ‹ε > 0› d apply (auto simp: dist_commute)
done
with ε have "closed_segment c d ⊆ -s" by blast
moreover have con_gcd: "connected (path_image γ ∪ closed_segment c d)"
by (rule connected_Un) (auto simp: c_def ‹path γ› connected_path_image)
ultimately have "connected_component (- s) a d"
unfolding connected_component_def using pimg_sbs_cos ps by blast
then have "outside s ∩ t ≠ {}"
using outside_same_component [OF _ a]  by (metis IntI ‹d ∈ t› empty_iff)
} note * = this
have pal: "pathstart (linepath a b) ∈ closure (- t)"
by (auto simp: False closure_def)
show ?thesis
by (rule exists_path_subpath_to_frontier [OF path_linepath pal _ *]) (auto simp: b)
qed
qed

lemma inside_inside_compact_connected:
fixes s :: "'a :: euclidean_space set"
assumes s: "closed s" and t: "compact t" and "connected t" "s ⊆ inside t"
shows "inside s ⊆ inside t"
proof (cases "inside t = {}")
case True with assms show ?thesis by auto
next
case False
consider "DIM('a) = 1" | "DIM('a) ≥ 2"
using antisym not_less_eq_eq by fastforce
then show ?thesis
proof cases
case 1 then show ?thesis
using connected_convex_1_gen assms False inside_convex by blast
next
case 2
have coms: "compact s"
using assms apply (simp add: s compact_eq_bounded_closed)
by (meson bounded_inside bounded_subset compact_imp_bounded)
then have bst: "bounded (s ∪ t)"
then obtain r where "0 < r" and r: "s ∪ t ⊆ ball 0 r"
using bounded_subset_ballD by blast
have outst: "outside s ∩ outside t ≠ {}"
proof -
have "- ball 0 r ⊆ outside s"
apply (rule outside_subset_convex)
using r by auto
moreover have "- ball 0 r ⊆ outside t"
apply (rule outside_subset_convex)
using r by auto
ultimately show ?thesis
by (metis Compl_subset_Compl_iff Int_subset_iff bounded_ball inf.orderE outside_bounded_nonempty outside_no_overlap)
qed
have "s ∩ t = {}" using assms
by (metis disjoint_iff_not_equal inside_no_overlap subsetCE)
moreover have "outside s ∩ inside t ≠ {}"
by (meson False assms(4) compact_eq_bounded_closed coms open_inside outside_compact_in_open t)
ultimately have "inside s ∩ t = {}"
using inside_outside_intersect_connected [OF ‹connected t›, of s]
by (metis "2" compact_eq_bounded_closed coms connected_outside inf.commute inside_outside_intersect_connected outst)
then show ?thesis
using inside_inside [OF ‹s ⊆ inside t›] by blast
qed
qed

lemma connected_with_inside:
fixes s :: "'a :: real_normed_vector set"
assumes s: "closed s" and cons: "connected s"
shows "connected(s ∪ inside s)"
proof (cases "s ∪ inside s = UNIV")
case True with assms show ?thesis by auto
next
case False
then obtain b where b: "b ∉ s" "b ∉ inside s" by blast
have *: "∃y t. y ∈ s ∧ connected t ∧ a ∈ t ∧ y ∈ t ∧ t ⊆ (s ∪ inside s)" if "a ∈ (s ∪ inside s)" for a
using that proof
assume "a ∈ s" then show ?thesis
apply (rule_tac x=a in exI)
apply (rule_tac x="{a}" in exI, simp)
done
next
assume a: "a ∈ inside s"
show ?thesis
apply (rule exists_path_subpath_to_frontier [OF path_linepath [of a b], of "inside s"])
using a apply (simp add: closure_def)
apply (rule_tac x="pathfinish h" in exI)
apply (rule_tac x="path_image h" in exI)
apply (simp add: pathfinish_in_path_image connected_path_image, auto)
using frontier_inside_subset s apply fastforce
by (metis (no_types, lifting) frontier_inside_subset insertE insert_Diff interior_eq open_inside pathfinish_in_path_image s subsetCE)
qed
show ?thesis
apply (clarify dest!: *)
apply (rename_tac u u' t t')
apply (rule_tac x="(s ∪ t ∪ t')" in exI)
apply (auto simp: intro!: connected_Un cons)
done
qed

