Theory PriorityAux

theory PriorityAux
imports UNITY_Main
(*  Title:      HOL/UNITY/Comp/PriorityAux.thy
    Author:     Sidi O Ehmety, Cambridge University Computer Laboratory
    Copyright   2001  University of Cambridge

Auxiliary definitions needed in Priority.thy

theory PriorityAux 
imports "../UNITY_Main"

typedecl vertex
definition symcl :: "(vertex*vertex)set=>(vertex*vertex)set" where
  "symcl r == r ∪ (r¯)"
    ― ‹symmetric closure: removes the orientation of a relation›

definition neighbors :: "[vertex, (vertex*vertex)set]=>vertex set" where
  "neighbors i r == ((r ∪ r¯)``{i}) - {i}"
    ― ‹Neighbors of a vertex i›

definition R :: "[vertex, (vertex*vertex)set]=>vertex set" where
  "R i r == r``{i}"

definition A :: "[vertex, (vertex*vertex)set]=>vertex set" where
  "A i r == (r¯)``{i}"

definition reach :: "[vertex, (vertex*vertex)set]=> vertex set" where
  "reach i r == (r+)``{i}"
    ― ‹reachable and above vertices: the original notation was R* and A*›

definition above :: "[vertex, (vertex*vertex)set]=> vertex set" where
  "above i r == ((r¯)+)``{i}"  

definition reverse :: "[vertex, (vertex*vertex) set]=>(vertex*vertex)set" where
  "reverse i r == (r - {(x,y). x=i | y=i} ∩ r) ∪ ({(x,y). x=i|y=i} ∩ r)¯"

definition derive1 :: "[vertex, (vertex*vertex)set, (vertex*vertex)set]=>bool" where
    ― ‹The original definition›
  "derive1 i r q == symcl r = symcl q &
                    (∀k k'. k≠i & k'≠i -->((k,k') ∈ r) = ((k,k') ∈ q)) ∧
                    A i r = {} & R i q = {}"

definition derive :: "[vertex, (vertex*vertex)set, (vertex*vertex)set]=>bool" where
    ― ‹Our alternative definition›
  "derive i r q == A i r = {} & (q = reverse i r)"

axiomatization where
  finite_vertex_univ:  "finite (UNIV :: vertex set)"
    ― ‹we assume that the universe of vertices is finite›

declare derive_def [simp] derive1_def [simp] symcl_def [simp] 
        A_def [simp] R_def [simp] 
        above_def [simp] reach_def [simp] 
        reverse_def [simp] neighbors_def [simp]

text‹All vertex sets are finite›
declare finite_subset [OF subset_UNIV finite_vertex_univ, iff]

text‹and relatons over vertex are finite too›

lemmas finite_UNIV_Prod =
       finite_Prod_UNIV [OF finite_vertex_univ finite_vertex_univ] 

declare finite_subset [OF subset_UNIV finite_UNIV_Prod, iff]

(* The equalities (above i r = {}) = (A i r = {}) 
   and (reach i r = {}) = (R i r) rely on the following theorem  *)

lemma image0_trancl_iff_image0_r: "((r+)``{i} = {}) = (r``{i} = {})"
apply auto
apply (erule trancl_induct, auto)

(* Another form usefull in some situation *)
lemma image0_r_iff_image0_trancl: "(r``{i}={}) = (∀x. ((i,x) ∈ r+) = False)"
apply auto
apply (drule image0_trancl_iff_image0_r [THEN ssubst], auto)

(* In finite universe acyclic coincides with wf *)
lemma acyclic_eq_wf: "!!r::(vertex*vertex)set. acyclic r = wf r"
by (auto simp add: wf_iff_acyclic_if_finite)

(* derive and derive1 are equivalent *)
lemma derive_derive1_eq: "derive i r q = derive1 i r q"
by auto

(* Lemma 1 *)
lemma lemma1_a: 
     "[| x ∈ reach i q; derive1 k r q |] ==> x≠k --> x ∈ reach i r"
apply (unfold reach_def)
apply (erule ImageE)
apply (erule trancl_induct) 
 apply (cases "i=k", simp_all) 
 apply (blast, blast, clarify) 
apply (drule_tac x = y in spec)
apply (drule_tac x = z in spec)
apply (blast dest: r_into_trancl intro: trancl_trans)

lemma reach_lemma: "derive k r q ==> reach i q ⊆ (reach i r ∪ {k})"
apply clarify 
apply (drule lemma1_a)
apply (auto simp add: derive_derive1_eq 
            simp del: reach_def derive_def derive1_def)

(* An other possible formulation of the above theorem based on
   the equivalence x ∈ reach y r = y ∈ above x r                  *)
lemma reach_above_lemma:
      "(∀i. reach i q ⊆ (reach i r ∪ {k})) = 
       (∀x. x≠k --> (∀i. i ∉ above x r --> i ∉ above x q))"
by (auto simp add: trancl_converse)

(* Lemma 2 *)
lemma maximal_converse_image0: 
     "(z, i) ∈ r+ ⟹ (∀y. (y, z) ∈ r ⟶ (y,i) ∉ r+) = ((r¯)``{z}={})"
apply auto
apply (frule_tac r = r in trancl_into_trancl2, auto)

lemma above_lemma_a: 
     "acyclic r ==> A i r≠{}-->(∃j ∈ above i r. A j r = {})"
apply (simp add: acyclic_eq_wf wf_eq_minimal) 
apply (drule_tac x = " ((r¯)+) ``{i}" in spec)
apply auto
apply (simp add: maximal_converse_image0 trancl_converse)

lemma above_lemma_b: 
     "acyclic r ==> above i r≠{}-->(∃j ∈ above i r. above j r = {})"
apply (drule above_lemma_a)
apply (auto simp add: image0_trancl_iff_image0_r)