Theory Reflection_Examples

theory Reflection_Examples
imports Complex_Main Reflection
(*  Title:      HOL/ex/Reflection_Examples.thy
    Author:     Amine Chaieb, TU Muenchen
*)

section ‹Examples for generic reflection and reification›

theory Reflection_Examples
imports Complex_Main "HOL-Library.Reflection"
begin

text ‹This theory presents two methods: reify and reflection›

text ‹
Consider an HOL type ‹σ›, the structure of which is not recongnisable
on the theory level.  This is the case of @{typ bool}, arithmetical terms such as @{typ int},
@{typ real} etc \dots  In order to implement a simplification on terms of type ‹σ› we
often need its structure.  Traditionnaly such simplifications are written in ML,
proofs are synthesized.

An other strategy is to declare an HOL datatype ‹τ› and an HOL function (the
interpretation) that maps elements of ‹τ› to elements of ‹σ›.

The functionality of ‹reify› then is, given a term ‹t› of type ‹σ›,
to compute a term ‹s› of type ‹τ›.  For this it needs equations for the
interpretation.

N.B: All the interpretations supported by ‹reify› must have the type
‹'a list ⇒ τ ⇒ σ›.  The method ‹reify› can also be told which subterm
of the current subgoal should be reified.  The general call for ‹reify› is
‹reify eqs (t)›, where ‹eqs› are the defining equations of the interpretation
and ‹(t)› is an optional parameter which specifies the subterm to which reification
should be applied to.  If ‹(t)› is abscent, ‹reify› tries to reify the whole
subgoal.

The method ‹reflection› uses ‹reify› and has a very similar signature:
‹reflection corr_thm eqs (t)›.  Here again ‹eqs› and ‹(t)›
are as described above and ‹corr_thm› is a theorem proving
@{prop "I vs (f t) = I vs t"}.  We assume that ‹I› is the interpretation
and ‹f› is some useful and executable simplification of type ‹τ ⇒ τ›.
The method ‹reflection› applies reification and hence the theorem @{prop "t = I xs s"}
and hence using ‹corr_thm› derives @{prop "t = I xs (f s)"}.  It then uses
normalization by equational rewriting to prove @{prop "f s = s'"} which almost finishes
the proof of @{prop "t = t'"} where @{prop "I xs s' = t'"}.
›

text ‹Example 1 : Propositional formulae and NNF.›
text ‹The type ‹fm› represents simple propositional formulae:›

datatype form = TrueF | FalseF | Less nat nat
  | And form form | Or form form | Neg form | ExQ form

primrec interp :: "form ⇒ ('a::ord) list ⇒ bool"
where
  "interp TrueF vs ⟷ True"
| "interp FalseF vs ⟷ False"
| "interp (Less i j) vs ⟷ vs ! i < vs ! j"
| "interp (And f1 f2) vs ⟷ interp f1 vs ∧ interp f2 vs"
| "interp (Or f1 f2) vs ⟷ interp f1 vs ∨ interp f2 vs"
| "interp (Neg f) vs ⟷ ¬ interp f vs"
| "interp (ExQ f) vs ⟷ (∃v. interp f (v # vs))"

lemmas interp_reify_eqs = interp.simps
declare interp_reify_eqs [reify]

lemma "∃x. x < y ∧ x < z"
  apply reify
  oops

datatype fm = And fm fm | Or fm fm | Imp fm fm | Iff fm fm | NOT fm | At nat

primrec Ifm :: "fm ⇒ bool list ⇒ bool"
where
  "Ifm (At n) vs ⟷ vs ! n"
| "Ifm (And p q) vs ⟷ Ifm p vs ∧ Ifm q vs"
| "Ifm (Or p q) vs ⟷ Ifm p vs ∨ Ifm q vs"
| "Ifm (Imp p q) vs ⟷ Ifm p vs ⟶ Ifm q vs"
| "Ifm (Iff p q) vs ⟷ Ifm p vs = Ifm q vs"
| "Ifm (NOT p) vs ⟷ ¬ Ifm p vs"

lemma "Q ⟶ (D ∧ F ∧ ((¬ D) ∧ (¬ F)))"
  apply (reify Ifm.simps)
oops

text ‹Method ‹reify› maps a @{typ bool} to an @{typ fm}.  For this it needs the 
semantics of ‹fm›, i.e.\ the rewrite rules in ‹Ifm.simps›.›