text‹The proof is virtually the same as that above.›
lemma connected_with_outside:
fixes s :: "'a :: real_normed_vector set"
assumes s: "closed s" and cons: "connected s"
shows "connected(s ∪ outside s)"
proof (cases "s ∪ outside s = UNIV")
case True with assms show ?thesis by auto
next
case False
then obtain b where b: "b ∉ s" "b ∉ outside s" by blast
have *: "∃y t. y ∈ s ∧ connected t ∧ a ∈ t ∧ y ∈ t ∧ t ⊆ (s ∪ outside s)" if "a ∈ (s ∪ outside s)" for a
using that proof
assume "a ∈ s" then show ?thesis
apply (rule_tac x=a in exI)
apply (rule_tac x="{a}" in exI, simp)
done
next
assume a: "a ∈ outside s"
show ?thesis
apply (rule exists_path_subpath_to_frontier [OF path_linepath [of a b], of "outside s"])
using a apply (simp add: closure_def)
apply (rule_tac x="pathfinish h" in exI)
apply (rule_tac x="path_image h" in exI)
apply (simp add: pathfinish_in_path_image connected_path_image, auto)
using frontier_outside_subset s apply fastforce
by (metis (no_types, lifting) frontier_outside_subset insertE insert_Diff interior_eq open_outside pathfinish_in_path_image s subsetCE)
qed
show ?thesis
apply (clarify dest!: *)
apply (rename_tac u u' t t')
apply (rule_tac x="(s ∪ t ∪ t')" in exI)
apply (auto simp: intro!: connected_Un cons)
done
qed

lemma inside_inside_eq_empty [simp]:
fixes s :: "'a :: {real_normed_vector, perfect_space} set"
assumes s: "closed s" and cons: "connected s"
shows "inside (inside s) = {}"
by (metis (no_types) unbounded_outside connected_with_outside [OF assms] bounded_Un
inside_complement_unbounded_connected_empty unbounded_outside union_with_outside)

lemma inside_in_components:
"inside s ∈ components (- s) ⟷ connected(inside s) ∧ inside s ≠ {}"
apply (auto intro: inside_same_component connected_componentI)
apply (metis IntI empty_iff inside_no_overlap)
done

text‹The proof is virtually the same as that above.›
lemma outside_in_components:
"outside s ∈ components (- s) ⟷ connected(outside s) ∧ outside s ≠ {}"
apply (auto intro: outside_same_component connected_componentI)
apply (metis IntI empty_iff outside_no_overlap)
done

lemma bounded_unique_outside:
fixes s :: "'a :: euclidean_space set"
shows "⟦bounded s; DIM('a) ≥ 2⟧ ⟹ (c ∈ components (- s) ∧ ~bounded c ⟷ c = outside s)"
apply (rule iffI)
apply (metis cobounded_unique_unbounded_components connected_outside double_compl outside_bounded_nonempty outside_in_components unbounded_outside)
by (simp add: connected_outside outside_bounded_nonempty outside_in_components unbounded_outside)

subsection‹Condition for an open map's image to contain a ball›

proposition ball_subset_open_map_image:
fixes f :: "'a::heine_borel ⇒ 'b :: {real_normed_vector,heine_borel}"
assumes contf: "continuous_on (closure S) f"
and oint: "open (f ` interior S)"
and le_no: "⋀z. z ∈ frontier S ⟹ r ≤ norm(f z - f a)"
and "bounded S" "a ∈ S" "0 < r"
shows "ball (f a) r ⊆ f ` S"
proof (cases "f ` S = UNIV")
case True then show ?thesis by simp
next
case False
obtain w where w: "w ∈ frontier (f ` S)"
and dw_le: "⋀y. y ∈ frontier (f ` S) ⟹ norm (f a - w) ≤ norm (f a - y)"
apply (rule distance_attains_inf [of "frontier(f ` S)" "f a"])
using ‹a ∈ S› by (auto simp: frontier_eq_empty dist_norm False)
then obtain ξ where ξ: "⋀n. ξ n ∈ f ` S" and tendsw: "ξ ⇢ w"
by (metis Diff_iff frontier_def closure_sequential)
then have "⋀n. ∃x ∈ S. ξ n = f x" by force
then obtain z where zs: "⋀n. z n ∈ S" and fz: "⋀n. ξ n = f (z n)"
by metis
then obtain y K where y: "y ∈ closure S" and "strict_mono (K :: nat ⇒ nat)"
and Klim: "(z ∘ K) ⇢ y"
using ‹bounded S›
apply (simp add: compact_closure [symmetric] compact_def)
apply (drule_tac x=z in spec)
using closure_subset apply force
done
then have ftendsw: "((λn. f (z n)) ∘ K) ⇢ w"
by (metis LIMSEQ_subseq_LIMSEQ fun.map_cong0 fz tendsw)
have zKs: "⋀n. (z ∘ K) n ∈ S" by (simp add: zs)
have fz: "f ∘ z = ξ"  "(λn. f (z n)) = ξ"
using fz by auto
then have "(ξ ∘ K) ⇢ f y"
by (metis (no_types) Klim zKs y contf comp_assoc continuous_on_closure_sequentially)
with fz have wy: "w = f y" using fz LIMSEQ_unique ftendsw by auto
have rle: "r ≤ norm (f y - f a)"
apply (rule le_no)
using w wy oint
by (force simp: imageI image_mono interiorI interior_subset frontier_def y)
have **: "(~(b ∩ (- S) = {}) ∧ ~(b - (- S) = {}) ⟹ (b ∩ f ≠ {}))
⟹ (b ∩ S ≠ {}) ⟹ b ∩ f = {} ⟹
b ⊆ S" for b f and S :: "'b set"
by blast
show ?thesis
apply (rule **)   (*such a horrible mess*)
apply (rule connected_Int_frontier [where t = "f`S", OF connected_ball])
using ‹a ∈ S› ‹0 < r›
apply (auto simp: disjoint_iff_not_equal  dist_norm)
by (metis dw_le norm_minus_commute not_less order_trans rle wy)
qed

