Theory Transformers

theory Transformers
imports Comp
(*  Title:      HOL/UNITY/Transformers.thy
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   2003  University of Cambridge

Predicate Transformers.  From 

    David Meier and Beverly Sanders,
    Composing Leads-to Properties
    Theoretical Computer Science 243:1-2 (2000), 339-361.

    David Meier,
    Progress Properties in Program Refinement and Parallel Composition
    Swiss Federal Institute of Technology Zurich (1997)
*)

section‹Predicate Transformers›

theory Transformers imports Comp begin

subsection‹Defining the Predicate Transformers @{term wp},
   @{term awp} and  @{term wens}›

definition wp :: "[('a*'a) set, 'a set] => 'a set" where  
    ― ‹Dijkstra's weakest-precondition operator (for an individual command)›
    "wp act B == - (act¯ `` (-B))"

definition awp :: "['a program, 'a set] => 'a set" where
    ― ‹Dijkstra's weakest-precondition operator (for a program)›
    "awp F B == (⋂act ∈ Acts F. wp act B)"

definition wens :: "['a program, ('a*'a) set, 'a set] => 'a set" where
    ― ‹The weakest-ensures transformer›
    "wens F act B == gfp(λX. (wp act B ∩ awp F (B ∪ X)) ∪ B)"

text‹The fundamental theorem for wp›
theorem wp_iff: "(A <= wp act B) = (act `` A <= B)"
by (force simp add: wp_def) 

text‹This lemma is a good deal more intuitive than the definition!›
lemma in_wp_iff: "(a ∈ wp act B) = (∀x. (a,x) ∈ act --> x ∈ B)"
by (simp add: wp_def, blast)

lemma Compl_Domain_subset_wp: "- (Domain act) ⊆ wp act B"
by (force simp add: wp_def) 

lemma wp_empty [simp]: "wp act {} = - (Domain act)"
by (force simp add: wp_def)

text‹The identity relation is the skip action›
lemma wp_Id [simp]: "wp Id B = B"
by (simp add: wp_def) 

lemma wp_totalize_act:
     "wp (totalize_act act) B = (wp act B ∩ Domain act) ∪ (B - Domain act)"
by (simp add: wp_def totalize_act_def, blast)

lemma awp_subset: "(awp F A ⊆ A)"
by (force simp add: awp_def wp_def)

lemma awp_Int_eq: "awp F (A∩B) = awp F A ∩ awp F B"
by (simp add: awp_def wp_def, blast) 

text‹The fundamental theorem for awp›
theorem awp_iff_constrains: "(A <= awp F B) = (F ∈ A co B)"
by (simp add: awp_def constrains_def wp_iff INT_subset_iff) 

lemma awp_iff_stable: "(A ⊆ awp F A) = (F ∈ stable A)"
by (simp add: awp_iff_constrains stable_def) 

lemma stable_imp_awp_ident: "F ∈ stable A ==> awp F A = A"
apply (rule equalityI [OF awp_subset]) 
apply (simp add: awp_iff_stable) 
done

lemma wp_mono: "(A ⊆ B) ==> wp act A ⊆ wp act B"
by (simp add: wp_def, blast)

lemma awp_mono: "(A ⊆ B) ==> awp F A ⊆ awp F B"
by (simp add: awp_def wp_def, blast)

lemma wens_unfold:
     "wens F act B = (wp act B ∩ awp F (B ∪ wens F act B)) ∪ B"
apply (simp add: wens_def) 
apply (rule gfp_unfold) 
apply (simp add: mono_def wp_def awp_def, blast) 
done

lemma wens_Id [simp]: "wens F Id B = B"
by (simp add: wens_def gfp_def wp_def awp_def, blast)

text‹These two theorems justify the claim that @{term wens} returns the
weakest assertion satisfying the ensures property›
lemma ensures_imp_wens: "F ∈ A ensures B ==> ∃act ∈ Acts F. A ⊆ wens F act B"
apply (simp add: wens_def ensures_def transient_def, clarify) 
apply (rule rev_bexI, assumption) 
apply (rule gfp_upperbound)
apply (simp add: constrains_def awp_def wp_def, blast)
done

lemma wens_ensures: "act ∈ Acts F ==> F ∈ (wens F act B) ensures B"
by (simp add: wens_def gfp_def constrains_def awp_def wp_def
              ensures_def transient_def, blast)

text‹These two results constitute assertion (4.13) of the thesis›
lemma wens_mono: "(A ⊆ B) ==> wens F act A ⊆ wens F act B"
apply (simp add: wens_def wp_def awp_def) 
apply (rule gfp_mono, blast) 
done

