The Hahn-Banach Theorem
for Real Vector Spaces

Gertrud Bauer
August 15, 2018

Abstract
The Hahn-Banach Theorem is one of the most fundamental results in
functional analysis. We present a fully formal proof of two versions of the
theorem, one for general linear spaces and another for normed spaces. This
development is based on simply-typed classical set-theory, as provided by
Isabelle/HOL.

Contents
1 Preface 3

I Basic Notions 5
2 Bounds 5
3 Vector spaces 5
 3.1 Signature .. 5
 3.2 Vector space laws 6
4 Subspaces 9
 4.1 Definition .. 9
 4.2 Linear closure 10
 4.3 Sum of two vectorspaces 11
 4.4 Direct sums 12
5 Normed vector spaces 13
 5.1 Quasinorms 13
 5.2 Norms ... 13
 5.3 Normed vector spaces 13
6 Linearforms 14
7 An order on functions 14
 7.1 The graph of a function 14
 7.2 Functions ordered by domain extension 15
 7.3 Domain and function of a graph 15
 7.4 Norm-preserving extensions of a function ... 15
8 The norm of a function
 8.1 Continuous linear forms 16
 8.2 The norm of a linear form 17

9 Zorn’s Lemma ... 18

II Lemmas for the Proof .. 20

10 The supremum wrt. the function order 20

11 Extending non-maximal functions 22

III The Main Proof .. 24

12 The Hahn-Banach Theorem 24
 12.1 The Hahn-Banach Theorem for vector spaces 24
 12.2 Alternative formulation 24
 12.3 The Hahn-Banach Theorem for normed spaces 25
1 Preface

This is a fully formal proof of the Hahn-Banach Theorem. It closely follows the informal presentation given in Heuser’s textbook [1, § 36]. Another formal proof of the same theorem has been done in Mizar [3]. A general overview of the relevance and history of the Hahn-Banach Theorem is given by Narici and Beckenstein [2].

The document is structured as follows. The first part contains definitions of basic notions of linear algebra: vector spaces, subspaces, normed spaces, continuous linear-forms, norm of functions and an order on functions by domain extension. The second part contains some lemmas about the supremum (w.r.t. the function order) and extension of non-maximal functions. With these preliminaries, the main proof of the theorem (in its two versions) is conducted in the third part. The dependencies of individual theories are as follows.
Part I

Basic Notions

2 Bounds

theory Bounds
imports Main HOL-Analysis.Continuum-Not-Denumerable
begin

locale lub =
 fixes A and x
 assumes least [intro?]: (∀a. a ∈ A ⟹ a ≤ b) ⟹ x ≤ b
 and upper [intro?]: a ∈ A ⟹ a ≤ x

lemmas [elim?] = lub.least lub.upper

definition the-lub :: 'a::order set ⇒ 'a (⨆) where
 the-lub A = The (lub A)

lemma the-lub-equality [elim?):
 assumes lub A x
 shows ⨆ A = (x::'a::order)
⟨proof⟩

lemma the-lubI-ex:
 assumes ex: ∃x. lub A x
 shows lub A (⨆ A)
⟨proof⟩

lemma real-complete: ∃a::real. a ∈ A ⟹ ∃y. ∀a ∈ A. a ≤ y ⟹ ∃x. lub A x
⟨proof⟩
end

3 Vector spaces

theory Vector-Space
imports Complex-Main Bounds
begin

3.1 Signature

For the definition of real vector spaces a type 'a of the sort {plus, minus, zero}
is considered, on which a real scalar multiplication · is declared.

consts
 prod :: real ⇒ 'a::{plus,minus,zero} ⇒ 'a (infixr · 70)
3.2 Vector space laws

A vector space is a non-empty set V of elements from a with the following vector space laws: The set V is closed under addition and scalar multiplication, addition is associative and commutative; $-x$ is the inverse of x wrt. addition and 0 is the neutral element of addition. Addition and multiplication are distributive; scalar multiplication is associative and the real number 1 is the neutral element of scalar multiplication.

locale vectorspace =
 fixes V
 assumes non-empty [iff, intro?!]: $V \neq \{\}$
 and add-closed [iff]: $x \in V \Longrightarrow y \in V \Longrightarrow x + y \in V$
 and mult-closed [iff]: $x \in V \Longrightarrow a \cdot x \in V$
 and add-assoc: $x \in V \Longrightarrow y \in V \Longrightarrow z \in V \Longrightarrow (x + y) + z = x + (y + z)$
 and add-commute: $x \in V \Longrightarrow y \in V \Longrightarrow x + y = y + x$
 and diff-self [simp]: $x \in V \Longrightarrow x - x = 0$
 and add-zero-left [simp]: $x \in V \Longrightarrow 0 + x = x$
 and add-mult-distrib1: $x \in V \Longrightarrow y \in V \Longrightarrow a \cdot (x + y) = a \cdot x + a \cdot y$
 and add-mult-distrib2: $x \in V \Longrightarrow (a + b) \cdot x = a \cdot x + b \cdot x$
 and mult-assoc: $x \in V \Longrightarrow (a \cdot b) \cdot x = a \cdot (b \cdot x)$
 and mult-1 [simp]: $x \in V \Longrightarrow 1 \cdot x = x$
 and negate-eq1: $x \in V \Longrightarrow -1 \cdot x = (-1) \cdot x$
 and diff-eq1: $x \in V \Longrightarrow y \in V \Longrightarrow x - y = x + (-y)$

