Theory Meson

theory Meson
imports Nat
(*  Title:      HOL/Meson.thy
    Author:     Lawrence C. Paulson, Cambridge University Computer Laboratory
    Author:     Tobias Nipkow, TU Muenchen
    Author:     Jasmin Blanchette, TU Muenchen
    Copyright   2001  University of Cambridge

section ‹MESON Proof Method›

theory Meson
imports Nat

subsection ‹Negation Normal Form›

text ‹de Morgan laws›

lemma not_conjD: "~(P&Q) ==> ~P | ~Q"
  and not_disjD: "~(P|Q) ==> ~P & ~Q"
  and not_notD: "~~P ==> P"
  and not_allD: "!!P. ~(∀x. P(x)) ==> ∃x. ~P(x)"
  and not_exD: "!!P. ~(∃x. P(x)) ==> ∀x. ~P(x)"
  by fast+

text ‹Removal of ‹⟶› and ‹⟷› (positive and negative occurrences)›

lemma imp_to_disjD: "P-->Q ==> ~P | Q"
  and not_impD: "~(P-->Q) ==> P & ~Q"
  and iff_to_disjD: "P=Q ==> (~P | Q) & (~Q | P)"
  and not_iffD: "~(P=Q) ==> (P | Q) & (~P | ~Q)"
     ‹Much more efficient than @{prop "(P & ~Q) | (Q & ~P)"} for computing CNF›
  and not_refl_disj_D: "x ~= x | P ==> P"
  by fast+

subsection ‹Pulling out the existential quantifiers›

text ‹Conjunction›

lemma conj_exD1: "!!P Q. (∃x. P(x)) & Q ==> ∃x. P(x) & Q"
  and conj_exD2: "!!P Q. P & (∃x. Q(x)) ==> ∃x. P & Q(x)"
  by fast+

text ‹Disjunction›

lemma disj_exD: "!!P Q. (∃x. P(x)) | (∃x. Q(x)) ==> ∃x. P(x) | Q(x)"
   ‹DO NOT USE with forall-Skolemization: makes fewer schematic variables!!›
   ‹With ex-Skolemization, makes fewer Skolem constants›
  and disj_exD1: "!!P Q. (∃x. P(x)) | Q ==> ∃x. P(x) | Q"
  and disj_exD2: "!!P Q. P | (∃x. Q(x)) ==> ∃x. P | Q(x)"
  by fast+

lemma disj_assoc: "(P|Q)|R ==> P|(Q|R)"
  and disj_comm: "P|Q ==> Q|P"
  and disj_FalseD1: "False|P ==> P"
  and disj_FalseD2: "P|False ==> P"
  by fast+

text‹Generation of contrapositives›

text‹Inserts negated disjunct after removing the negation; P is a literal.
  Model elimination requires assuming the negation of every attempted subgoal,
  hence the negated disjuncts.›
lemma make_neg_rule: "~P|Q ==> ((~P==>P) ==> Q)"
by blast

text‹Version for Plaisted's "Postive refinement" of the Meson procedure›
lemma make_refined_neg_rule: "~P|Q ==> (P ==> Q)"
by blast

text‹@{term P} should be a literal›
lemma make_pos_rule: "P|Q ==> ((P==>~P) ==> Q)"
by blast

text‹Versions of ‹make_neg_rule› and ‹make_pos_rule› that don't
insert new assumptions, for ordinary resolution.›

lemmas make_neg_rule' = make_refined_neg_rule

lemma make_pos_rule': "[|P|Q; ~P|] ==> Q"
by blast

text‹Generation of a goal clause -- put away the final literal›

lemma make_neg_goal: "~P ==> ((~P==>P) ==> False)"
by blast

lemma make_pos_goal: "P ==> ((P==>~P) ==> False)"
by blast

subsection ‹Lemmas for Forward Proof›

text‹There is a similarity to congruence rules. They are also useful in ordinary proofs.›