text ‹You can also just pick up a subterm to reify.›
lemma "Q ⟶ (D ∧ F ∧ ((¬ D) ∧ (¬ F)))"
  apply (reify Ifm.simps ("((¬ D) ∧ (¬ F))"))
oops

text ‹Let's perform NNF. This is a version that tends to generate disjunctions›
primrec fmsize :: "fm ⇒ nat"
where
  "fmsize (At n) = 1"
| "fmsize (NOT p) = 1 + fmsize p"
| "fmsize (And p q) = 1 + fmsize p + fmsize q"
| "fmsize (Or p q) = 1 + fmsize p + fmsize q"
| "fmsize (Imp p q) = 2 + fmsize p + fmsize q"
| "fmsize (Iff p q) = 2 + 2* fmsize p + 2* fmsize q"

lemma [measure_function]: "is_measure fmsize" ..

fun nnf :: "fm ⇒ fm"
where
  "nnf (At n) = At n"
| "nnf (And p q) = And (nnf p) (nnf q)"
| "nnf (Or p q) = Or (nnf p) (nnf q)"
| "nnf (Imp p q) = Or (nnf (NOT p)) (nnf q)"
| "nnf (Iff p q) = Or (And (nnf p) (nnf q)) (And (nnf (NOT p)) (nnf (NOT q)))"
| "nnf (NOT (And p q)) = Or (nnf (NOT p)) (nnf (NOT q))"
| "nnf (NOT (Or p q)) = And (nnf (NOT p)) (nnf (NOT q))"
| "nnf (NOT (Imp p q)) = And (nnf p) (nnf (NOT q))"
| "nnf (NOT (Iff p q)) = Or (And (nnf p) (nnf (NOT q))) (And (nnf (NOT p)) (nnf q))"
| "nnf (NOT (NOT p)) = nnf p"
| "nnf (NOT p) = NOT p"

text ‹The correctness theorem of @{const nnf}: it preserves the semantics of @{typ fm}›
lemma nnf [reflection]:
  "Ifm (nnf p) vs = Ifm p vs"
  by (induct p rule: nnf.induct) auto

text ‹Now let's perform NNF using our @{const nnf} function defined above.  First to the
  whole subgoal.›
lemma "A ≠ B ∧ (B ⟶ A ≠ (B ∨ C ∧ (B ⟶ A ∨ D))) ⟶ A ∨ B ∧ D"
  apply (reflection Ifm.simps)
oops

text ‹Now we specify on which subterm it should be applied›
lemma "A ≠ B ∧ (B ⟶ A ≠ (B ∨ C ∧ (B ⟶ A ∨ D))) ⟶ A ∨ B ∧ D"
  apply (reflection Ifm.simps only: "B ∨ C ∧ (B ⟶ A ∨ D)")
oops


text ‹Example 2: Simple arithmetic formulae›

text ‹The type ‹num› reflects linear expressions over natural number›
datatype num = C nat | Add num num | Mul nat num | Var nat | CN nat nat num

text ‹This is just technical to make recursive definitions easier.›
primrec num_size :: "num ⇒ nat" 
where
  "num_size (C c) = 1"
| "num_size (Var n) = 1"
| "num_size (Add a b) = 1 + num_size a + num_size b"
| "num_size (Mul c a) = 1 + num_size a"
| "num_size (CN n c a) = 4 + num_size a "

lemma [measure_function]: "is_measure num_size" ..

text ‹The semantics of num›
primrec Inum:: "num ⇒ nat list ⇒ nat"
where
  Inum_C  : "Inum (C i) vs = i"
| Inum_Var: "Inum (Var n) vs = vs!n"
| Inum_Add: "Inum (Add s t) vs = Inum s vs + Inum t vs "
| Inum_Mul: "Inum (Mul c t) vs = c * Inum t vs "
| Inum_CN : "Inum (CN n c t) vs = c*(vs!n) + Inum t vs "

text ‹Let's reify some nat expressions \dots›
lemma "4 * (2 * x + (y::nat)) + f a ≠ 0"
  apply (reify Inum.simps ("4 * (2 * x + (y::nat)) + f a"))
oops
text ‹We're in a bad situation! ‹x›, ‹y› and ‹f› have been recongnized
as constants, which is correct but does not correspond to our intuition of the constructor C.
It should encapsulate constants, i.e. numbers, i.e. numerals.›

text ‹So let's leave the ‹Inum_C› equation at the end and see what happens \dots›
lemma "4 * (2 * x + (y::nat)) ≠ 0"
  apply (reify Inum_Var Inum_Add Inum_Mul Inum_CN Inum_C ("4 * (2 * x + (y::nat))"))
oops
text ‹Hm, let's specialize ‹Inum_C› with numerals.›