begin

lemma negate-eq2: $x \in V \Longrightarrow (-1) \cdot x = -x$
 ⟨proof⟩

lemma negate-eq2a: $x \in V \Longrightarrow -1 \cdot x = -x$
 ⟨proof⟩

lemma diff-eq2: $x \in V \Longrightarrow y \in V \Longrightarrow x - y = x - y$
 ⟨proof⟩

lemma diff-closed [iff]: $x \in V \Longrightarrow y \in V \Longrightarrow x - y \in V$
 ⟨proof⟩

lemma neg-closed [iff]: $x \in V \Longrightarrow -x \in V$
 ⟨proof⟩

lemma add-left-commute:
 $x \in V \Longrightarrow y \in V \Longrightarrow z \in V \Longrightarrow x + (y + z) = y + (x + z)$
 ⟨proof⟩

lemmas add-ac = add-assoc add-commute add-left-commute

The existence of the zero element of a vector space follows from the non-
emptiness of carrier set.

lemma zero [iff]: $0 \in V$
 ⟨proof⟩

lemma add-zero-right [simp]: $x \in V \Longrightarrow x + 0 = x$
 ⟨proof⟩
3.2 Vector space laws

lemma mult-assoc2: \(x \in V \implies a \cdot b \cdot x = (a \ast b) \cdot x \)

(proof)

lemma diff-mult-distrib1: \(x \in V \implies y \in V \implies a \cdot (x - y) = a \cdot x - a \cdot y \)

(proof)

lemma diff-mult-distrib2: \(x \in V \implies (a - b) \cdot x = a \cdot x - (b \cdot x) \)

(proof)

lemmas distrib =
 add-mult-distrib1 add-mult-distrib2
diff-mult-distrib1 diff-mult-distrib2

Further derived laws:

lemma mult-zero-left [simp]: \(x \in V \implies 0 \cdot x = 0 \)

(proof)

lemma mult-zero-right [simp]: \(a \cdot 0 = (0::\'a) \)

(proof)

lemma minus-mult-cancel [simp]: \(x \in V \implies (- a) \cdot - x = a \cdot x \)

(proof)

lemma add-minus-left-eq-diff: \(x \in V \implies y \in V \implies - x + y = y - x \)

(proof)

lemma add-minus [simp]: \(x \in V \implies x + - x = 0 \)

(proof)

lemma add-minus-left [simp]: \(x \in V \implies - x + x = 0 \)

(proof)

lemma minus-minus [simp]: \(x \in V \implies -(- x) = x \)

(proof)

lemma minus-zero [simp]: \(- (0::\'a) = 0 \)

(proof)

lemma minus-zero-iff [simp]:
 assumes \(x: x \in V \)
 shows \((- x = 0) = (x = 0) \)

(proof)

lemma add-minus-cancel [simp]: \(x \in V \implies y \in V \implies x + (- x + y) = y \)

(proof)

lemma minus-add-cancel [simp]: \(x \in V \implies y \in V \implies - x + (x + y) = y \)

(proof)

lemma minus-add-distrib [simp]: \(x \in V \implies y \in V \implies -(x + y) = -x - y \)

(proof)

lemma diff-zero [simp]: \(x \in V \implies x - 0 = x \)
Lemma \textbf{diff-zero-right [simp]}: \(x \in V \implies 0 - x = - x \)

\begin{proof}
\end{proof}

Lemma \textbf{add-left-cancel}:
\begin{itemize}
 \item \textbf{assumes}: \(x : x \in V \) and \(y : y \in V \) and \(z : z \in V \)
 \item \textbf{shows}: \((x + y = x + z) = (y = z)\)
\end{itemize}

\begin{proof}
\end{proof}

Lemma \textbf{add-right-cancel}:
\begin{itemize}
 \item \textbf{assumes}: \(x : x \in V \) and \(y : y \in V \) and \(z : z \in V \)
 \item \textbf{shows}: \((y = z) = (y + x = z + x)\)
\end{itemize}

\begin{proof}
\end{proof}

Lemma \textbf{add-assoc-cong}:
\begin{itemize}
 \item \textbf{assumes}: \(x : x \in V \) and \(y : y \in V \) and \(x' : x' \in V \) and \(y' : y' \in V \) and \(z : z \in V \)
 \item \textbf{shows}: \((x + y = x' + y') = (x + (y + z) = x' + (y' + z))\)
\end{itemize}

\begin{proof}
\end{proof}

Lemma \textbf{mult-left-commute}:
\begin{itemize}
 \item \textbf{assumes}: \(x : x \in V \) and \(a : a \neq 0 \)
 \item \textbf{shows}: \((a \cdot x = a \cdot y) = (x = y)\)
\end{itemize}

\begin{proof}
\end{proof}

Lemma \textbf{mult-zero-uniq}:
\begin{itemize}
 \item \textbf{assumes}: \(x : x \in V \) and \(ax : a \cdot x = 0 \) and \(ax' : a \cdot x' = 0 \)
 \item \textbf{shows}: \(a = 0\)
\end{itemize}

\begin{proof}
\end{proof}

Lemma \textbf{mult-left-cancel}:
\begin{itemize}
 \item \textbf{assumes}: \(x : x \in V \) and \(y : y \in V \) and \(a : a \neq 0 \)
 \item \textbf{shows}: \((a \cdot x = a \cdot y) = (x = y)\)
\end{itemize}

