# Theory Order_Relation

Up to index of Isabelle/HOL/HOL-NSA

theory Order_Relation
imports Main
(* Author: Tobias Nipkow *)

header {* Orders as Relations *}

theory Order_Relation
imports Main
begin

subsection{* Orders on a set *}

definition "preorder_on A r ≡ refl_on A r ∧ trans r"

definition "partial_order_on A r ≡ preorder_on A r ∧ antisym r"

definition "linear_order_on A r ≡ partial_order_on A r ∧ total_on A r"

definition "strict_linear_order_on A r ≡ trans r ∧ irrefl r ∧ total_on A r"

definition "well_order_on A r ≡ linear_order_on A r ∧ wf(r - Id)"

lemmas order_on_defs =
preorder_on_def partial_order_on_def linear_order_on_def
strict_linear_order_on_def well_order_on_def

lemma preorder_on_empty[simp]: "preorder_on {} {}"

lemma partial_order_on_empty[simp]: "partial_order_on {} {}"

lemma lnear_order_on_empty[simp]: "linear_order_on {} {}"

lemma well_order_on_empty[simp]: "well_order_on {} {}"

lemma preorder_on_converse[simp]: "preorder_on A (r^-1) = preorder_on A r"

lemma partial_order_on_converse[simp]:
"partial_order_on A (r^-1) = partial_order_on A r"

lemma linear_order_on_converse[simp]:
"linear_order_on A (r^-1) = linear_order_on A r"

lemma strict_linear_order_on_diff_Id:
"linear_order_on A r ==> strict_linear_order_on A (r-Id)"

subsection{* Orders on the field *}

abbreviation "Refl r ≡ refl_on (Field r) r"

abbreviation "Preorder r ≡ preorder_on (Field r) r"

abbreviation "Partial_order r ≡ partial_order_on (Field r) r"

abbreviation "Total r ≡ total_on (Field r) r"

abbreviation "Linear_order r ≡ linear_order_on (Field r) r"

abbreviation "Well_order r ≡ well_order_on (Field r) r"

lemma subset_Image_Image_iff:
"[| Preorder r; A ⊆ Field r; B ⊆ Field r|] ==>
r `` A ⊆ r `` B <-> (∀a∈A.∃b∈B. (b,a):r)"

unfolding preorder_on_def refl_on_def Image_def
unfolding trans_def by fast

lemma subset_Image1_Image1_iff:
"[| Preorder r; a : Field r; b : Field r|] ==> r `` {a} ⊆ r `` {b} <-> (b,a):r"

lemma Refl_antisym_eq_Image1_Image1_iff:
"[|Refl r; antisym r; a:Field r; b:Field r|] ==> r `` {a} = r `` {b} <-> a=b"
by(simp add: set_eq_iff antisym_def refl_on_def) metis

lemma Partial_order_eq_Image1_Image1_iff:
"[|Partial_order r; a:Field r; b:Field r|] ==> r `` {a} = r `` {b} <-> a=b"
by(auto simp:order_on_defs Refl_antisym_eq_Image1_Image1_iff)

subsection{* Orders on a type *}

abbreviation "strict_linear_order ≡ strict_linear_order_on UNIV"

abbreviation "linear_order ≡ linear_order_on UNIV"

abbreviation "well_order r ≡ well_order_on UNIV"

end