lemma Inum_number: "Inum (C (numeral t)) vs = numeral t" by simp
lemmas Inum_eqs = Inum_Var Inum_Add Inum_Mul Inum_CN Inum_number

text ‹Second attempt›
lemma "1 * (2 * x + (y::nat)) ≠ 0"
  apply (reify Inum_eqs ("1 * (2 * x + (y::nat))"))
oops

text‹That was fine, so let's try another one \dots›

lemma "1 * (2 * x + (y::nat) + 0 + 1) ≠ 0"
  apply (reify Inum_eqs ("1 * (2 * x + (y::nat) + 0 + 1)"))
oops

text ‹Oh!! 0 is not a variable \dots\ Oh! 0 is not a ‹numeral› \dots\ thing.
The same for 1. So let's add those equations, too.›

lemma Inum_01: "Inum (C 0) vs = 0" "Inum (C 1) vs = 1" "Inum (C(Suc n)) vs = Suc n"
  by simp_all

lemmas Inum_eqs'= Inum_eqs Inum_01

text‹Third attempt:›

lemma "1 * (2 * x + (y::nat) + 0 + 1) ≠ 0"
  apply (reify Inum_eqs' ("1 * (2 * x + (y::nat) + 0 + 1)"))
oops

text ‹Okay, let's try reflection. Some simplifications on @{typ num} follow. You can
  skim until the main theorem ‹linum›.›
  
fun lin_add :: "num ⇒ num ⇒ num"
where
  "lin_add (CN n1 c1 r1) (CN n2 c2 r2) =
    (if n1 = n2 then 
      (let c = c1 + c2
       in (if c = 0 then lin_add r1 r2 else CN n1 c (lin_add r1 r2)))
     else if n1 ≤ n2 then (CN n1 c1 (lin_add r1 (CN n2 c2 r2))) 
     else (CN n2 c2 (lin_add (CN n1 c1 r1) r2)))"
| "lin_add (CN n1 c1 r1) t = CN n1 c1 (lin_add r1 t)"  
| "lin_add t (CN n2 c2 r2) = CN n2 c2 (lin_add t r2)" 
| "lin_add (C b1) (C b2) = C (b1 + b2)"
| "lin_add a b = Add a b"

lemma lin_add:
  "Inum (lin_add t s) bs = Inum (Add t s) bs"
  apply (induct t s rule: lin_add.induct, simp_all add: Let_def)
  apply (case_tac "c1+c2 = 0",case_tac "n1 ≤ n2", simp_all)
  apply (case_tac "n1 = n2", simp_all add: algebra_simps)
  done

fun lin_mul :: "num ⇒ nat ⇒ num"
where
  "lin_mul (C j) i = C (i * j)"
| "lin_mul (CN n c a) i = (if i=0 then (C 0) else CN n (i * c) (lin_mul a i))"
| "lin_mul t i = (Mul i t)"

lemma lin_mul:
  "Inum (lin_mul t i) bs = Inum (Mul i t) bs"
  by (induct t i rule: lin_mul.induct) (auto simp add: algebra_simps)

fun linum:: "num ⇒ num"
where
  "linum (C b) = C b"
| "linum (Var n) = CN n 1 (C 0)"
| "linum (Add t s) = lin_add (linum t) (linum s)"
| "linum (Mul c t) = lin_mul (linum t) c"
| "linum (CN n c t) = lin_add (linum (Mul c (Var n))) (linum t)"

lemma linum [reflection]:
  "Inum (linum t) bs = Inum t bs"
  by (induct t rule: linum.induct) (simp_all add: lin_mul lin_add)

text ‹Now we can use linum to simplify nat terms using reflection›

lemma "Suc (Suc 1) * (x + Suc 1 * y) = 3 * x + 6 * y"
  apply (reflection Inum_eqs' only: "Suc (Suc 1) * (x + Suc 1 * y)")
oops

text ‹Let's lift this to formulae and see what happens›

datatype aform = Lt num num  | Eq num num | Ge num num | NEq num num | 
  Conj aform aform | Disj aform aform | NEG aform | T | F

primrec linaformsize:: "aform ⇒ nat"
where
  "linaformsize T = 1"
| "linaformsize F = 1"
| "linaformsize (Lt a b) = 1"
| "linaformsize (Ge a b) = 1"
| "linaformsize (Eq a b) = 1"
| "linaformsize (NEq a b) = 1"
| "linaformsize (NEG p) = 2 + linaformsize p"
| "linaformsize (Conj p q) = 1 + linaformsize p + linaformsize q"
| "linaformsize (Disj p q) = 1 + linaformsize p + linaformsize q"

lemma [measure_function]: "is_measure linaformsize" ..