\begin{proof}
\end{proof}

Lemma \textbf{mult-right-cancel}:
\begin{itemize}
 \item \textbf{assumes}: \(x : x \in V \) and \(a \neq 0 \)
 \item \textbf{shows}: \((a \cdot x = b \cdot x) = (a = b)\)
\end{itemize}

\begin{proof}
\end{proof}

Lemma \textbf{eq-diff-eq}:
\begin{itemize}
 \item \textbf{assumes}: \(x : x \in V \) and \(y : y \in V \) and \(z : z \in V \)
 \item \textbf{shows}: \((x = z - y) = (x + y = z)\)
\end{itemize}

\begin{proof}
\end{proof}

Lemma \textbf{add-minus-eq-minus}:
\begin{itemize}
 \item \textbf{assumes}: \(x : x \in V \) and \(y : y \in V \) and \(xy : x + y = 0 \)
 \item \textbf{shows}: \(x = - y\)
\end{itemize}

\begin{proof}
\end{proof}

Lemma \textbf{add-minus-eq}:
\begin{itemize}
 \item \textbf{assumes}: \(x : x \in V \) and \(y : y \in V \) and \(xy : x - y = 0 \)
 \item \textbf{shows}: \(x = y\)
\end{itemize}

\begin{proof}
\end{proof}

Lemma \textbf{add-diff-swap}:
\begin{itemize}
 \item \textbf{assumes}: \(vs : a \in V \) and \(b : b \in V \) and \(c : c \in V \) and \(d : d \in V \)
\end{itemize}

\begin{proof}
\end{proof}
\[\begin{align*}
\text{and eq: } & a + b = c + d \\
\text{shows } & a - c = d - b \\
\end{align*}\]

(proof)

lemma vs-add-cancel-21:
assumes vs: \(x \in V \ y \in V \ z \in V \ u \in V \)
shows \((x + (y + z)) = y + u) = (x + z = u)\)
(proof)

lemma add-cancel-end:
assumes vs: \(x \in V \ y \in V \ z \in V \)
shows \((x + (y + z) = y) = (x = -z)\)
(proof)

end

4 Subspaces

theory Subspace

imports Vector-Space HOL-Library.Set-Algebras

begin

4.1 Definition

A non-empty subset \(U \) of a vector space \(V \) is a \textit{subspace} of \(V \), iff \(U \) is closed under addition and scalar multiplication.

locale subspace =
fixes U :: \('a::{minus, plus, zero, uminus} \) set and V
assumes non-empty [iff, intro]: \(U \neq \{\} \)
and subset [iff]: \(U \subseteq V \)
and add-closed [iff]: \(x \in U \implies y \in U \implies x + y \in U \)
and mult-closed [iff]: \(x \in U \implies a \cdot x \in U \)

notation (symbols)
subspace (infix \(\leq \) 50)

declare vectorspace.intro [intro?] subspace.intro [intro?]

lemma subspace-subset [elim]: \(U \leq V \implies U \subseteq V \)
(proof)

lemma (in subspace) subsetD [iff]: \(x \in U \implies x \in V \)
(proof)

lemma subspaceD [elim]: \(U \leq V \implies x \in U \implies x \in V \)
(proof)

lemma rev-subspaceD [elim?]: \(x \in U \implies U \leq V \implies x \in V \)
(proof)

lemma (in subspace) diff-closed [iff]:
assumes vectorspace V
assumes x: $x \in U$ and y: $y \in U$
shows $x - y \in U$
(proof)

Similar as for linear spaces, the existence of the zero element in every subspace follows from the non-emptiness of the carrier set and by vector space laws.

lemma (in subspace) zero [intro]:
assumes vectorspace V
shows $0 \in U$
(proof)

lemma (in subspace) neg-closed [iff]:
assumes vectorspace V
assumes x: $x \in U$
shows $-x \in U$
(proof)

Further derived laws: every subspace is a vector space.

lemma (in subspace) vectorspace [iff]:
assumes vectorspace V
shows vectorspace U
(proof)

The subspace relation is reflexive.

lemma (in vectorspace) subspace-refl [intro]: $V \subseteq V$
(proof)

The subspace relation is transitive.

lemma (in vectorspace) subspace-trans [trans]:
$U \subseteq V \Rightarrow V \subseteq W \Rightarrow U \subseteq W$
(proof)

4.2 Linear closure

The linear closure of a vector x is the set of all scalar multiples of x.

definition lin :: ("a::\{minus, plus, zero\}) \Rightarrow 'a set
where lin $x = \{a \cdot x | a. \text{True}\}$

lemma linI [intro]: $y = a \cdot x \Rightarrow y \in \text{lin } x$
(proof)

lemma linI' [iff]: $a \cdot x \in \text{lin } x$
(proof)

lemma linE [elim]:
assumes $x \in \text{lin } v$
obtains $a :: \text{real}$ where $x = a \cdot v$
(proof)

Every vector is contained in its linear closure.
4.3 Sum of two vectorspaces

The sum of two vectorspaces U and V is the set of all sums of elements from U and V.

Lemma (in vectorspace) sum-def: $U + V = \{ u + v \mid u \in U \land v \in V \}$ (proof)

Lemma sumE [elim]:
\[
x \in U + V \implies (\bigwedge u v. x = u + v \implies u \in U \implies v \in V \implies C) \implies C
\]
(proof)

Lemma sumI [intro]:
\[
u \in U \implies v \in V \implies x = u + v \implies x \in U + V
\]
(proof)

Lemma sumI’ [intro]:
\[
u \in U \implies v \in V \implies u + v \in U + V
\]
(proof)

U is a subspace of $U + V$.

