Theory Action

theory Action
imports Stfun
(*  Title:      HOL/TLA/Action.thy
    Author:     Stephan Merz
    Copyright:  1998 University of Munich
*)

section ‹The action level of TLA as an Isabelle theory›

theory Action
imports Stfun
begin

type_synonym 'a trfun = "state × state ⇒ 'a"
type_synonym action = "bool trfun"

instance prod :: (world, world) world ..

definition enabled :: "action ⇒ stpred"
  where "enabled A s ≡ ∃u. (s,u) ⊨ A"


consts
  before :: "'a stfun ⇒ 'a trfun"
  after :: "'a stfun ⇒ 'a trfun"
  unch :: "'a stfun ⇒ action"

syntax
  (* Syntax for writing action expressions in arbitrary contexts *)
  "_ACT"        :: "lift ⇒ 'a"                      ("(ACT _)")

  "_before"     :: "lift ⇒ lift"                    ("($_)"  [100] 99)
  "_after"      :: "lift ⇒ lift"                    ("(_$)"  [100] 99)
  "_unchanged"  :: "lift ⇒ lift"                    ("(unchanged _)" [100] 99)

  (*** Priming: same as "after" ***)
  "_prime"      :: "lift ⇒ lift"                    ("(_`)" [100] 99)

  "_Enabled"    :: "lift ⇒ lift"                    ("(Enabled _)" [100] 100)

translations
  "ACT A"            =>   "(A::state*state ⇒ _)"
  "_before"          ==   "CONST before"
  "_after"           ==   "CONST after"
  "_prime"           =>   "_after"
  "_unchanged"       ==   "CONST unch"
  "_Enabled"         ==   "CONST enabled"
  "s ⊨ Enabled A"   <=   "_Enabled A s"
  "w ⊨ unchanged f" <=   "_unchanged f w"

axiomatization where
  unl_before:    "(ACT $v) (s,t) ≡ v s" and
  unl_after:     "(ACT v$) (s,t) ≡ v t" and
  unchanged_def: "(s,t) ⊨ unchanged v ≡ (v t = v s)"


definition SqAct :: "[action, 'a stfun] ⇒ action"
  where square_def: "SqAct A v ≡ ACT (A ∨ unchanged v)"

definition AnAct :: "[action, 'a stfun] ⇒ action"
  where angle_def: "AnAct A v ≡ ACT (A ∧ ¬ unchanged v)"

syntax
  "_SqAct" :: "[lift, lift] ⇒ lift"  ("([_]'_(_))" [0, 1000] 99)
  "_AnAct" :: "[lift, lift] ⇒ lift"  ("(<_>'_(_))" [0, 1000] 99)
translations
  "_SqAct" == "CONST SqAct"
  "_AnAct" == "CONST AnAct"
  "w ⊨ [A]_v"  "_SqAct A v w"
  "w ⊨ <A>_v"  "_AnAct A v w"


(* The following assertion specializes "intI" for any world type
   which is a pair, not just for "state * state".
*)

lemma actionI [intro!]:
  assumes "⋀s t. (s,t) ⊨ A"
  shows "⊢ A"
  apply (rule assms intI prod.induct)+
  done

lemma actionD [dest]: "⊢ A ⟹ (s,t) ⊨ A"
  apply (erule intD)
  done

lemma pr_rews [int_rewrite]:
  "⊢ (#c)` = #c"
  "⋀f. ⊢ f<x>` = f<x` >"
  "⋀f. ⊢ f<x,y>` = f<x`,y` >"
  "⋀f. ⊢ f<x,y,z>` = f<x`,y`,z` >"
  "⊢ (∀x. P x)` = (∀x. (P x)`)"
  "⊢ (∃x. P x)` = (∃x. (P x)`)"
  by (rule actionI, unfold unl_after intensional_rews, rule refl)+


lemmas act_rews [simp] = unl_before unl_after unchanged_def pr_rews

lemmas action_rews = act_rews intensional_rews


(* ================ Functions to "unlift" action theorems into HOL rules ================ *)