section‹ Homotopy of maps p,q : X=>Y with property P of all intermediate maps›

text%important‹ We often just want to require that it fixes some subset, but to take in
the case of a loop homotopy, it's convenient to have a general property P.›

definition%important homotopic_with ::
"[('a::topological_space ⇒ 'b::topological_space) ⇒ bool, 'a set, 'b set, 'a ⇒ 'b, 'a ⇒ 'b] ⇒ bool"
where
"homotopic_with P X Y p q ≡
(∃h:: real × 'a ⇒ 'b.
continuous_on ({0..1} × X) h ∧
h ` ({0..1} × X) ⊆ Y ∧
(∀x. h(0, x) = p x) ∧
(∀x. h(1, x) = q x) ∧
(∀t ∈ {0..1}. P(λx. h(t, x))))"

text‹ We often want to just localize the ending function equality or whatever.›
proposition homotopic_with:
fixes X :: "'a::topological_space set" and Y :: "'b::topological_space set"
assumes "⋀h k. (⋀x. x ∈ X ⟹ h x = k x) ⟹ (P h ⟷ P k)"
shows "homotopic_with P X Y p q ⟷
(∃h :: real × 'a ⇒ 'b.
continuous_on ({0..1} × X) h ∧
h ` ({0..1} × X) ⊆ Y ∧
(∀x ∈ X. h(0,x) = p x) ∧
(∀x ∈ X. h(1,x) = q x) ∧
(∀t ∈ {0..1}. P(λx. h(t, x))))"
unfolding homotopic_with_def
apply (rule iffI, blast, clarify)
apply (rule_tac x="λ(u,v). if v ∈ X then h(u,v) else if u = 0 then p v else q v" in exI)
apply auto
apply (force elim: continuous_on_eq)
apply (drule_tac x=t in bspec, force)
apply (subst assms; simp)
done

proposition homotopic_with_eq:
assumes h: "homotopic_with P X Y f g"
and f': "⋀x. x ∈ X ⟹ f' x = f x"
and g': "⋀x. x ∈ X ⟹ g' x = g x"
and P:  "(⋀h k. (⋀x. x ∈ X ⟹ h x = k x) ⟹ (P h ⟷ P k))"
shows "homotopic_with P X Y f' g'"
using h unfolding homotopic_with_def
apply safe
apply (rule_tac x="λ(u,v). if v ∈ X then h(u,v) else if u = 0 then f' v else g' v" in exI)
apply (simp add: f' g', safe)
apply (fastforce intro: continuous_on_eq, fastforce)
apply (subst P; fastforce)
done

proposition homotopic_with_equal:
assumes contf: "continuous_on X f" and fXY: "f ` X ⊆ Y"
and gf: "⋀x. x ∈ X ⟹ g x = f x"
and P:  "P f" "P g"
shows "homotopic_with P X Y f g"
unfolding homotopic_with_def
apply (rule_tac x="λ(u,v). if u = 1 then g v else f v" in exI)
using assms
apply (intro conjI)
apply (rule continuous_on_eq [where f = "f ∘ snd"])
apply (rule continuous_intros | force)+
apply clarify
apply (case_tac "t=1"; force)
done

lemma image_Pair_const: "(λx. (x, c)) ` A = A × {c}"
by auto

lemma homotopic_constant_maps:
"homotopic_with (λx. True) s t (λx. a) (λx. b) ⟷ s = {} ∨ path_component t a b"
proof (cases "s = {} ∨ t = {}")
case True with continuous_on_const show ?thesis
by (auto simp: homotopic_with path_component_def)
next
case False
then obtain c where "c ∈ s" by blast
show ?thesis
proof
assume "homotopic_with (λx. True) s t (λx. a) (λx. b)"
then obtain h :: "real × 'a ⇒ 'b"
where conth: "continuous_on ({0..1} × s) h"
and h: "h ` ({0..1} × s) ⊆ t" "(∀x∈s. h (0, x) = a)" "(∀x∈s. h (1, x) = b)"
by (auto simp: homotopic_with)
have "continuous_on {0..1} (h ∘ (λt. (t, c)))"
apply (rule continuous_intros conth | simp add: image_Pair_const)+
apply (blast intro:  ‹c ∈ s› continuous_on_subset [OF conth])
done
with ‹c ∈ s› h show "s = {} ∨ path_component t a b"
apply (simp_all add: homotopic_with path_component_def, auto)
apply (drule_tac x="h ∘ (λt. (t, c))" in spec)
apply (auto simp: pathstart_def pathfinish_def path_image_def path_def)
done
next
assume "s = {} ∨ path_component t a b"
with False show "homotopic_with (λx. True) s t (λx. a) (λx. b)"
apply (clarsimp simp: homotopic_with path_component_def pathstart_def pathfinish_def path_image_def path_def)
apply (rule_tac x="g ∘ fst" in exI)
apply (rule conjI continuous_intros | force)+
done
qed
qed