Lemma subspace-sum1 [iff]:
\[
\text{assumes vectorspace } U \text{ vectorspace } V
\]
\[
\text{shows } U \subseteq U + V
\]
(proof)

The sum of two subspaces is again a subspace.

Lemma sum-subspace [iff]:
\[
\text{assumes subspace } U \subseteq E \text{ vectorspace } E \subseteq V \subseteq E
\]
\[
\text{shows } U + V \subseteq E
\]
(proof)

The sum of two subspaces is a vectorspace.

Lemma sum-vs [intro]?:
\[
U \subseteq E \implies V \subseteq E \implies \text{vectorspace } E \implies \text{vectorspace } (U + V)
\]
(proof)
4.4 Direct sums

The sum of \(U \) and \(V \) is called direct, iff the zero element is the only common element of \(U \) and \(V \). For every element \(x \) of the direct sum of \(U \) and \(V \) the decomposition in \(x = u + v \) with \(u \in U \) and \(v \in V \) is unique.

lemma decomp:

- **assumes** vectorspace \(E \) subspace \(U \) \(E \) subspace \(V \)
- **assumes** direct: \(U \cap V = \{ 0 \} \)
 - and \(u1: u1 \in U \) and \(u2: u2 \in U \)
 - and \(v1: v1 \in V \) and \(v2: v2 \in V \)
- **sum** \(u1 + v1 = u2 + v2 \)
- **shows** \(u1 = u2 \land v1 = v2 \)

⟨ proof ⟩

An application of the previous lemma will be used in the proof of the Hahn-Banach Theorem (see page ??): for any element \(y + a \cdot x_0 \) of the direct sum of a vectorspace \(H \) and the linear closure of \(x_0 \) the components \(y \in H \) and \(a \) are uniquely determined.

lemma decomp-H′:

- **assumes** vectorspace \(E \) subspace \(H \) \(E \) subspace \(H \)
 - and \(y1: y1 \in H \) and \(y2: y2 \in H \)
 - and \(x′: x′ \notin H \) \(x′ \in E \) \(x′ \neq 0 \)
 - and \(eq: y1 + a1 \cdot x′ = y2 + a2 \cdot x′ \)
- **shows** \(y1 = y2 \land a1 = a2 \)

⟨ proof ⟩

Since for any element \(y + a \cdot x′ \) of the direct sum of a vectorspace \(H \) and the linear closure of \(x′ \) the components \(y \in H \) and \(a \) are unique, it follows from \(y \in H \) that \(a = 0 \).

lemma decomp-H′-H:

- **assumes** vectorspace \(E \) subspace \(H \) \(E \) subspace \(H \)
 - and \(t: t \in H \)
 - and \(x′: x′ \notin H \) \(x′ \in E \) \(x′ \neq 0 \)
- **shows** \((SOME (y, a). t = y + a \cdot x′ \land y \in H) = (t, 0) \)

⟨ proof ⟩

The components \(y \in H \) and \(a \) in \(y + a \cdot x′ \) are unique, so the function \(h′ \) defined by \(h′(y + a \cdot x′) = h y + a \cdot ξ \) is definite.

lemma h′-definite:

- **fixes** \(H \)
- **assumes** \(h′-def: \)
 - \(\forall x. h′ x = \)
 - \((\text{let } (y, a) = \text{SOME } (y, a). (x = y + a \cdot x′ \land y \in H)) \)
 - \(\text{in } (h y) + a * xi) \)
- **assumes** vectorspace \(E \) subspace \(H \) \(E \) subspace \(H \)
- **assumes** \(y: y \in H \)
 - and \(x′: x′ \notin H \) \(x′ \in E \) \(x′ \neq 0 \)
- **shows** \(h′ x = h y + a * xi \)

⟨ proof ⟩

end
5 Normed vector spaces

theory Normed-Space
imports Subspace
begin

5.1 Quasinorms

A *seminorm* $\|\cdot\|$ is a function on a real vector space into the reals that has the following properties: it is positive definite, absolute homogeneous and subadditive.

locale seminorm =
 fixes V :: 'a::{minus, plus, zero, uminus} set
 fixes norm :: 'a => real (\|\-\|)
assumes ge-zero [iff]: \(x \in V \implies 0 \leq \|x\| \)
and abs-homogenous [iff]: \(x \in V \implies \|a \cdot x\| = |a| \cdot \|x\| \)
and subadditive [iff]: \(x \in V \implies y \in V \implies \|x + y\| \leq \|x\| + \|y\| \)
declare seminorm.intro [intro?]

lemma (in seminorm) diff-subadditive:
 assumes vectorspace V
 shows \(x \in V \implies y \in V \implies \|x - y\| \leq \|x\| + \|y\| \)
 ⟨proof⟩

lemma (in seminorm) minus:
 assumes vectorspace V
 shows \(x \in V \implies \|-x\| = \|x\| \)
 ⟨proof⟩

5.2 Norms

A *norm* $\|\cdot\|$ is a seminorm that maps only the 0 vector to 0.

locale norm = seminorm +
 assumes zero-iff [iff]: \(x \in V \implies (\|x\| = 0) = (x = 0) \)

