Theory Counterc

theory Counterc
imports UNITY_Main
(*  Title:      HOL/UNITY/Comp/Counterc.thy
    Author:     Sidi O Ehmety, Cambridge University Computer Laboratory
    Copyright   2001  University of Cambridge

A family of similar counters, version with a full use of
"compatibility ".

From Charpentier and Chandy,
Examples of Program Composition Illustrating the Use of Universal Properties
   In J. Rolim (editor), Parallel and Distributed Processing,
   Spriner LNCS 1586 (1999), pages 1215-1227.

section‹A Family of Similar Counters: Version with Compatibility›

theory Counterc imports "../UNITY_Main" begin

typedecl state

  C :: "state=>int"
  c :: "state=>nat=>int"

primrec sum  :: "[nat,state]=>int" where
  (* sum I s = sigma_{i<I}. c s i *)
  "sum 0 s = 0"
| "sum (Suc i) s = (c s) i + sum i s"

primrec sumj :: "[nat, nat, state]=>int" where
  "sumj 0 i s = 0"
| "sumj (Suc n) i s = (if n=i then sum n s else (c s) n + sumj n i s)"
type_synonym command = "(state*state)set"

definition a :: "nat=>command" where
 "a i = {(s, s'). (c s') i = (c s) i + 1 & (C s') = (C s) + 1}"
definition Component :: "nat => state program" where
  "Component i = mk_total_program({s. C s = 0 & (c s) i = 0},
                                  {a i},
                                  ⋃G ∈ preserves (%s. (c s) i). Acts G)"

declare Component_def [THEN def_prg_Init, simp]
declare Component_def [THEN def_prg_AllowedActs, simp]
declare a_def [THEN def_act_simp, simp]

(* Theorems about sum and sumj *)
lemma sum_sumj_eq1: "I<i ==> sum I s = sumj I i s"
  by (induct I) auto

lemma sum_sumj_eq2: "i<I ==> sum I s  = c s i + sumj I i s"
  by (induct I) (auto simp add: linorder_neq_iff sum_sumj_eq1)

lemma sum_ext: "(⋀i. i<I ⟹ c s' i = c s i) ==> sum I s' = sum I s"
  by (induct I) auto

lemma sumj_ext: "(⋀j. j<I ==> j≠i ==> c s' j =  c s j) ==> sumj I i s' = sumj I i s"
  by (induct I) (auto intro!: sum_ext)

lemma sum0: "(⋀i. i<I ==> c s i = 0) ==> sum I s = 0"
  by (induct I) auto

(* Safety properties for Components *)

lemma Component_ok_iff:
     "(Component i ok G) =  
      (G ∈ preserves (%s. c s i) & Component i ∈ Allowed G)"
apply (auto simp add: ok_iff_Allowed Component_def [THEN def_total_prg_Allowed])
declare Component_ok_iff [iff]
declare OK_iff_ok [iff]
declare preserves_def [simp]

lemma p2: "Component i ∈ stable {s. C s = (c s) i + k}"
by (simp add: Component_def, safety)

lemma p3:
     "[| OK I Component; i∈I |]   
      ==> Component i ∈ stable {s. ∀j∈I. j≠i --> c s j = c k j}"
apply simp
apply (unfold Component_def mk_total_program_def)
apply (simp (no_asm_use) add: stable_def constrains_def)
apply blast

lemma p2_p3_lemma1: 
     "[| OK {i. i<I} Component; i<I |] ==>  
      ∀k. Component i ∈ stable ({s. C s = c s i + sumj I i k} Int  
                                {s. ∀j∈{i. i<I}. j≠i --> c s j = c k j})"
by (blast intro: stable_Int [OF p2 p3])

lemma p2_p3_lemma2:
     "(∀k. F ∈ stable ({s. C s = (c s) i + sumj I i k} Int  
                        {s. ∀j∈{i. i<I}. j≠i --> c s j = c k j}))   
      ==> (F ∈ stable {s. C s = c s i + sumj I i s})"
apply (simp add: constrains_def stable_def)
apply (force intro!: sumj_ext)

lemma p2_p3:
     "[| OK {i. i<I} Component; i<I |]  
      ==> Component i ∈ stable {s. C s = c s i + sumj I i s}"
by (blast intro: p2_p3_lemma1 [THEN p2_p3_lemma2])

(* Compositional correctness *)
lemma safety: 
     "[| 0<I; OK {i. i<I} Component |]   
      ==> (⨆i∈{i. i<I}. (Component i)) ∈ invariant {s. C s = sum I s}"
apply (simp (no_asm) add: invariant_def JN_stable sum_sumj_eq2)
apply (auto intro!: sum0 p2_p3)