lemma wens_weakening: "B ⊆ wens F act B"
by (simp add: wens_def gfp_def, blast)

text‹Assertion (6), or 4.16 in the thesis›
lemma subset_wens: "A-B ⊆ wp act B ∩ awp F (B ∪ A) ==> A ⊆ wens F act B" 
apply (simp add: wens_def wp_def awp_def) 
apply (rule gfp_upperbound, blast) 
done

text‹Assertion 4.17 in the thesis›
lemma Diff_wens_constrains: "F ∈ (wens F act A - A) co wens F act A"
by (simp add: wens_def gfp_def wp_def awp_def constrains_def, blast)
  ― ‹Proved instantly, yet remarkably fragile. If ‹Un_subset_iff›
      is declared as an iff-rule, then it's almost impossible to prove. 
      One proof is via ‹meson› after expanding all definitions, but it's
      slow!›

text‹Assertion (7): 4.18 in the thesis.  NOTE that many of these results
hold for an arbitrary action.  We often do not require @{term "act ∈ Acts F"}›
lemma stable_wens: "F ∈ stable A ==> F ∈ stable (wens F act A)"
apply (simp add: stable_def)
apply (drule constrains_Un [OF Diff_wens_constrains [of F act A]]) 
apply (simp add: Un_Int_distrib2 Compl_partition2) 
apply (erule constrains_weaken, blast) 
apply (simp add: wens_weakening)
done

text‹Assertion 4.20 in the thesis.›
lemma wens_Int_eq_lemma:
      "[|T-B ⊆ awp F T; act ∈ Acts F|]
       ==> T ∩ wens F act B ⊆ wens F act (T∩B)"
apply (rule subset_wens) 
apply (rule_tac P="λx. f x ⊆ b" for f b in ssubst [OF wens_unfold])
apply (simp add: wp_def awp_def, blast)
done

text‹Assertion (8): 4.21 in the thesis. Here we indeed require
      @{term "act ∈ Acts F"}›
lemma wens_Int_eq:
      "[|T-B ⊆ awp F T; act ∈ Acts F|]
       ==> T ∩ wens F act B = T ∩ wens F act (T∩B)"
apply (rule equalityI)
 apply (simp_all add: Int_lower1) 
 apply (rule wens_Int_eq_lemma, assumption+) 
apply (rule subset_trans [OF _ wens_mono [of "T∩B" B]], auto) 
done


subsection‹Defining the Weakest Ensures Set›

inductive_set
  wens_set :: "['a program, 'a set] => 'a set set"
  for F :: "'a program" and B :: "'a set"
where

  Basis: "B ∈ wens_set F B"

| Wens:  "[|X ∈ wens_set F B; act ∈ Acts F|] ==> wens F act X ∈ wens_set F B"

| Union: "W ≠ {} ==> ∀U ∈ W. U ∈ wens_set F B ==> ⋃W ∈ wens_set F B"

lemma wens_set_imp_co: "A ∈ wens_set F B ==> F ∈ (A-B) co A"
apply (erule wens_set.induct) 
  apply (simp add: constrains_def)
 apply (drule_tac act1=act and A1=X 
        in constrains_Un [OF Diff_wens_constrains]) 
 apply (erule constrains_weaken, blast) 
 apply (simp add: wens_weakening) 
apply (rule constrains_weaken) 
apply (rule_tac I=W and A="λv. v-B" and A'="λv. v" in constrains_UN, blast+)
done

lemma wens_set_imp_leadsTo: "A ∈ wens_set F B ==> F ∈ A leadsTo B"
apply (erule wens_set.induct)
  apply (rule leadsTo_refl)  
 apply (blast intro: wens_ensures leadsTo_Trans) 
apply (blast intro: leadsTo_Union) 
done

lemma leadsTo_imp_wens_set: "F ∈ A leadsTo B ==> ∃C ∈ wens_set F B. A ⊆ C"
apply (erule leadsTo_induct_pre)
  apply (blast dest!: ensures_imp_wens intro: wens_set.Basis wens_set.Wens) 
 apply (clarify, drule ensures_weaken_R, assumption)  
 apply (blast dest!: ensures_imp_wens intro: wens_set.Wens)
apply (case_tac "S={}") 
 apply (simp, blast intro: wens_set.Basis)
apply (clarsimp dest!: bchoice simp: ball_conj_distrib Bex_def) 
apply (rule_tac x = "⋃{Z. ∃U∈S. Z = f U}" in exI)
apply (blast intro: wens_set.Union) 
done