5.3 Normed vector spaces

A vector space together with a norm is called a normed space.

locale normed-vectorspace = vectorspace + norm
declare normed-vectorspace.intro [intro?]

lemma (in normed-vectorspace) gt-zero [intro?):
 assumes \(x : x \in V \text{ and } \neg q: x \neq 0 \)
 shows \(\theta < \|x\| \)
 ⟨proof⟩

Any subspace of a normed vector space is again a normed vectorspace.

lemma subspace-normed-vs [intro?]:
 fixes F E norm
 assumes subspace F E normed-vectorspace E norm
shows normed-vectorspace F norm
⟨proof⟩
end

6 Linearforms

theory Linearform
imports Vector-Space
begin
A linear form is a function on a vector space into the reals that is additive and multiplicative.

locale linearform =
 fixes V :: 'a::{minus, plus, zero, uminus} set and f
 assumes add [iff]: \(x \in V \implies y \in V \implies f(x + y) = f(x) + f(y) \)
 and mult [iff]: \(x \in V \implies f(a \cdot x) = a \cdot f(x) \)

declare linearform.intro [intro?]

lemma (in linearform) neg [iff]:
 assumes vectorspace V
 shows \(x \in V \implies f(-x) = -f(x) \)
⟨proof⟩

lemma (in linearform) diff [iff]:
 assumes vectorspace V
 shows \(x \in V \implies y \in V \implies f(x - y) = f(x) - f(y) \)
⟨proof⟩

Every linear form yields 0 for the 0 vector.

lemma (in linearform) zero [iff]:
 assumes vectorspace V
 shows \(f(0) = 0 \)
⟨proof⟩
end

7 An order on functions

theory Function-Order
imports Subspace Linearform
begin

7.1 The graph of a function

We define the graph of a (real) function \(f \) with domain \(F \) as the set

\[\{(x, f(x)) \mid x \in F\} \]

So we are modeling partial functions by specifying the domain and the mapping function. We use the term “function” also for its graph.
7.2 Functions ordered by domain extension

A function h' is an extension of h, if the graph of h is a subset of the graph of h'.

Lemma graph-extI:

$(\forall x. x \in H \implies h x = h' x) \implies H \subseteq H'$

Lemma graph-extD1 [dest?]:

$graph H h \subseteq graph H' h' \implies x \in H \implies h x = h' x$

Lemma graph-extD2 [dest?]:

$graph H h \subseteq graph H' h' \implies H \subseteq H'$

7.3 Domain and function of a graph

The inverse functions to $graph$ are $domain$ and $funct$.

Definition domain :: 'a graph ⇒ 'a set

Definition funct :: 'a graph ⇒ ('a ⇒ real)

The following lemma states that g is the graph of a function if the relation induced by g is unique.

Lemma graph-domain-funct:

$\forall x \forall y \forall z. (x, y) \in g \implies (x, z) \in g \implies z = y$

7.4 Norm-preserving extensions of a function

Given a linear form f on the space F and a seminorm p on E. The set of all linear extensions of f, to superspaces H of F, which are bounded by p, is defined as follows.
8 The norm of a function

theory Function-Norm
imports Normed-Space Function-Order
begin

8.1 Continuous linear forms

A linear form \(f \) on a normed vector space \((V, \| \cdot \|) \) is continuous, if it is bounded, i.e.

\[
\exists c \in \mathbb{R}. \forall x \in V. \| f x \| \leq c \cdot \| x \|
\]
In our application no other functions than linear forms are considered, so we can define continuous linear forms as bounded linear forms:

locale continuous = linearform +
fixes norm :: - ⇒ real (∥-∥)
assumes bounded: ∃c. ∀x ∈ V. |f x| ≤ c ∗ ∥x∥
declare continuous.intro [intro?] continuous-axioms.intro [intro?]

lemma continuousI [intro]:
fixes norm :: - ⇒ real (∥-∥)
assumes linearform V f
assumes r: ∀x ∈ V. |f x| ≤ c ∗ ∥x∥
shows continuous V f norm
⟨proof⟩

8.2 The norm of a linear form

The least real number c for which holds
∀x ∈ V. |f x| ≤ c · ∥x∥
is called the norm of f.

For non-trivial vector spaces V ≠ {0} the norm can be defined as
∥f∥ = sup x ≠ 0. |f x| / ∥x∥

For the case V = {0} the supremum would be taken from an empty set. Since \(\mathbb{R} \) is unbounded, there would be no supremum. To avoid this situation it must be guaranteed that there is an element in this set. This element must be \(\{ \} \geq 0 \) so that fn-norm has the norm properties. Furthermore it does not have to change the norm in all other cases, so it must be 0, as all other elements are \(\{ \} \geq 0 \).