subsection%unimportant‹Trivial properties›

lemma homotopic_with_imp_property: "homotopic_with P X Y f g ⟹ P f ∧ P g"
unfolding homotopic_with_def Ball_def
apply clarify
apply (frule_tac x=0 in spec)
apply (drule_tac x=1 in spec, auto)
done

lemma continuous_on_o_Pair: "⟦continuous_on (T × X) h; t ∈ T⟧ ⟹ continuous_on X (h ∘ Pair t)"
by (fast intro: continuous_intros elim!: continuous_on_subset)

lemma homotopic_with_imp_continuous:
assumes "homotopic_with P X Y f g"
shows "continuous_on X f ∧ continuous_on X g"
proof -
obtain h :: "real × 'a ⇒ 'b"
where conth: "continuous_on ({0..1} × X) h"
and h: "∀x. h (0, x) = f x" "∀x. h (1, x) = g x"
using assms by (auto simp: homotopic_with_def)
have *: "t ∈ {0..1} ⟹ continuous_on X (h ∘ (λx. (t,x)))" for t
by (rule continuous_intros continuous_on_subset [OF conth] | force)+
show ?thesis
using h *[of 0] *[of 1] by auto
qed

proposition homotopic_with_imp_subset1:
"homotopic_with P X Y f g ⟹ f ` X ⊆ Y"
by (simp add: homotopic_with_def image_subset_iff) (metis atLeastAtMost_iff order_refl zero_le_one)

proposition homotopic_with_imp_subset2:
"homotopic_with P X Y f g ⟹ g ` X ⊆ Y"
by (simp add: homotopic_with_def image_subset_iff) (metis atLeastAtMost_iff order_refl zero_le_one)

proposition homotopic_with_mono:
assumes hom: "homotopic_with P X Y f g"
and Q: "⋀h. ⟦continuous_on X h; image h X ⊆ Y ∧ P h⟧ ⟹ Q h"
shows "homotopic_with Q X Y f g"
using hom
apply (erule ex_forward)
apply (force simp: intro!: Q dest: continuous_on_o_Pair)
done

proposition homotopic_with_subset_left:
"⟦homotopic_with P X Y f g; Z ⊆ X⟧ ⟹ homotopic_with P Z Y f g"
apply (fast elim!: continuous_on_subset ex_forward)
done

proposition homotopic_with_subset_right:
"⟦homotopic_with P X Y f g; Y ⊆ Z⟧ ⟹ homotopic_with P X Z f g"
apply (fast elim!: continuous_on_subset ex_forward)
done

proposition homotopic_with_compose_continuous_right:
"⟦homotopic_with (λf. p (f ∘ h)) X Y f g; continuous_on W h; h ` W ⊆ X⟧
⟹ homotopic_with p W Y (f ∘ h) (g ∘ h)"
apply (rename_tac k)
apply (rule_tac x="k ∘ (λy. (fst y, h (snd y)))" in exI)
apply (rule conjI continuous_intros continuous_on_compose [where f=snd and g=h, unfolded o_def] | simp)+
apply (erule continuous_on_subset)
apply (fastforce simp: o_def)+
done

proposition homotopic_compose_continuous_right:
"⟦homotopic_with (λf. True) X Y f g; continuous_on W h; h ` W ⊆ X⟧
⟹ homotopic_with (λf. True) W Y (f ∘ h) (g ∘ h)"
using homotopic_with_compose_continuous_right by fastforce

proposition homotopic_with_compose_continuous_left:
"⟦homotopic_with (λf. p (h ∘ f)) X Y f g; continuous_on Y h; h ` Y ⊆ Z⟧
⟹ homotopic_with p X Z (h ∘ f) (h ∘ g)"
apply (rename_tac k)
apply (rule_tac x="h ∘ k" in exI)
apply (rule conjI continuous_intros continuous_on_compose [where f=snd and g=h, unfolded o_def] | simp)+
apply (erule continuous_on_subset)
apply (fastforce simp: o_def)+
done

proposition homotopic_compose_continuous_left:
"⟦homotopic_with (λ_. True) X Y f g;
continuous_on Y h; h ` Y ⊆ Z⟧
⟹ homotopic_with (λf. True) X Z (h ∘ f) (h ∘ g)"
using homotopic_with_compose_continuous_left by fastforce