text‹Assertion (9): 4.27 in the thesis.›
lemma leadsTo_iff_wens_set: "(F ∈ A leadsTo B) = (∃C ∈ wens_set F B. A ⊆ C)"
by (blast intro: leadsTo_imp_wens_set leadsTo_weaken_L wens_set_imp_leadsTo) 

text‹This is the result that requires the definition of @{term wens_set} to
  require @{term W} to be non-empty in the Unio case, for otherwise we should
  always have @{term "{} ∈ wens_set F B"}.›
lemma wens_set_imp_subset: "A ∈ wens_set F B ==> B ⊆ A"
apply (erule wens_set.induct) 
  apply (blast intro: wens_weakening [THEN subsetD])+
done


subsection‹Properties Involving Program Union›

text‹Assertion (4.30) of thesis, reoriented›
lemma awp_Join_eq: "awp (F⊔G) B = awp F B ∩ awp G B"
by (simp add: awp_def wp_def, blast)

lemma wens_subset: "wens F act B - B ⊆ wp act B ∩ awp F (B ∪ wens F act B)"
by (subst wens_unfold, fast) 

text‹Assertion (4.31)›
lemma subset_wens_Join:
      "[|A = T ∩ wens F act B;  T-B ⊆ awp F T; A-B ⊆ awp G (A ∪ B)|] 
       ==> A ⊆ wens (F⊔G) act B"
apply (subgoal_tac "(T ∩ wens F act B) - B ⊆ 
                    wp act B ∩ awp F (B ∪ wens F act B) ∩ awp F T") 
 apply (rule subset_wens) 
 apply (simp add: awp_Join_eq awp_Int_eq Un_commute)
 apply (simp add: awp_def wp_def, blast) 
apply (insert wens_subset [of F act B], blast) 
done

text‹Assertion (4.32)›
lemma wens_Join_subset: "wens (F⊔G) act B ⊆ wens F act B"
apply (simp add: wens_def) 
apply (rule gfp_mono)
apply (auto simp add: awp_Join_eq)  
done

text‹Lemma, because the inductive step is just too messy.›
lemma wens_Union_inductive_step:
  assumes awpF: "T-B ⊆ awp F T"
      and awpG: "!!X. X ∈ wens_set F B ==> (T∩X) - B ⊆ awp G (T∩X)"
  shows "[|X ∈ wens_set F B; act ∈ Acts F; Y ⊆ X; T∩X = T∩Y|]
         ==> wens (F⊔G) act Y ⊆ wens F act X ∧
             T ∩ wens F act X = T ∩ wens (F⊔G) act Y"
apply (subgoal_tac "wens (F⊔G) act Y ⊆ wens F act X")  
 prefer 2
 apply (blast dest: wens_mono intro: wens_Join_subset [THEN subsetD], simp)
apply (rule equalityI) 
 prefer 2 apply blast
apply (simp add: Int_lower1) 
apply (frule wens_set_imp_subset) 
apply (subgoal_tac "T-X ⊆ awp F T")  
 prefer 2 apply (blast intro: awpF [THEN subsetD]) 
apply (rule_tac B = "wens (F⊔G) act (T∩X)" in subset_trans) 
 prefer 2 apply (blast intro!: wens_mono)
apply (subst wens_Int_eq, assumption+) 
apply (rule subset_wens_Join [of _ T], simp, blast)
apply (subgoal_tac "T ∩ wens F act (T∩X) ∪ T∩X = T ∩ wens F act X")
 prefer 2
 apply (subst wens_Int_eq [symmetric], assumption+) 
 apply (blast intro: wens_weakening [THEN subsetD], simp) 
apply (blast intro: awpG [THEN subsetD] wens_set.Wens)
done

theorem wens_Union:
  assumes awpF: "T-B ⊆ awp F T"
      and awpG: "!!X. X ∈ wens_set F B ==> (T∩X) - B ⊆ awp G (T∩X)"
      and major: "X ∈ wens_set F B"
  shows "∃Y ∈ wens_set (F⊔G) B. Y ⊆ X & T∩X = T∩Y"
apply (rule wens_set.induct [OF major])
  txt‹Basis: trivial›
  apply (blast intro: wens_set.Basis)
 txt‹Inductive step›
 apply clarify 
 apply (rule_tac x = "wens (F⊔G) act Y" in rev_bexI)
  apply (force intro: wens_set.Wens)
 apply (simp add: wens_Union_inductive_step [OF awpF awpG]) 
txt‹Union: by Axiom of Choice›
apply (simp add: ball_conj_distrib Bex_def) 
apply (clarify dest!: bchoice) 
apply (rule_tac x = "⋃{Z. ∃U∈W. Z = f U}" in exI)
apply (blast intro: wens_set.Union) 
done