Thus we define the set B where the supremum is taken from as follows:

\{ 0 \} ∪ \{ |f x| / ∥x∥. x ≠ 0 ∧ x ∈ F \}

fn-norm is equal to the supremum of B, if the supremum exists (otherwise it is undefined).

locale fn-norm =
fixes norm :: - ⇒ real (∥-∥)
fixes B defines B V f ≡ \{ 0 \} ∪ \{ |f x| / ∥x∥. x ≠ 0 ∧ x ∈ V \}
fixes fn-norm (∥-∥) defines ∥f∥ = sup (B V f)

locale normed-vectorspace-with-fn-norm = normed-vectorspace + fn-norm

lemma (in fn-norm) B-not-empty [intro]: 0 ∈ B V f
⟨proof⟩

The following lemma states that every continuous linear form on a normed space \((V, ∥-∥)\) has a function norm.

lemma (in normed-vectorspace-with-fn-norm) fn-norm-works:
assumes continuous \(V f \) norm
shows \(\text{lub} \ (B \ V f \ (\|f\| \cdot V)) \)
(proof)

lemma (in normed-vectorspace-with-fn-norm) fn-norm-ub [iff]:
assumes continuous \(V f \) norm
assumes \(b: \ b \in B \ V f \)
shows \(b \leq \|f\| \cdot V \)
(proof)

lemma (in normed-vectorspace-with-fn-norm) fn-norm-leastB:
assumes continuous \(V f \) norm
assumes \(b: \ \forall b. \ b \in B \ V f \implies b \leq y \)
shows \(\|f\| \cdot V \leq y \)
(proof)

The norm of a continuous function is always \(\geq 0 \).

lemma (in normed-vectorspace-with-fn-norm) fn-norm-ge-zero [iff]:
assumes continuous \(V f \) norm
shows \(0 \leq \|f\| \cdot V \)
(proof)

The fundamental property of function norms is:
\[
|f \ x| \leq \|f\| \cdot \|x\|
\]

lemma (in normed-vectorspace-with-fn-norm) fn-norm-le-cong:
assumes continuous \(V f \) norm linearform \(V f \)
assumes \(x: \ x \in V \)
shows \(|f \ x| \leq \|f\| \cdot V \ast \|x\| \)
(proof)

The function norm is the least positive real number for which the following
inequality holds:
\[
|f \ x| \leq c \cdot \|x\|
\]

lemma (in normed-vectorspace-with-fn-norm) fn-norm-least [intro]:
assumes continuous \(V f \) norm
assumes ineq: \(\forall x. \ x \in V \implies |f \ x| \leq c \ast \|x\| \) and ge: \(0 \leq c \)
shows \(\|f\| \cdot V \leq c \)
(proof)

end

9 Zorn’s Lemma

theory Zorn-Lemma
imports Main
begin

Zorn’s Lemmas states: if every linear ordered subset of an ordered set \(S \) has an
upper bound in \(S \), then there exists a maximal element in \(S \). In our application,
S is a set of sets ordered by set inclusion. Since the union of a chain of sets is an upper bound for all elements of the chain, the conditions of Zorn’s lemma can be modified: if S is non-empty, it suffices to show that for every non-empty chain c in S the union of c also lies in S.

Theorem Zorn’s Lemma:

Assumes $r: \bigwedge c. c \in \text{chains } S \implies \exists x. x \in c \implies \bigcup c \in S$

And $aS: a \in S$

Shows $\exists y \in S. \forall z \in S. y \subseteq z \implies z = y$

(proof)

end
Part II

Lemmas for the Proof

10 The supremum wrt. the function order

theory Hahn-Banach-Sup-Lemmas
imports Function-Norm Zorn-Lemma
begin

This section contains some lemmas that will be used in the proof of the Hahn-Banach Theorem. In this section the following context is presumed. Let E be a real vector space with a seminorm p on E, F is a subspace of E and f a linear form on F. We consider a chain c of norm-preserving extensions of f, such that $\bigcup c = \text{graph } H \cdot h$. We will show some properties about the limit function h, i.e. the supremum of the chain c.

Let c be a chain of norm-preserving extensions of the function f and let $\text{graph } H \cdot h$ be the supremum of c. Every element in H is member of one of the elements of the chain.

lemma [dest?] = chainsD
lemma chainsE2 [elim?] = chainsD2 [elim-format]

lemma some-H' h':
 assumes M: $M = \text{norm-pres-extensions } E \cdot p \cdot F \cdot f$
 and cM: $c \in \text{chains } M$
 and u: $\text{graph } H \cdot h = \bigcup c$
 and x: $x \in H$
 shows $\exists H' \cdot h', \text{graph } H' \cdot h' \subseteq c$
 $\land (x, h \cdot x) \in \text{graph } H' \cdot h'$
 $\land \text{linearform } H' \cdot h' \land H' \subseteq E$
 $\land F \subseteq H' \land \text{graph } F \cdot f \subseteq \text{graph } H' \cdot h'$
 $\land (\forall x \in H'. h' \cdot x \leq p \cdot x)$
⟨proof⟩

Let c be a chain of norm-preserving extensions of the function f and let $\text{graph } H \cdot h$ be the supremum of c. Every element in the domain H of the supremum function is member of the domain H' of some function h', such that h extends h'.

lemma some-H' h':
 assumes M: $M = \text{norm-pres-extensions } E \cdot p \cdot F \cdot f$
 and cM: $c \in \text{chains } M$
 and u: $\text{graph } H \cdot h = \bigcup c$
 and x: $x \in H$
 shows $\exists H' \cdot h', x \in H' \land \text{graph } H' \cdot h' \subseteq \text{graph } H \cdot h$
 $\land \text{linearform } H' \cdot h' \land H' \subseteq E \land F \subseteq H'$
 $\land \text{graph } F \cdot f \subseteq \text{graph } H' \cdot h' \land (\forall x \in H'. h' \cdot x \leq p \cdot x)$
⟨proof⟩