proposition homotopic_with_Pair:
assumes hom: "homotopic_with p s t f g" "homotopic_with p' s' t' f' g'"
and q: "⋀f g. ⟦p f; p' g⟧ ⟹ q(λ(x,y). (f x, g y))"
shows "homotopic_with q (s × s') (t × t')
(λ(x,y). (f x, f' y)) (λ(x,y). (g x, g' y))"
using hom
apply (rename_tac k k')
apply (rule_tac x="λz. ((k ∘ (λx. (fst x, fst (snd x)))) z, (k' ∘ (λx. (fst x, snd (snd x)))) z)" in exI)
apply (rule conjI continuous_intros | erule continuous_on_subset | clarsimp)+
apply (auto intro!: q [unfolded case_prod_unfold])
done

lemma homotopic_on_empty [simp]: "homotopic_with (λx. True) {} t f g"
by (metis continuous_on_def empty_iff homotopic_with_equal image_subset_iff)

text‹Homotopy with P is an equivalence relation (on continuous functions mapping X into Y that satisfy P,
though this only affects reflexivity.›

proposition homotopic_with_refl:
"homotopic_with P X Y f f ⟷ continuous_on X f ∧ image f X ⊆ Y ∧ P f"
apply (rule iffI)
using homotopic_with_imp_continuous homotopic_with_imp_property homotopic_with_imp_subset2 apply blast
apply (rule_tac x="f ∘ snd" in exI)
apply (rule conjI continuous_intros | force)+
done

lemma homotopic_with_symD:
fixes X :: "'a::real_normed_vector set"
assumes "homotopic_with P X Y f g"
shows "homotopic_with P X Y g f"
using assms
apply (rename_tac h)
apply (rule_tac x="h ∘ (λy. (1 - fst y, snd y))" in exI)
apply (rule conjI continuous_intros | erule continuous_on_subset | force simp: image_subset_iff)+
done

proposition homotopic_with_sym:
fixes X :: "'a::real_normed_vector set"
shows "homotopic_with P X Y f g ⟷ homotopic_with P X Y g f"
using homotopic_with_symD by blast

lemma split_01: "{0..1::real} = {0..1/2} ∪ {1/2..1}"
by force

lemma split_01_prod: "{0..1::real} × X = ({0..1/2} × X) ∪ ({1/2..1} × X)"
by force

proposition homotopic_with_trans:
fixes X :: "'a::real_normed_vector set"
assumes "homotopic_with P X Y f g" and "homotopic_with P X Y g h"
shows "homotopic_with P X Y f h"
proof -
have clo1: "closedin (subtopology euclidean ({0..1/2} × X ∪ {1/2..1} × X)) ({0..1/2::real} × X)"
apply (simp add: closedin_closed split_01_prod [symmetric])
apply (rule_tac x="{0..1/2} × UNIV" in exI)
apply (force simp: closed_Times)
done
have clo2: "closedin (subtopology euclidean ({0..1/2} × X ∪ {1/2..1} × X)) ({1/2..1::real} × X)"
apply (simp add: closedin_closed split_01_prod [symmetric])
apply (rule_tac x="{1/2..1} × UNIV" in exI)
apply (force simp: closed_Times)
done
{ fix k1 k2:: "real × 'a ⇒ 'b"
assume cont: "continuous_on ({0..1} × X) k1" "continuous_on ({0..1} × X) k2"
and Y: "k1 ` ({0..1} × X) ⊆ Y" "k2 ` ({0..1} × X) ⊆ Y"
and geq: "∀x. k1 (1, x) = g x" "∀x. k2 (0, x) = g x"
and k12: "∀x. k1 (0, x) = f x" "∀x. k2 (1, x) = h x"
and P:   "∀t∈{0..1}. P (λx. k1 (t, x))" "∀t∈{0..1}. P (λx. k2 (t, x))"
define k where "k y =
(if fst y ≤ 1 / 2
then (k1 ∘ (λx. (2 *⇩R fst x, snd x))) y
else (k2 ∘ (λx. (2 *⇩R fst x -1, snd x))) y)" for y
have keq: "k1 (2 * u, v) = k2 (2 * u - 1, v)" if "u = 1/2"  for u v
have "continuous_on ({0..1} × X) k"
using cont
apply (rule clo1 clo2 continuous_on_cases_local continuous_intros | erule continuous_on_subset | simp add: linear image_subset_iff)+
apply (force simp: keq)
done
moreover have "k ` ({0..1} × X) ⊆ Y"
using Y by (force simp: k_def)
moreover have "∀x. k (0, x) = f x"
moreover have "(∀x. k (1, x) = h x)"
moreover have "∀t∈{0..1}. P (λx. k (t, x))"
using P
apply (case_tac "t ≤ 1/2", auto)
done
ultimately have *: "∃k :: real × 'a ⇒ 'b.
continuous_on ({0..1} × X) k ∧ k ` ({0..1} × X) ⊆ Y ∧
(∀x. k (0, x) = f x) ∧ (∀x. k (1, x) = h x) ∧ (∀t∈{0..1}. P (λx. k (t, x)))"
by blast
} note * = this
show ?thesis
using assms by (auto intro: * simp add: homotopic_with_def)
qed