primrec is_aform :: "aform => nat list => bool"
where
  "is_aform T vs = True"
| "is_aform F vs = False"
| "is_aform (Lt a b) vs = (Inum a vs < Inum b vs)"
| "is_aform (Eq a b) vs = (Inum a vs = Inum b vs)"
| "is_aform (Ge a b) vs = (Inum a vs ≥ Inum b vs)"
| "is_aform (NEq a b) vs = (Inum a vs ≠ Inum b vs)"
| "is_aform (NEG p) vs = (¬ (is_aform p vs))"
| "is_aform (Conj p q) vs = (is_aform p vs ∧ is_aform q vs)"
| "is_aform (Disj p q) vs = (is_aform p vs ∨ is_aform q vs)"

text‹Let's reify and do reflection›
lemma "(3::nat) * x + t < 0 ∧ (2 * x + y ≠ 17)"
  apply (reify Inum_eqs' is_aform.simps) 
oops

text ‹Note that reification handles several interpretations at the same time›
lemma "(3::nat) * x + t < 0 ∧ x * x + t * x + 3 + 1 = z * t * 4 * z ∨ x + x + 1 < 0"
  apply (reflection Inum_eqs' is_aform.simps only: "x + x + 1") 
oops

text ‹For reflection we now define a simple transformation on aform: NNF + linum on atoms›

fun linaform:: "aform ⇒ aform"
where
  "linaform (Lt s t) = Lt (linum s) (linum t)"
| "linaform (Eq s t) = Eq (linum s) (linum t)"
| "linaform (Ge s t) = Ge (linum s) (linum t)"
| "linaform (NEq s t) = NEq (linum s) (linum t)"
| "linaform (Conj p q) = Conj (linaform p) (linaform q)"
| "linaform (Disj p q) = Disj (linaform p) (linaform q)"
| "linaform (NEG T) = F"
| "linaform (NEG F) = T"
| "linaform (NEG (Lt a b)) = Ge a b"
| "linaform (NEG (Ge a b)) = Lt a b"
| "linaform (NEG (Eq a b)) = NEq a b"
| "linaform (NEG (NEq a b)) = Eq a b"
| "linaform (NEG (NEG p)) = linaform p"
| "linaform (NEG (Conj p q)) = Disj (linaform (NEG p)) (linaform (NEG q))"
| "linaform (NEG (Disj p q)) = Conj (linaform (NEG p)) (linaform (NEG q))"
| "linaform p = p"

lemma linaform: "is_aform (linaform p) vs = is_aform p vs"
  by (induct p rule: linaform.induct) (auto simp add: linum)

lemma "(Suc (Suc (Suc 0)) * ((x::nat) + Suc (Suc 0)) + Suc (Suc (Suc 0)) *
  (Suc (Suc (Suc 0))) * ((x::nat) + Suc (Suc 0))) < 0 ∧ Suc 0 + Suc 0 < 0"
  apply (reflection Inum_eqs' is_aform.simps rules: linaform)  
oops

declare linaform [reflection]

lemma "(Suc (Suc (Suc 0)) * ((x::nat) + Suc (Suc 0)) + Suc (Suc (Suc 0)) *
  (Suc (Suc (Suc 0))) * ((x::nat) + Suc (Suc 0))) < 0 ∧ Suc 0 + Suc 0 < 0"
  apply (reflection Inum_eqs' is_aform.simps)
oops

text ‹We now give an example where interpretaions have zero or more than only
  one envornement of different types and show that automatic reification also deals with
  bindings›
  
datatype rb = BC bool | BAnd rb rb | BOr rb rb

primrec Irb :: "rb ⇒ bool"
where
  "Irb (BC p) ⟷ p"
| "Irb (BAnd s t) ⟷ Irb s ∧ Irb t"
| "Irb (BOr s t) ⟷ Irb s ∨ Irb t"

lemma "A ∧ (B ∨ D ∧ B) ∧ A ∧ (B ∨ D ∧ B) ∨ A ∧ (B ∨ D ∧ B) ∨ A ∧ (B ∨ D ∧ B)"
  apply (reify Irb.simps)
oops