theorem leadsTo_Join:
  assumes leadsTo: "F ∈ A leadsTo B"
      and awpF: "T-B ⊆ awp F T"
      and awpG: "!!X. X ∈ wens_set F B ==> (T∩X) - B ⊆ awp G (T∩X)"
  shows "F⊔G ∈ T∩A leadsTo B"
apply (rule leadsTo [THEN leadsTo_imp_wens_set, THEN bexE]) 
apply (rule wens_Union [THEN bexE]) 
   apply (rule awpF) 
  apply (erule awpG, assumption)
apply (blast intro: wens_set_imp_leadsTo [THEN leadsTo_weaken_L])  
done


subsection ‹The Set @{term "wens_set F B"} for a Single-Assignment Program›
text‹Thesis Section 4.3.3›

text‹We start by proving laws about single-assignment programs›
lemma awp_single_eq [simp]:
     "awp (mk_program (init, {act}, allowed)) B = B ∩ wp act B"
by (force simp add: awp_def wp_def) 

lemma wp_Un_subset: "wp act A ∪ wp act B ⊆ wp act (A ∪ B)"
by (force simp add: wp_def)

lemma wp_Un_eq: "single_valued act ==> wp act (A ∪ B) = wp act A ∪ wp act B"
apply (rule equalityI)
 apply (force simp add: wp_def single_valued_def) 
apply (rule wp_Un_subset) 
done

lemma wp_UN_subset: "(⋃i∈I. wp act (A i)) ⊆ wp act (⋃i∈I. A i)"
by (force simp add: wp_def)

lemma wp_UN_eq:
     "[|single_valued act; I≠{}|]
      ==> wp act (⋃i∈I. A i) = (⋃i∈I. wp act (A i))"
apply (rule equalityI)
 prefer 2 apply (rule wp_UN_subset) 
 apply (simp add: wp_def Image_INT_eq) 
done

lemma wens_single_eq:
     "wens (mk_program (init, {act}, allowed)) act B = B ∪ wp act B"
by (simp add: wens_def gfp_def wp_def, blast)


text‹Next, we express the @{term "wens_set"} for single-assignment programs›

definition wens_single_finite :: "[('a*'a) set, 'a set, nat] => 'a set" where  
    "wens_single_finite act B k == ⋃i ∈ atMost k. (wp act ^^ i) B"

definition wens_single :: "[('a*'a) set, 'a set] => 'a set" where
    "wens_single act B == ⋃i. (wp act ^^ i) B"

lemma wens_single_Un_eq:
      "single_valued act
       ==> wens_single act B ∪ wp act (wens_single act B) = wens_single act B"
apply (rule equalityI)
 apply (simp_all add: Un_upper1) 
apply (simp add: wens_single_def wp_UN_eq, clarify) 
apply (rule_tac a="Suc xa" in UN_I, auto) 
done

lemma atMost_nat_nonempty: "atMost (k::nat) ≠ {}"
by force

lemma wens_single_finite_0 [simp]: "wens_single_finite act B 0 = B"
by (simp add: wens_single_finite_def)

lemma wens_single_finite_Suc:
      "single_valued act
       ==> wens_single_finite act B (Suc k) =
           wens_single_finite act B k ∪ wp act (wens_single_finite act B k)"
apply (simp add: wens_single_finite_def image_def 
                 wp_UN_eq [OF _ atMost_nat_nonempty]) 
apply (force elim!: le_SucE)
done

lemma wens_single_finite_Suc_eq_wens:
     "single_valued act
       ==> wens_single_finite act B (Suc k) =
           wens (mk_program (init, {act}, allowed)) act 
                (wens_single_finite act B k)"
by (simp add: wens_single_finite_Suc wens_single_eq) 

lemma def_wens_single_finite_Suc_eq_wens:
     "[|F = mk_program (init, {act}, allowed); single_valued act|]
       ==> wens_single_finite act B (Suc k) =
           wens F act (wens_single_finite act B k)"
by (simp add: wens_single_finite_Suc_eq_wens) 

lemma wens_single_finite_Un_eq:
      "single_valued act
       ==> wens_single_finite act B k ∪ wp act (wens_single_finite act B k)
           ∈ range (wens_single_finite act B)"
by (simp add: wens_single_finite_Suc [symmetric]) 

lemma wens_single_eq_Union:
      "wens_single act B = ⋃range (wens_single_finite act B)" 
by (simp add: wens_single_finite_def wens_single_def, blast) 