proposition homotopic_compose:
fixes s :: "'a::real_normed_vector set"
shows "⟦homotopic_with (λx. True) s t f f'; homotopic_with (λx. True) t u g g'⟧
⟹ homotopic_with (λx. True) s u (g ∘ f) (g' ∘ f')"
apply (rule homotopic_with_trans [where g = "g ∘ f'"])
apply (metis homotopic_compose_continuous_left homotopic_with_imp_continuous homotopic_with_imp_subset1)
by (metis homotopic_compose_continuous_right homotopic_with_imp_continuous homotopic_with_imp_subset2)

text‹Homotopic triviality implicitly incorporates path-connectedness.›
lemma homotopic_triviality:
fixes S :: "'a::real_normed_vector set"
shows  "(∀f g. continuous_on S f ∧ f ` S ⊆ T ∧
continuous_on S g ∧ g ` S ⊆ T
⟶ homotopic_with (λx. True) S T f g) ⟷
(S = {} ∨ path_connected T) ∧
(∀f. continuous_on S f ∧ f ` S ⊆ T ⟶ (∃c. homotopic_with (λx. True) S T f (λx. c)))"
(is "?lhs = ?rhs")
proof (cases "S = {} ∨ T = {}")
case True then show ?thesis by auto
next
case False show ?thesis
proof
assume LHS [rule_format]: ?lhs
have pab: "path_component T a b" if "a ∈ T" "b ∈ T" for a b
proof -
have "homotopic_with (λx. True) S T (λx. a) (λx. b)"
by (simp add: LHS continuous_on_const image_subset_iff that)
then show ?thesis
using False homotopic_constant_maps by blast
qed
moreover
have "∃c. homotopic_with (λx. True) S T f (λx. c)" if "continuous_on S f" "f ` S ⊆ T" for f
by (metis (full_types) False LHS equals0I homotopic_constant_maps homotopic_with_imp_continuous homotopic_with_imp_subset2 pab that)
ultimately show ?rhs
next
assume RHS: ?rhs
with False have T: "path_connected T"
by blast
show ?lhs
proof clarify
fix f g
assume "continuous_on S f" "f ` S ⊆ T" "continuous_on S g" "g ` S ⊆ T"
obtain c d where c: "homotopic_with (λx. True) S T f (λx. c)" and d: "homotopic_with (λx. True) S T g (λx. d)"
using False ‹continuous_on S f› ‹f ` S ⊆ T›  RHS ‹continuous_on S g› ‹g ` S ⊆ T› by blast
then have "c ∈ T" "d ∈ T"
using False homotopic_with_imp_subset2 by fastforce+
with T have "path_component T c d"
using path_connected_component by blast
then have "homotopic_with (λx. True) S T (λx. c) (λx. d)"
with c d show "homotopic_with (λx. True) S T f g"
by (meson homotopic_with_symD homotopic_with_trans)
qed
qed
qed

subsection‹Homotopy of paths, maintaining the same endpoints›

definition%important homotopic_paths :: "['a set, real ⇒ 'a, real ⇒ 'a::topological_space] ⇒ bool"
where
"homotopic_paths s p q ≡
homotopic_with (λr. pathstart r = pathstart p ∧ pathfinish r = pathfinish p) {0..1} s p q"

lemma homotopic_paths:
"homotopic_paths s p q ⟷
(∃h. continuous_on ({0..1} × {0..1}) h ∧
h ` ({0..1} × {0..1}) ⊆ s ∧
(∀x ∈ {0..1}. h(0,x) = p x) ∧
(∀x ∈ {0..1}. h(1,x) = q x) ∧
(∀t ∈ {0..1::real}. pathstart(h ∘ Pair t) = pathstart p ∧
pathfinish(h ∘ Pair t) = pathfinish p))"
by (auto simp: homotopic_paths_def homotopic_with pathstart_def pathfinish_def)

proposition homotopic_paths_imp_pathstart:
"homotopic_paths s p q ⟹ pathstart p = pathstart q"
by (metis (mono_tags, lifting) homotopic_paths_def homotopic_with_imp_property)

proposition homotopic_paths_imp_pathfinish:
"homotopic_paths s p q ⟹ pathfinish p = pathfinish q"
by (metis (mono_tags, lifting) homotopic_paths_def homotopic_with_imp_property)

lemma homotopic_paths_imp_path:
"homotopic_paths s p q ⟹ path p ∧ path q"
using homotopic_paths_def homotopic_with_imp_continuous path_def by blast

lemma homotopic_paths_imp_subset:
"homotopic_paths s p q ⟹ path_image p ⊆ s ∧ path_image q ⊆ s"
by (simp add: homotopic_paths_def homotopic_with_imp_subset1 homotopic_with_imp_subset2 path_image_def)

proposition homotopic_paths_refl [simp]: "homotopic_paths s p p ⟷ path p ∧ path_image p ⊆ s"
by (simp add: homotopic_paths_def homotopic_with_refl path_def path_image_def)