datatype rint = IC int | IVar nat | IAdd rint rint | IMult rint rint
  | INeg rint | ISub rint rint

primrec Irint :: "rint ⇒ int list ⇒ int"
where
  Irint_Var: "Irint (IVar n) vs = vs ! n"
| Irint_Neg: "Irint (INeg t) vs = - Irint t vs"
| Irint_Add: "Irint (IAdd s t) vs = Irint s vs + Irint t vs"
| Irint_Sub: "Irint (ISub s t) vs = Irint s vs - Irint t vs"
| Irint_Mult: "Irint (IMult s t) vs = Irint s vs * Irint t vs"
| Irint_C: "Irint (IC i) vs = i"

lemma Irint_C0: "Irint (IC 0) vs = 0"
  by simp

lemma Irint_C1: "Irint (IC 1) vs = 1"
  by simp

lemma Irint_Cnumeral: "Irint (IC (numeral x)) vs = numeral x"
  by simp

lemmas Irint_simps = Irint_Var Irint_Neg Irint_Add Irint_Sub Irint_Mult Irint_C0 Irint_C1 Irint_Cnumeral

lemma "(3::int) * x + y * y - 9 + (- z) = 0"
  apply (reify Irint_simps ("(3::int) * x + y * y - 9 + (- z)"))
  oops

datatype rlist = LVar nat | LEmpty | LCons rint rlist | LAppend rlist rlist

primrec Irlist :: "rlist ⇒ int list ⇒ int list list ⇒ int list"
where
  "Irlist (LEmpty) is vs = []"
| "Irlist (LVar n) is vs = vs ! n"
| "Irlist (LCons i t) is vs = Irint i is # Irlist t is vs"
| "Irlist (LAppend s t) is vs = Irlist s is vs @ Irlist t is vs"

lemma "[(1::int)] = []"
  apply (reify Irlist.simps Irint_simps ("[1] :: int list"))
  oops

lemma "([(3::int) * x + y * y - 9 + (- z)] @ []) @ xs = [y * y - z - 9 + (3::int) * x]"
  apply (reify Irlist.simps Irint_simps ("([(3::int) * x + y * y - 9 + (- z)] @ []) @ xs"))
  oops

datatype rnat = NC nat| NVar nat| NSuc rnat | NAdd rnat rnat | NMult rnat rnat
  | NNeg rnat | NSub rnat rnat | Nlgth rlist

primrec Irnat :: "rnat ⇒ int list ⇒ int list list ⇒ nat list ⇒ nat"
where
  Irnat_Suc: "Irnat (NSuc t) is ls vs = Suc (Irnat t is ls vs)"
| Irnat_Var: "Irnat (NVar n) is ls vs = vs ! n"
| Irnat_Neg: "Irnat (NNeg t) is ls vs = 0"
| Irnat_Add: "Irnat (NAdd s t) is ls vs = Irnat s is ls vs + Irnat t is ls vs"
| Irnat_Sub: "Irnat (NSub s t) is ls vs = Irnat s is ls vs - Irnat t is ls vs"
| Irnat_Mult: "Irnat (NMult s t) is ls vs = Irnat s is ls vs * Irnat t is ls vs"
| Irnat_lgth: "Irnat (Nlgth rxs) is ls vs = length (Irlist rxs is ls)"
| Irnat_C: "Irnat (NC i) is ls vs = i"

lemma Irnat_C0: "Irnat (NC 0) is ls vs = 0"
  by simp

lemma Irnat_C1: "Irnat (NC 1) is ls vs = 1"
  by simp

lemma Irnat_Cnumeral: "Irnat (NC (numeral x)) is ls vs = numeral x"
  by simp

lemmas Irnat_simps = Irnat_Suc Irnat_Var Irnat_Neg Irnat_Add Irnat_Sub Irnat_Mult Irnat_lgth
  Irnat_C0 Irnat_C1 Irnat_Cnumeral

lemma "Suc n * length (([(3::int) * x + y * y - 9 + (- z)] @ []) @ xs) = length xs"
  apply (reify Irnat_simps Irlist.simps Irint_simps
     ("Suc n * length (([(3::int) * x + y * y - 9 + (- z)] @ []) @ xs)"))
  oops

datatype rifm = RT | RF | RVar nat
  | RNLT rnat rnat | RNILT rnat rint | RNEQ rnat rnat
  | RAnd rifm rifm | ROr rifm rifm | RImp rifm rifm| RIff rifm rifm
  | RNEX rifm | RIEX rifm | RLEX rifm | RNALL rifm | RIALL rifm | RLALL rifm
  | RBEX rifm | RBALL rifm