Any two elements x and y in the domain H of the supremum function h are both in the domain H' of some function h', such that h extends h'.
lemma some-H′h′2:
assumes M: M = norm-pres-extensions E p F f
and cM: c ∈ chains M
and u: graph H h = ⋃ c
and x: x ∈ H
and y: y ∈ H
shows ∃ H′ h′. x ∈ H′ ∧ y ∈ H′
∧ graph H′ h′ ⋒ graph H h
∧ linearform H′ h′ ∧ H′ ⋒ E ∧ F ⋒ H′
∧ graph F f ⋒ graph H′ h′ ∧ (∀ x ∈ H′. h′ x ≤ p x)
⟨proof⟩
The relation induced by the graph of the supremum of a chain c is definite, i.e. it is the graph of a function.

lemma sup-definite:
assumes M-def: M = norm-pres-extensions E p F f
and cM: c ∈ chains M
and xy: (x, y) ∈ ⋃ c
and xz: (x, z) ∈ ⋃ c
shows z = y
⟨proof⟩
The limit function h is linear. Every element x in the domain of h is in the domain of a function h′ in the chain of norm preserving extensions. Furthermore, h is an extension of h′ so the function values of x are identical for h′ and h. Finally, the function h′ is linear by construction of M.

lemma sup-lf:
assumes M: M = norm-pres-extensions E p F f
and cM: c ∈ chains M
and u: graph H h = ⋃ c
shows linearform H h
⟨proof⟩
The limit of a non-empty chain of norm preserving extensions of f is an extension of f, since every element of the chain is an extension of f and the supremum is an extension for every element of the chain.

lemma sup-ext:
assumes graph: graph H h = ⋃ c
and M: M = norm-pres-extensions E p F f
and cM: c ∈ chains M
and ex: ∃ x. x ∈ c
shows graph F f ⋒ graph H h
⟨proof⟩
The domain H of the limit function is a superspace of F, since F is a subset of H. The existence of the 0 element in F and the closure properties follow from the fact that F is a vector space.

lemma sup-supF:
assumes graph: graph H h = ⋃ c
and M: M = norm-pres-extensions E p F f
and \(cM: c \in \text{chains } M \)
and \(ex: \exists x. x \in c \)
and \(FE: F \subseteq E \)
shows \(F \subseteq H \)
(proof)

The domain \(H \) of the limit function is a subspace of \(E \).

lemma sup-subE:
assumes graph: \(\text{graph } H h = \bigcup c \)
and \(M: M = \text{norm-pres-extensions } E p F f \)
and \(cM: c \in \text{chains } M \)
and \(ex: \exists x. x \in c \)
and \(FE: F \subseteq E \)
and \(E: \text{vectorspace } E \)
shows \(H \subseteq E \)
(proof)

The limit function is bounded by the norm \(p \) as well, since all elements in the chain are bounded by \(p \).

lemma sup-norm-pres:
assumes graph: \(\text{graph } H h = \bigcup c \)
and \(M: M = \text{norm-pres-extensions } E p F f \)
and \(cM: c \in \text{chains } M \)
shows \(\forall x \in H. h x \leq p x \)
(proof)

The following lemma is a property of linear forms on real vector spaces. It will be used for the lemma \textit{abs-Hahn-Banach} (see page 24). For real vector spaces the following inequality are equivalent:

\[
\forall x \in H. |h x| \leq p x \quad \text{and} \quad \forall x \in H. h x \leq p x
\]

lemma abs-ineq-iff:
assumes subspace \(H E \) and \(\text{vectorspace } E \) and \(\text{seminorm } E p \)
and \(\text{linearform } H h \)
shows \((\forall x \in H. |h x| \leq p x) = (\forall x \in H. h x \leq p x) \) (is \(?L = ?R \))
(proof)

end

11 Extending non-maximal functions

theory Hahn-Banach-Ext-Lemmas
imports Function-Norm
begin

In this section the following context is presumed. Let \(E \) be a real vector space with a seminorm \(q \) on \(E \). \(F \) is a subspace of \(E \) and \(f \) a linear function on \(F \). We consider a subspace \(H \) of \(E \) that is a superspace of \(F \) and a linear form \(h \) on \(H \). \(H \) is a not equal to \(E \) and \(x_0 \) is an element in \(E - H \). \(H \) is extended to the direct sum \(H' = H + \text{lin } x_0 \), so for any \(x \in H' \) the decomposition of \(x = y + \).
a \cdot x \text{ with } y \in H \text{ is unique. } h' \text{ is defined on } H' \text{ by } h' x = h y + a \cdot \xi \text{ for a certain } \xi.

Subsequently we show some properties of this extension \(h' \) of \(h \).

This lemma will be used to show the existence of a linear extension of \(f \) (see page ??). It is a consequence of the completeness of \(\mathbb{R} \). To show

\[\exists \xi. \forall y \in F. \ a y \leq \xi \land \xi \leq b y \]

it suffices to show that

\[\forall u \in F. \forall v \in F. \ a u \leq b v \]

lemma ex-xi:

- **assumes** vectorspace \(F \)
- **assumes** \(r: \exists u v. u \in F \Rightarrow v \in F \Rightarrow a u \leq b v \)
- **shows** \(\exists \xi::\text{real}. \forall y \in F. \ a y \leq \xi \land \xi \leq b y \)

\(\langle \text{proof} \rangle \)

The function \(h' \) is defined as a \(h' x = h y + a \cdot \xi \) where \(x = y + a \cdot \xi \) is a linear extension of \(h \) to \(H' \).

lemma h'-lf:

