Theory LiveIOA

theory LiveIOA
imports TLS
(*  Title:      HOL/HOLCF/IOA/LiveIOA.thy
    Author:     Olaf Müller
*)

section ‹Live I/O automata -- specified by temproal formulas›

theory LiveIOA
imports TLS
begin

default_sort type

type_synonym ('a, 's) live_ioa = "('a, 's)ioa × ('a, 's) ioa_temp"

definition validLIOA :: "('a, 's) live_ioa ⇒ ('a, 's) ioa_temp ⇒ bool"
  where "validLIOA AL P ⟷ validIOA (fst AL) (snd AL  P)"

definition WF :: "('a, 's) ioa ⇒ 'a set ⇒ ('a, 's) ioa_temp"
  where "WF A acts = (◇□⟨λ(s,a,t). Enabled A acts s⟩  □◇⟨xt2 (plift (λa. a ∈ acts))⟩)"

definition SF :: "('a, 's) ioa ⇒ 'a set ⇒ ('a, 's) ioa_temp"
  where "SF A acts = (□◇⟨λ(s,a,t). Enabled A acts s⟩  □◇⟨xt2 (plift (λa. a ∈ acts))⟩)"

definition liveexecutions :: "('a, 's) live_ioa ⇒ ('a, 's) execution set"
  where "liveexecutions AP = {exec. exec ∈ executions (fst AP) ∧ (exec ⊫ snd AP)}"

definition livetraces :: "('a, 's) live_ioa ⇒ 'a trace set"
  where "livetraces AP = {mk_trace (fst AP) ⋅ (snd ex) |ex. ex ∈ liveexecutions AP}"

definition live_implements :: "('a, 's1) live_ioa ⇒ ('a, 's2) live_ioa ⇒ bool"
  where "live_implements CL AM ⟷
    inp (fst CL) = inp (fst AM) ∧ out (fst CL) = out (fst AM) ∧
      livetraces CL ⊆ livetraces AM"

definition is_live_ref_map :: "('s1 ⇒ 's2) ⇒ ('a, 's1) live_ioa ⇒ ('a, 's2) live_ioa ⇒ bool"
  where "is_live_ref_map f CL AM ⟷
    is_ref_map f (fst CL ) (fst AM) ∧
    (∀exec ∈ executions (fst CL). (exec ⊫ (snd CL)) ⟶
      (corresp_ex (fst AM) f exec ⊫ snd AM))"

lemma live_implements_trans:
  "live_implements (A, LA) (B, LB) ⟹ live_implements (B, LB) (C, LC) ⟹
    live_implements (A, LA) (C, LC)"
  by (auto simp: live_implements_def)


subsection ‹Correctness of live refmap›

lemma live_implements:
  "inp C = inp A ⟹ out C = out A ⟹ is_live_ref_map f (C, M) (A, L)
    ⟹ live_implements (C, M) (A, L)"
  apply (simp add: is_live_ref_map_def live_implements_def livetraces_def liveexecutions_def)
  apply auto
  apply (rule_tac x = "corresp_ex A f ex" in exI)
  apply auto
  text ‹Traces coincide, Lemma 1›
  apply (pair ex)
  apply (erule lemma_1 [THEN spec, THEN mp])
  apply (simp (no_asm) add: externals_def)
  apply (auto)[1]
  apply (simp add: executions_def reachable.reachable_0)
  text ‹‹corresp_ex› is execution, Lemma 2›
  apply (pair ex)
  apply (simp add: executions_def)
  text ‹start state›
  apply (rule conjI)
  apply (simp add: is_ref_map_def corresp_ex_def)
  text ‹‹is_execution_fragment››
  apply (erule lemma_2 [THEN spec, THEN mp])
  apply (simp add: reachable.reachable_0)
  done

end