primrec Irifm :: "rifm ⇒ bool list ⇒ int list ⇒ (int list) list ⇒ nat list ⇒ bool"
where
  "Irifm RT ps is ls ns ⟷ True"
| "Irifm RF ps is ls ns ⟷ False"
| "Irifm (RVar n) ps is ls ns ⟷ ps ! n"
| "Irifm (RNLT s t) ps is ls ns ⟷ Irnat s is ls ns < Irnat t is ls ns"
| "Irifm (RNILT s t) ps is ls ns ⟷ int (Irnat s is ls ns) < Irint t is"
| "Irifm (RNEQ s t) ps is ls ns ⟷ Irnat s is ls ns = Irnat t is ls ns"
| "Irifm (RAnd p q) ps is ls ns ⟷ Irifm p ps is ls ns ∧ Irifm q ps is ls ns"
| "Irifm (ROr p q) ps is ls ns ⟷ Irifm p ps is ls ns ∨ Irifm q ps is ls ns"
| "Irifm (RImp p q) ps is ls ns ⟷ Irifm p ps is ls ns ⟶ Irifm q ps is ls ns"
| "Irifm (RIff p q) ps is ls ns ⟷ Irifm p ps is ls ns = Irifm q ps is ls ns"
| "Irifm (RNEX p) ps is ls ns ⟷ (∃x. Irifm p ps is ls (x # ns))"
| "Irifm (RIEX p) ps is ls ns ⟷ (∃x. Irifm p ps (x # is) ls ns)"
| "Irifm (RLEX p) ps is ls ns ⟷ (∃x. Irifm p ps is (x # ls) ns)"
| "Irifm (RBEX p) ps is ls ns ⟷ (∃x. Irifm p (x # ps) is ls ns)"
| "Irifm (RNALL p) ps is ls ns ⟷ (∀x. Irifm p ps is ls (x#ns))"
| "Irifm (RIALL p) ps is ls ns ⟷ (∀x. Irifm p ps (x # is) ls ns)"
| "Irifm (RLALL p) ps is ls ns ⟷ (∀x. Irifm p ps is (x#ls) ns)"
| "Irifm (RBALL p) ps is ls ns ⟷ (∀x. Irifm p (x # ps) is ls ns)"

lemma " ∀x. ∃n. ((Suc n) * length (([(3::int) * x + f t * y - 9 + (- z)] @ []) @ xs) = length xs) ∧ m < 5*n - length (xs @ [2,3,4,x*z + 8 - y]) ⟶ (∃p. ∀q. p ∧ q ⟶ r)"
  apply (reify Irifm.simps Irnat_simps Irlist.simps Irint_simps)
oops

text ‹An example for equations containing type variables›

datatype prod = Zero | One | Var nat | Mul prod prod 
  | Pw prod nat | PNM nat nat prod

primrec Iprod :: " prod ⇒ ('a::linordered_idom) list ⇒'a" 
where
  "Iprod Zero vs = 0"
| "Iprod One vs = 1"
| "Iprod (Var n) vs = vs ! n"
| "Iprod (Mul a b) vs = Iprod a vs * Iprod b vs"
| "Iprod (Pw a n) vs = Iprod a vs ^ n"
| "Iprod (PNM n k t) vs = (vs ! n) ^ k * Iprod t vs"

datatype sgn = Pos prod | Neg prod | ZeroEq prod | NZeroEq prod | Tr | F 
  | Or sgn sgn | And sgn sgn

primrec Isgn :: "sgn ⇒ ('a::linordered_idom) list ⇒ bool"
where 
  "Isgn Tr vs ⟷ True"
| "Isgn F vs ⟷ False"
| "Isgn (ZeroEq t) vs ⟷ Iprod t vs = 0"
| "Isgn (NZeroEq t) vs ⟷ Iprod t vs ≠ 0"
| "Isgn (Pos t) vs ⟷ Iprod t vs > 0"
| "Isgn (Neg t) vs ⟷ Iprod t vs < 0"
| "Isgn (And p q) vs ⟷ Isgn p vs ∧ Isgn q vs"
| "Isgn (Or p q) vs ⟷ Isgn p vs ∨ Isgn q vs"

lemmas eqs = Isgn.simps Iprod.simps

lemma "(x::'a::{linordered_idom}) ^ 4 * y * z * y ^ 2 * z ^ 23 > 0"
  apply (reify eqs)
  oops

end