ML ‹
(* The following functions are specialized versions of the corresponding
   functions defined in Intensional.ML in that they introduce a
   "world" parameter of the form (s,t) and apply additional rewrites.
*)

fun action_unlift ctxt th =
  (rewrite_rule ctxt @{thms action_rews} (th RS @{thm actionD}))
    handle THM _ => int_unlift ctxt th;

(* Turn  ⊢ A = B  into meta-level rewrite rule  A == B *)
val action_rewrite = int_rewrite

fun action_use ctxt th =
    case Thm.concl_of th of
      Const _ $ (Const (@{const_name Valid}, _) $ _) =>
              (flatten (action_unlift ctxt th) handle THM _ => th)
    | _ => th;
›

attribute_setup action_unlift =
  ‹Scan.succeed (Thm.rule_attribute [] (action_unlift o Context.proof_of))›
attribute_setup action_rewrite =
  ‹Scan.succeed (Thm.rule_attribute [] (action_rewrite o Context.proof_of))›
attribute_setup action_use =
  ‹Scan.succeed (Thm.rule_attribute [] (action_use o Context.proof_of))›


(* =========================== square / angle brackets =========================== *)

lemma idle_squareI: "(s,t) ⊨ unchanged v ⟹ (s,t) ⊨ [A]_v"
  by (simp add: square_def)

lemma busy_squareI: "(s,t) ⊨ A ⟹ (s,t) ⊨ [A]_v"
  by (simp add: square_def)

lemma squareE [elim]:
  "⟦ (s,t) ⊨ [A]_v; A (s,t) ⟹ B (s,t); v t = v s ⟹ B (s,t) ⟧ ⟹ B (s,t)"
  apply (unfold square_def action_rews)
  apply (erule disjE)
  apply simp_all
  done

lemma squareCI [intro]: "⟦ v t ≠ v s ⟹ A (s,t) ⟧ ⟹ (s,t) ⊨ [A]_v"
  apply (unfold square_def action_rews)
  apply (rule disjCI)
  apply (erule (1) meta_mp)
  done

lemma angleI [intro]: "⋀s t. ⟦ A (s,t); v t ≠ v s ⟧ ⟹ (s,t) ⊨ <A>_v"
  by (simp add: angle_def)

lemma angleE [elim]: "⟦ (s,t) ⊨ <A>_v; ⟦ A (s,t); v t ≠ v s ⟧ ⟹ R ⟧ ⟹ R"
  apply (unfold angle_def action_rews)
  apply (erule conjE)
  apply simp
  done

lemma square_simulation:
   "⋀f. ⟦ ⊢ unchanged f ∧ ¬B ⟶ unchanged g;
            ⊢ A ∧ ¬unchanged g ⟶ B
         ⟧ ⟹ ⊢ [A]_f ⟶ [B]_g"
  apply clarsimp
  apply (erule squareE)
  apply (auto simp add: square_def)
  done

lemma not_square: "⊢ (¬ [A]_v) = <¬A>_v"
  by (auto simp: square_def angle_def)

lemma not_angle: "⊢ (¬ <A>_v) = [¬A]_v"
  by (auto simp: square_def angle_def)


(* ============================== Facts about ENABLED ============================== *)

lemma enabledI: "⊢ A ⟶ $Enabled A"
  by (auto simp add: enabled_def)

lemma enabledE: "⟦ s ⊨ Enabled A; ⋀u. A (s,u) ⟹ Q ⟧ ⟹ Q"
  apply (unfold enabled_def)
  apply (erule exE)
  apply simp
  done

lemma notEnabledD: "⊢ ¬$Enabled G ⟶ ¬ G"
  by (auto simp add: enabled_def)

(* Monotonicity *)
lemma enabled_mono:
  assumes min: "s ⊨ Enabled F"
    and maj: "⊢ F ⟶ G"
  shows "s ⊨ Enabled G"
  apply (rule min [THEN enabledE])
  apply (rule enabledI [action_use])
  apply (erule maj [action_use])
  done