(*NOTE: could handle conjunctions (faster?) by
    nf(th RS conjunct2) RS (nf(th RS conjunct1) RS conjI) *)
lemma conj_forward: "[| P'&Q';  P' ==> P;  Q' ==> Q |] ==> P&Q"
by blast

lemma disj_forward: "[| P'|Q';  P' ==> P;  Q' ==> Q |] ==> P|Q"
by blast

lemma imp_forward: "[| P' ⟶ Q';  P ==> P';  Q' ==> Q |] ==> P ⟶ Q"
by blast

(*Version of @{text disj_forward} for removal of duplicate literals*)
lemma disj_forward2:
    "[| P'|Q';  P' ==> P;  [| Q'; P==>False |] ==> Q |] ==> P|Q"
apply blast 

lemma all_forward: "[| ∀x. P'(x);  !!x. P'(x) ==> P(x) |] ==> ∀x. P(x)"
by blast

lemma ex_forward: "[| ∃x. P'(x);  !!x. P'(x) ==> P(x) |] ==> ∃x. P(x)"
by blast

subsection ‹Clausification helper›

lemma TruepropI: "P ≡ Q ⟹ Trueprop P ≡ Trueprop Q"
by simp

lemma ext_cong_neq: "F g ≠ F h ⟹ F g ≠ F h ∧ (∃x. g x ≠ h x)"
apply (erule contrapos_np)
apply clarsimp
apply (rule cong[where f = F])
by auto

text‹Combinator translation helpers›

definition COMBI :: "'a ⇒ 'a" where

definition COMBK :: "'a ⇒ 'b ⇒ 'a" where

definition COMBB :: "('b => 'c) ⇒ ('a => 'b) ⇒ 'a ⇒ 'c" where
"COMBB P Q R = P (Q R)"

definition COMBC :: "('a ⇒ 'b ⇒ 'c) ⇒ 'b ⇒ 'a ⇒ 'c" where

definition COMBS :: "('a ⇒ 'b ⇒ 'c) ⇒ ('a ⇒ 'b) ⇒ 'a ⇒ 'c" where
"COMBS P Q R = P R (Q R)"

lemma abs_S: "λx. (f x) (g x) ≡ COMBS f g"
apply (rule eq_reflection)
apply (rule ext) 
apply (simp add: COMBS_def) 

lemma abs_I: "λx. x ≡ COMBI"
apply (rule eq_reflection)
apply (rule ext) 
apply (simp add: COMBI_def) 

lemma abs_K: "λx. y ≡ COMBK y"
apply (rule eq_reflection)
apply (rule ext) 
apply (simp add: COMBK_def) 

lemma abs_B: "λx. a (g x) ≡ COMBB a g"
apply (rule eq_reflection)
apply (rule ext) 
apply (simp add: COMBB_def) 

lemma abs_C: "λx. (f x) b ≡ COMBC f b"
apply (rule eq_reflection)
apply (rule ext) 
apply (simp add: COMBC_def) 

subsection ‹Skolemization helpers›

definition skolem :: "'a ⇒ 'a" where
"skolem = (λx. x)"

lemma skolem_COMBK_iff: "P ⟷ skolem (COMBK P (i::nat))"
unfolding skolem_def COMBK_def by (rule refl)

lemmas skolem_COMBK_I = iffD1 [OF skolem_COMBK_iff]
lemmas skolem_COMBK_D = iffD2 [OF skolem_COMBK_iff]

subsection ‹Meson package›

ML_file "Tools/Meson/meson.ML"
ML_file "Tools/Meson/meson_clausify.ML"
ML_file "Tools/Meson/meson_tactic.ML"

hide_const (open) COMBI COMBK COMBB COMBC COMBS skolem
hide_fact (open) not_conjD not_disjD not_notD not_allD not_exD imp_to_disjD
    not_impD iff_to_disjD not_iffD not_refl_disj_D conj_exD1 conj_exD2 disj_exD
    disj_exD1 disj_exD2 disj_assoc disj_comm disj_FalseD1 disj_FalseD2 TruepropI
    ext_cong_neq COMBI_def COMBK_def COMBB_def COMBC_def COMBS_def abs_I abs_K
    abs_B abs_C abs_S skolem_def skolem_COMBK_iff skolem_COMBK_I skolem_COMBK_D