- **assumes** \(h'\)-def: \(\forall x. \ h' x = (\text{let } (y, a) = \text{SOME } (y, a). \ x = y + a \cdot x_0 \land y \in H \ \text{in } h y + a \cdot \xi) \)
- **and** \(H'\)-def: \(H' = H + \text{lin } x_0 \)
- **assumes** \(H: \text{linearform } H \)
- **assumes** \(x_0: x_0 \notin H \ \ x_0 \in E \ \ x_0 \neq 0 \)
- **assumes** \(E: \text{vectorspace } E \)
- **shows** \(\text{linearform } H' \ h' \)

\(\langle \text{proof} \rangle \)

The linear extension \(h' \) of \(h \) is bounded by the seminorm \(p \).

lemma h'-norm-pres:

- **assumes** \(h'\)-def: \(\forall x. \ h' x = (\text{let } (y, a) = \text{SOME } (y, a). \ x = y + a \cdot x_0 \land y \in H \ \text{in } h y + a \cdot \xi) \)
- **and** \(H'\)-def: \(H' = H + \text{lin } x_0 \)
- **assumes** \(E: \text{vectorspace } E \) and \(H: \text{subspace } H E \)
- **and** \(\text{seminorm } E \ p \) and **linearform** \(H \ h \)
- **assumes** \(a: \forall y \in H. \ h y \leq p y \)
- **and** \(a': \forall y \in H. \ - p (y + x_0) - h y \leq \xi \land \xi \leq p (y + x_0) - h y \)
- **shows** \(\forall x \in H'. \ h' x \leq p x \)

\(\langle \text{proof} \rangle \)

end
Part III
The Main Proof

12 The Hahn-Banach Theorem

theory Hahn-Banach
imports Hahn-Banach-Lemmas
begin

We present the proof of two different versions of the Hahn-Banach Theorem, closely following [1, §36].

12.1 The Hahn-Banach Theorem for vector spaces

Hahn-Banach Theorem. Let F be a subspace of a real vector space E, let p be a semi-norm on E, and f be a linear form defined on F such that f is bounded by p, i.e. $\forall x \in F. f(x) \leq p(x)$. Then f can be extended to a linear form h on E such that h is norm-preserving, i.e. h is also bounded by p.

Proof Sketch.

1. Define M as the set of norm-preserving extensions of f to subspaces of E. The linear forms in M are ordered by domain extension.
2. We show that every non-empty chain in M has an upper bound in M.
3. With Zorn’s Lemma we conclude that there is a maximal function g in M.
4. The domain H of g is the whole space E, as shown by classical contradiction:
 - Assuming g is not defined on whole E, it can still be extended in a norm-preserving way to a super-space H' of H.
 - Thus g can not be maximal. Contradiction!

theorem Hahn-Banach:
 assumes E: vectorspace E and subspace $F E$
 and seminorm $E p$ and linearform $F f$
 assumes $p: \forall x \in F. f(x) \leq p(x)$
 shows $\exists h. linearform E h \land (\forall x \in F. h(x) = f(x)) \land (\forall x \in E. h(x) \leq p(x))$
 — Let E be a vector space, F a subspace of E, p a seminorm on E,
 — and f a linear form on F such that f is bounded by p,
 — then f can be extended to a linear form h on E in a norm-preserving way.
⟨proof⟩

12.2 Alternative formulation

The following alternative formulation of the Hahn-Banach Theorem uses the fact that for a real linear form f and a seminorm p the following inequality are equivalent:1

1This was shown in lemma abs-ineq-iff (see page 22).
12.3 The Hahn-Banach Theorem for normed spaces

\[\forall x \in H. \ |h x| \leq p x \quad \text{and} \quad \forall x \in H. h x \leq p x \]

Theorem abs-Hahn-Banach:

Assumes \(E: \text{vectorspace } E \) and \(FE: \text{subspace } F \ E \)

and \(lf: \text{linearform } F f \) and \(sn: \text{seminorm } E p \)

Assumes \(fp: \forall x \in F. \ |f x| \leq p x \)

Shows \(\exists g. \ \text{linearform } E g \)

\(\land (\forall x \in F. \ g x = f x) \)

\(\land (\forall x \in E. \ |g x| \leq p x) \)

(proof)

12.3 The Hahn-Banach Theorem for normed spaces

Every continuous linear form \(f \) on a subspace \(F \) of a norm space \(E \), can be extended to a continuous linear form \(g \) on \(E \) such that \(\|f\| = \|g\| \).

Theorem norm-Hahn-Banach:

fixes \(V \) and \(\text{norm } (\|\cdot\|) \)

fixes \(B \) defines \(\bigvee V f. B V f \equiv \{0\} \cup \{|f x| / \|x\| | x \neq 0 \land x \in V\} \)

fixes \(fn-norm \) \((\|\cdot\|_r-\{0, 1000\}, 999)\)

defines \(\bigvee V f. \|f\|_V \equiv \biguplus (B V f) \)

Assumes \(E-norm. \ \text{normed-vectorspace } E \) norm and \(FE: \text{subspace } F \ E \)

and \(\text{linearform: linearform } E f \) and \(\text{continuous } F f \) norm

Shows \(\exists g. \ \text{linearform } E g \)

\(\land \text{continuous } E g \) norm

\(\land (\forall x \in F. \ g x = f x) \)

\(\land \|g\|_E = \|f\|_F \)

(proof)

end

References

