Theory Wellorder_Embedding

theory Wellorder_Embedding
imports Fun_More Wellorder_Relation
(*  Title:      HOL/Cardinals/Wellorder_Embedding.thy
    Author:     Andrei Popescu, TU Muenchen
    Copyright   2012

Well-order embeddings.
*)

section ‹Well-Order Embeddings›

theory Wellorder_Embedding
imports HOL.BNF_Wellorder_Embedding Fun_More Wellorder_Relation
begin

subsection ‹Auxiliaries›

lemma UNION_bij_betw_ofilter:
assumes WELL: "Well_order r" and
        OF: "⋀ i. i ∈ I ⟹ ofilter r (A i)" and
       BIJ: "⋀ i. i ∈ I ⟹ bij_betw f (A i) (A' i)"
shows "bij_betw f (⋃i ∈ I. A i) (⋃i ∈ I. A' i)"
proof-
  have "wo_rel r" using WELL by (simp add: wo_rel_def)
  hence "⋀ i j. ⟦i ∈ I; j ∈ I⟧ ⟹ A i ≤ A j ∨ A j ≤ A i"
  using wo_rel.ofilter_linord[of r] OF by blast
  with WELL BIJ show ?thesis
  by (auto simp add: bij_betw_UNION_chain)
qed


subsection ‹(Well-order) embeddings, strict embeddings, isomorphisms and order-compatible
functions›

lemma embed_halfcong:
assumes EQ: "⋀ a. a ∈ Field r ⟹ f a = g a" and
        EMB: "embed r r' f"
shows "embed r r' g"
proof(unfold embed_def, auto)
  fix a assume *: "a ∈ Field r"
  hence "bij_betw f (under r a) (under r' (f a))"
  using EMB unfolding embed_def by simp
  moreover
  {have "under r a ≤ Field r"
   by (auto simp add: under_Field)
   hence "⋀ b. b ∈ under r a ⟹ f b = g b"
   using EQ by blast
  }
  moreover have "f a = g a" using * EQ by auto
  ultimately show "bij_betw g (under r a) (under r' (g a))"
  using bij_betw_cong[of "under r a" f g "under r' (f a)"] by auto
qed

lemma embed_cong[fundef_cong]:
assumes "⋀ a. a ∈ Field r ⟹ f a = g a"
shows "embed r r' f = embed r r' g"
using assms embed_halfcong[of r f g r']
            embed_halfcong[of r g f r'] by auto

lemma embedS_cong[fundef_cong]:
assumes "⋀ a. a ∈ Field r ⟹ f a = g a"
shows "embedS r r' f = embedS r r' g"
unfolding embedS_def using assms
embed_cong[of r f g r'] bij_betw_cong[of "Field r" f g "Field r'"] by blast

lemma iso_cong[fundef_cong]:
assumes "⋀ a. a ∈ Field r ⟹ f a = g a"
shows "iso r r' f = iso r r' g"
unfolding iso_def using assms
embed_cong[of r f g r'] bij_betw_cong[of "Field r" f g "Field r'"] by blast

lemma id_compat: "compat r r id"
by(auto simp add: id_def compat_def)

lemma comp_compat:
"⟦compat r r' f; compat r' r'' f'⟧ ⟹ compat r r'' (f' o f)"
by(auto simp add: comp_def compat_def)

corollary one_set_greater:
"(∃f::'a ⇒ 'a'. f ` A ≤ A' ∧ inj_on f A) ∨ (∃g::'a' ⇒ 'a. g ` A' ≤ A ∧ inj_on g A')"
proof-
  obtain r where "well_order_on A r" by (fastforce simp add: well_order_on)
  hence 1: "A = Field r ∧ Well_order r"
  using well_order_on_Well_order by auto
  obtain r' where 2: "well_order_on A' r'" by (fastforce simp add: well_order_on)
  hence 2: "A' = Field r' ∧ Well_order r'"
  using well_order_on_Well_order by auto
  hence "(∃f. embed r r' f) ∨ (∃g. embed r' r g)"
  using 1 2 by (auto simp add: wellorders_totally_ordered)
  moreover
  {fix f assume "embed r r' f"
   hence "f`A ≤ A' ∧ inj_on f A"
   using 1 2 by (auto simp add: embed_Field embed_inj_on)
  }
  moreover
  {fix g assume "embed r' r g"
   hence "g`A' ≤ A ∧ inj_on g A'"
   using 1 2 by (auto simp add: embed_Field embed_inj_on)
  }
  ultimately show ?thesis by blast
qed

corollary one_type_greater:
"(∃f::'a ⇒ 'a'. inj f) ∨ (∃g::'a' ⇒ 'a. inj g)"
using one_set_greater[of UNIV UNIV] by auto


subsection ‹Uniqueness of embeddings›

lemma comp_embedS:
assumes WELL: "Well_order r" and WELL': "Well_order r'" and WELL'': "Well_order r''"
        and  EMB: "embedS r r' f" and EMB': "embedS r' r'' f'"
shows "embedS r r'' (f' o f)"
proof-
  have "embed r' r'' f'" using EMB' unfolding embedS_def by simp
  thus ?thesis using assms by (auto simp add: embedS_comp_embed)
qed

lemma iso_iff4:
assumes WELL: "Well_order r"  and WELL': "Well_order r'"
shows "iso r r' f = (embed r r' f ∧ embed r' r (inv_into (Field r) f))"
using assms embed_bothWays_iso
by(unfold iso_def, auto simp add: inv_into_Field_embed_bij_betw)

lemma embed_embedS_iso:
"embed r r' f = (embedS r r' f ∨ iso r r' f)"
unfolding embedS_def iso_def by blast

lemma not_embedS_iso:
"¬ (embedS r r' f ∧ iso r r' f)"
unfolding embedS_def iso_def by blast

lemma embed_embedS_iff_not_iso:
assumes "embed r r' f"
shows "embedS r r' f = (¬ iso r r' f)"
using assms unfolding embedS_def iso_def by blast

lemma iso_inv_into:
assumes WELL: "Well_order r" and ISO: "iso r r' f"
shows "iso r' r (inv_into (Field r) f)"
using assms unfolding iso_def
using bij_betw_inv_into inv_into_Field_embed_bij_betw by blast

lemma embedS_or_iso:
assumes WELL: "Well_order r" and WELL': "Well_order r'"
shows "(∃g. embedS r r' g) ∨ (∃h. embedS r' r h) ∨ (∃f. iso r r' f)"
proof-
  {fix f assume *: "embed r r' f"
   {assume "bij_betw f (Field r) (Field r')"
    hence ?thesis using * by (auto simp add: iso_def)
   }
   moreover
   {assume "¬ bij_betw f (Field r) (Field r')"
    hence ?thesis using * by (auto simp add: embedS_def)
   }
   ultimately have ?thesis by auto
  }
  moreover
  {fix f assume *: "embed r' r f"
   {assume "bij_betw f (Field r') (Field r)"
    hence "iso r' r f" using * by (auto simp add: iso_def)
    hence "iso r r' (inv_into (Field r') f)"
    using WELL' by (auto simp add: iso_inv_into)
    hence ?thesis by blast
   }
   moreover
   {assume "¬ bij_betw f (Field r') (Field r)"
    hence ?thesis using * by (auto simp add: embedS_def)
   }
   ultimately have ?thesis by auto
  }
  ultimately show ?thesis using WELL WELL'
  wellorders_totally_ordered[of r r'] by blast
qed

end