lemma wens_single_finite_eq_Union:
     "wens_single_finite act B n = (⋃k∈atMost n. wens_single_finite act B k)"
apply (auto simp add: wens_single_finite_def) 
apply (blast intro: le_trans) 
done

lemma wens_single_finite_mono:
     "m ≤ n ==> wens_single_finite act B m ⊆ wens_single_finite act B n"
by (force simp add:  wens_single_finite_eq_Union [of act B n]) 

lemma wens_single_finite_subset_wens_single:
      "wens_single_finite act B k ⊆ wens_single act B"
by (simp add: wens_single_eq_Union, blast)

lemma subset_wens_single_finite:
      "[|W ⊆ wens_single_finite act B ` (atMost k); single_valued act; W≠{}|]
       ==> ∃m. ⋃W = wens_single_finite act B m"
apply (induct k)
 apply (rule_tac x=0 in exI, simp, blast)
apply (auto simp add: atMost_Suc)
apply (case_tac "wens_single_finite act B (Suc k) ∈ W")
 prefer 2 apply blast
apply (drule_tac x="Suc k" in spec)
apply (erule notE, rule equalityI)
 prefer 2 apply blast
apply (subst wens_single_finite_eq_Union)
apply (simp add: atMost_Suc, blast)
done

text‹lemma for Union case›
lemma Union_eq_wens_single:
      "⟦∀k. ¬ W ⊆ wens_single_finite act B ` {..k};
        W ⊆ insert (wens_single act B)
            (range (wens_single_finite act B))⟧
       ⟹ ⋃W = wens_single act B"
apply (cases "wens_single act B ∈ W")
 apply (blast dest: wens_single_finite_subset_wens_single [THEN subsetD]) 
apply (simp add: wens_single_eq_Union) 
apply (rule equalityI, blast) 
apply (simp add: UN_subset_iff, clarify)
apply (subgoal_tac "∃y∈W. ∃n. y = wens_single_finite act B n & i≤n")  
 apply (blast intro: wens_single_finite_mono [THEN subsetD]) 
apply (drule_tac x=i in spec)
apply (force simp add: atMost_def)
done

lemma wens_set_subset_single:
      "single_valued act
       ==> wens_set (mk_program (init, {act}, allowed)) B ⊆ 
           insert (wens_single act B) (range (wens_single_finite act B))"
apply (rule subsetI)  
apply (erule wens_set.induct)
  txt‹Basis› 
  apply (fastforce simp add: wens_single_finite_def)
 txt‹Wens inductive step›
 apply (case_tac "acta = Id", simp)
 apply (simp add: wens_single_eq)
 apply (elim disjE)
 apply (simp add: wens_single_Un_eq)
 apply (force simp add: wens_single_finite_Un_eq)
txt‹Union inductive step›
apply (case_tac "∃k. W ⊆ wens_single_finite act B ` (atMost k)")
 apply (blast dest!: subset_wens_single_finite, simp) 
apply (rule disjI1 [OF Union_eq_wens_single], blast+)
done

lemma wens_single_finite_in_wens_set:
      "single_valued act ⟹
         wens_single_finite act B k
         ∈ wens_set (mk_program (init, {act}, allowed)) B"
apply (induct_tac k) 
 apply (simp add: wens_single_finite_def wens_set.Basis)
apply (simp add: wens_set.Wens
                 wens_single_finite_Suc_eq_wens [of act B _ init allowed]) 
done

lemma single_subset_wens_set:
      "single_valued act
       ==> insert (wens_single act B) (range (wens_single_finite act B)) ⊆ 
           wens_set (mk_program (init, {act}, allowed)) B"
apply (simp add: image_def wens_single_eq_Union) 
apply (blast intro: wens_set.Union wens_single_finite_in_wens_set)
done

text‹Theorem (4.29)›
theorem wens_set_single_eq:
     "[|F = mk_program (init, {act}, allowed); single_valued act|]
      ==> wens_set F B =
          insert (wens_single act B) (range (wens_single_finite act B))"
apply (rule equalityI)
 apply (simp add: wens_set_subset_single) 
apply (erule ssubst, erule single_subset_wens_set) 
done

text‹Generalizing Misra's Fixed Point Union Theorem (4.41)›

lemma fp_leadsTo_Join:
    "[|T-B ⊆ awp F T; T-B ⊆ FP G; F ∈ A leadsTo B|] ==> F⊔G ∈ T∩A leadsTo B"
apply (rule leadsTo_Join, assumption, blast)
apply (simp add: FP_def awp_iff_constrains stable_def constrains_def, blast) 
done

end