(* stronger variant *)
lemma enabled_mono2:
  assumes min: "s ⊨ Enabled F"
    and maj: "⋀t. F (s,t) ⟹ G (s,t)"
  shows "s ⊨ Enabled G"
  apply (rule min [THEN enabledE])
  apply (rule enabledI [action_use])
  apply (erule maj)
  done

lemma enabled_disj1: "⊢ Enabled F ⟶ Enabled (F ∨ G)"
  by (auto elim!: enabled_mono)

lemma enabled_disj2: "⊢ Enabled G ⟶ Enabled (F ∨ G)"
  by (auto elim!: enabled_mono)

lemma enabled_conj1: "⊢ Enabled (F ∧ G) ⟶ Enabled F"
  by (auto elim!: enabled_mono)

lemma enabled_conj2: "⊢ Enabled (F ∧ G) ⟶ Enabled G"
  by (auto elim!: enabled_mono)

lemma enabled_conjE:
    "⟦ s ⊨ Enabled (F ∧ G); ⟦ s ⊨ Enabled F; s ⊨ Enabled G ⟧ ⟹ Q ⟧ ⟹ Q"
  apply (frule enabled_conj1 [action_use])
  apply (drule enabled_conj2 [action_use])
  apply simp
  done

lemma enabled_disjD: "⊢ Enabled (F ∨ G) ⟶ Enabled F ∨ Enabled G"
  by (auto simp add: enabled_def)

lemma enabled_disj: "⊢ Enabled (F ∨ G) = (Enabled F ∨ Enabled G)"
  apply clarsimp
  apply (rule iffI)
   apply (erule enabled_disjD [action_use])
  apply (erule disjE enabled_disj1 [action_use] enabled_disj2 [action_use])+
  done

lemma enabled_ex: "⊢ Enabled (∃x. F x) = (∃x. Enabled (F x))"
  by (force simp add: enabled_def)


(* A rule that combines enabledI and baseE, but generates fewer instantiations *)
lemma base_enabled:
    "⟦ basevars vs; ∃c. ∀u. vs u = c ⟶ A(s,u) ⟧ ⟹ s ⊨ Enabled A"
  apply (erule exE)
  apply (erule baseE)
  apply (rule enabledI [action_use])
  apply (erule allE)
  apply (erule mp)
  apply assumption
  done

(* ======================= action_simp_tac ============================== *)

ML ‹
(* A dumb simplification-based tactic with just a little first-order logic:
   should plug in only "very safe" rules that can be applied blindly.
   Note that it applies whatever simplifications are currently active.
*)
fun action_simp_tac ctxt intros elims =
    asm_full_simp_tac
         (ctxt setloop (fn _ => (resolve_tac ctxt ((map (action_use ctxt) intros)
                                    @ [refl,impI,conjI,@{thm actionI},@{thm intI},allI]))
                      ORELSE' (eresolve_tac ctxt ((map (action_use ctxt) elims)
                                             @ [conjE,disjE,exE]))));
›

(* ---------------- enabled_tac: tactic to prove (Enabled A) -------------------- *)

ML ‹
(* "Enabled A" can be proven as follows:
   - Assume that we know which state variables are "base variables"
     this should be expressed by a theorem of the form "basevars (x,y,z,...)".
   - Resolve this theorem with baseE to introduce a constant for the value of the
     variables in the successor state, and resolve the goal with the result.
   - Resolve with enabledI and do some rewriting.
   - Solve for the unknowns using standard HOL reasoning.
   The following tactic combines these steps except the final one.
*)

fun enabled_tac ctxt base_vars =
  clarsimp_tac (ctxt addSIs [base_vars RS @{thm base_enabled}]);
›

method_setup enabled = ‹
  Attrib.thm >> (fn th => fn ctxt => SIMPLE_METHOD' (enabled_tac ctxt th))
›

(* Example *)

lemma
  assumes "basevars (x,y,z)"
  shows "⊢ x ⟶ Enabled ($x ∧ (y$ = #False))"
  apply (enabled assms)
  apply auto
  done

end