proposition homotopic_paths_sym: "homotopic_paths s p q ⟹ homotopic_paths s q p"
by (metis (mono_tags) homotopic_paths_def homotopic_paths_imp_pathfinish homotopic_paths_imp_pathstart homotopic_with_symD)

proposition homotopic_paths_sym_eq: "homotopic_paths s p q ⟷ homotopic_paths s q p"
by (metis homotopic_paths_sym)

proposition homotopic_paths_trans [trans]:
"⟦homotopic_paths s p q; homotopic_paths s q r⟧ ⟹ homotopic_paths s p r"
apply (rule homotopic_with_trans, assumption)
by (metis (mono_tags, lifting) homotopic_with_imp_property homotopic_with_mono)

proposition homotopic_paths_eq:
"⟦path p; path_image p ⊆ s; ⋀t. t ∈ {0..1} ⟹ p t = q t⟧ ⟹ homotopic_paths s p q"
apply (rule homotopic_with_eq)
apply (auto simp: path_def homotopic_with_refl pathstart_def pathfinish_def path_image_def elim: continuous_on_eq)
done

proposition homotopic_paths_reparametrize:
assumes "path p"
and pips: "path_image p ⊆ s"
and contf: "continuous_on {0..1} f"
and f01:"f ` {0..1} ⊆ {0..1}"
and [simp]: "f(0) = 0" "f(1) = 1"
and q: "⋀t. t ∈ {0..1} ⟹ q(t) = p(f t)"
shows "homotopic_paths s p q"
proof -
have contp: "continuous_on {0..1} p"
by (metis ‹path p› path_def)
then have "continuous_on {0..1} (p ∘ f)"
using contf continuous_on_compose continuous_on_subset f01 by blast
then have "path q"
by (simp add: path_def) (metis q continuous_on_cong)
have piqs: "path_image q ⊆ s"
by (metis (no_types, hide_lams) pips f01 image_subset_iff path_image_def q)
have fb0: "⋀a b. ⟦0 ≤ a; a ≤ 1; 0 ≤ b; b ≤ 1⟧ ⟹ 0 ≤ (1 - a) * f b + a * b"
using f01 by force
have fb1: "⟦0 ≤ a; a ≤ 1; 0 ≤ b; b ≤ 1⟧ ⟹ (1 - a) * f b + a * b ≤ 1" for a b
using f01 [THEN subsetD, of "f b"] by (simp add: convex_bound_le)
have "homotopic_paths s q p"
proof (rule homotopic_paths_trans)
show "homotopic_paths s q (p ∘ f)"
using q by (force intro: homotopic_paths_eq [OF  ‹path q› piqs])
next
show "homotopic_paths s (p ∘ f) p"
apply (rule_tac x="p ∘ (λy. (1 - (fst y)) *⇩R ((f ∘ snd) y) + (fst y) *⇩R snd y)"  in exI)
apply (rule conjI contf continuous_intros continuous_on_subset [OF contp] | simp)+
using pips [unfolded path_image_def]
apply (auto simp: fb0 fb1 pathstart_def pathfinish_def)
done
qed
then show ?thesis
qed

lemma homotopic_paths_subset: "⟦homotopic_paths s p q; s ⊆ t⟧ ⟹ homotopic_paths t p q"
using homotopic_paths_def homotopic_with_subset_right by blast

text‹ A slightly ad-hoc but useful lemma in constructing homotopies.›
lemma homotopic_join_lemma:
fixes q :: "[real,real] ⇒ 'a::topological_space"
assumes p: "continuous_on ({0..1} × {0..1}) (λy. p (fst y) (snd y))"
and q: "continuous_on ({0..1} × {0..1}) (λy. q (fst y) (snd y))"
and pf: "⋀t. t ∈ {0..1} ⟹ pathfinish(p t) = pathstart(q t)"
shows "continuous_on ({0..1} × {0..1}) (λy. (p(fst y) +++ q(fst y)) (snd y))"
proof -
have 1: "(λy. p (fst y) (2 * snd y)) = (λy. p (fst y) (snd y)) ∘ (λy. (fst y, 2 * snd y))"
by (rule ext) (simp)
have 2: "(λy. q (fst y) (2 * snd y - 1)) = (λy. q (fst y) (snd y)) ∘ (λy. (fst y, 2 * snd y - 1))"
by (rule ext) (simp)
show ?thesis
apply (rule continuous_on_cases_le)
apply (simp_all only: 1 2)
apply (rule continuous_intros continuous_on_subset [OF p] continuous_on_subset [OF q] | force)+
using pf
apply (auto simp: mult.commute pathstart_def pathfinish_def)
done
qed

text‹ Congruence properties of homotopy w.r.t. path-combining operations.›

lemma homotopic_paths_reversepath_D:
assumes "homotopic_paths s p q"
shows   "homotopic_paths s (reversepath p) (reversepath q)"
using assms
apply (simp add: homotopic_paths_def homotopic_with_def, clarify)
apply (rule_tac x="h ∘ (λx. (fst x, 1 - snd x))" in exI)
apply (rule conjI continuous_intros)+
apply (auto simp: reversepath_def pathstart_def pathfinish_def elim!: continuous_on_subset)
done

proposition homotopic_paths_reversepath:
"homotopic_paths s (reversepath p) (reversepath q) ⟷ homotopic_paths s p q"
using homotopic_paths_reversepath_D by force

proposition homotopic_paths_join:
"⟦homotopic_paths s p p'; homotopic_paths s q q'; pathfinish p = pathstart q⟧ ⟹ homotopic_paths s (p +++ q) (p' +++ q')"
apply (simp add: homotopic_paths_def homotopic_with_def, clarify)
apply (rename_tac k1 k2)
apply (rule_tac x="(λy. ((k1 ∘ Pair (fst y)) +++ (k2 ∘ Pair (fst y))) (snd y))" in exI)
apply (rule conjI continuous_intros homotopic_join_lemma)+
apply (auto simp: joinpaths_def pathstart_def pathfinish_def path_image_def)
done

proposition homotopic_paths_continuous_image:
"⟦homotopic_paths s f g; continuous_on s h; h ` s ⊆ t⟧ ⟹ homotopic_paths t (h ∘ f) (h ∘ g)"
unfolding homotopic_paths_def
apply (rule homotopic_with_compose_continuous_left [of _ _ _ s])
apply (auto simp: pathstart_def pathfinish_def elim!: homotopic_with_mono)
done

subsection‹Group properties for homotopy of paths›

text%important‹So taking equivalence classes under homotopy would give the fundamental group›

proposition homotopic_paths_rid:
"⟦path p; path_image p ⊆ s⟧ ⟹ homotopic_paths s (p +++ linepath (pathfinish p) (pathfinish p)) p"
apply (subst homotopic_paths_sym)
apply (rule homotopic_paths_reparametrize [where f = "λt. if  t ≤ 1 / 2 then 2 *⇩R t else 1"])
apply (simp_all del: le_divide_eq_numeral1)
apply (subst split_01)
apply (rule continuous_on_cases continuous_intros | force simp: pathfinish_def joinpaths_def)+
done

proposition homotopic_paths_lid:
"⟦path p; path_image p ⊆ s⟧ ⟹ homotopic_paths s (linepath (pathstart p) (pathstart p) +++ p) p"
using homotopic_paths_rid [of "reversepath p" s]
by (metis homotopic_paths_reversepath path_image_reversepath path_reversepath pathfinish_linepath
pathfinish_reversepath reversepath_joinpaths reversepath_linepath)

proposition homotopic_paths_assoc:
"⟦path p; path_image p ⊆ s; path q; path_image q ⊆ s; path r; path_image r ⊆ s; pathfinish p = pathstart q;
pathfinish q = pathstart r⟧
⟹ homotopic_paths s (p +++ (q +++ r)) ((p +++ q) +++ r)"
apply (subst homotopic_paths_sym)
apply (rule homotopic_paths_reparametrize
[where f = "λt. if  t ≤ 1 / 2 then inverse 2 *⇩R t
else if  t ≤ 3 / 4 then t - (1 / 4)
else 2 *⇩R t - 1"])
apply (simp_all del: le_divide_eq_numeral1)
apply (rule continuous_on_cases_1 continuous_intros)+
apply (auto simp: joinpaths_def)
done

proposition homotopic_paths_rinv:
assumes "path p" "path_image p ⊆ s"
shows "homotopic_paths s (p +++ reversepath p) (linepath (pathstart p) (pathstart p))"
proof -
have "continuous_on ({0..1} × {0..1}) (λx. (subpath 0 (fst x) p +++ reversepath (subpath 0 (fst x) p)) (snd x))"
using assms
apply (simp add: joinpaths_def subpath_def reversepath_def path_def del: le_divide_eq_numeral1)
apply (rule continuous_on_cases_le)
apply (rule_tac [2] continuous_on_compose [of _ _ p, unfolded o_def])
apply (rule continuous_on_compose [of _ _ p, unfolded o_def])
apply (auto intro!: continuous_intros simp del: eq_divide_eq_numeral1)
apply (force elim!: continuous_on_subset simp add: mult_le_one)+
done
then show ?thesis
using assms
apply (subst homotopic_paths_sym_eq)
unfolding homotopic_paths_def homotopic_with_def
apply (rule_tac x="(λy. (subpath 0 (fst y) p +++ reversepath(subpath 0 (fst y) p)) (snd y))" in exI)
apply (simp add: path_defs joinpaths_def subpath_def reversepath_def)
apply (force simp: mult_le_one)
done
qed

proposition homotopic_paths_linv:
assumes "path p" "path_image p ⊆ s"
shows "homotopic_paths s (reversepath p +++ p) (linepath (pathfinish p) (pathfinish p))"
using homotopic_paths_rinv [of "reversepath p" s] assms by simp

subsection```