Welcome Again!

- Slides and File are as usual at: http://isabelle.in.tum.de/nominal/activities/cas09/
- Did all installation problems with Isabelle resolve?
- Any questions about the last tutorial?
Automatic Proofs

- Remember that I said: Do not expect that Isabelle solves automatically \texttt{show "P=NP"}.

- Remember also:

 \begin{verbatim}
 lemma even_twice:
 shows "even (n + n)"
 by (induct n) (auto)

 lemma even_add:
 assumes a: "even n"
 and b: "even m"
 shows "even (n + m)"
 using a b by (induct) (auto)
 \end{verbatim}
lemma even_mult:
 assumes a: "even n"
 shows "even (n * m)"
using a proof (induct)
case eZ
 show "even (0 * m)" by auto
next
case (eSS n)
 have ih: "even (n * m)" by fact
 have "(Suc (Suc n) * m) = (m + m) + (n * m)" by simp
moreover
 have "even (m + m)" using even_twice by simp
ultimately
 show "even (Suc (Suc n) * m)" using ih even_add by (simp only:)
qed

This proof cannot be found by the internal tools.
A More Complicated Proof

Lemma even_mult:
- Assumes a: "even n"
- Shows "even (n * m)"

Using a proof (induct)

Case `even Z`:
- Show "even (0 * m)"
 - By auto

Case `(even SS n)`:
- Have `ih`: "even (n * m)"
 - By fact
- Have "(Suc (Suc n) * m) = (m + m) + (n * m)"
 - By simp
- Moreover, have "even (m + m)"
 - Using even_twice
 - By simp
- Ultimately, show "even (Suc (Suc n) * m)"
 - Using `ih` even_add
 - By (simp only:)

Sledgehammer:
Can be used at any point in the development.
lemma even_mult:
 assumes a: "even n"
 shows "even (n * m)"
using a proof (induct)
case eZ
 show "even (0 * m)"
 by auto
next
 case (eSS n)
 have ih: "even (n * m)"
 by fact
 have "(Suc (Suc n) * m) = (m + m) + (n * m)"
 by (simp)
 moreover
 have "even (m + m)"
 using even_twice
 by simp
 ultimately
 show "even (Suc (Suc n) * m)"
 using ih even_add
 by (simp only:)
 qed

Sledgehammer:
Can be used at any point in the development.
lemma even_mult:
 assumes a: "even n"
 shows "even (n * m)"
using a proof (induct)
case eZ
 show "even (0 * m)"
 by auto
next
case (eSS n)
 have ih: "even (n * m)"
 by fact
 have "(Suc (Suc n) * m) = (m + m) + (n * m)"
 by simp
 moreover
 have "even (m + m)"
 using even_twice
 by simp
 ultimately
 show "even (Suc (Suc n) * m)"
 using ih even_add
 by (simp only:)
qed

Sledgehammer:
Can be used at any point in the development.
With Sledgehammer

• It can be started with ctrl-c/ctrl-a/ctrl-s.

```isar
lemma even_mult_auto:
  assumes a: "even n"
  shows "even (n * m)"
using a
apply (induct)
apply (metis eZ mult_is_0)
apply (metis even_add even_twice mult_Suc_right
  nat_add_assoc nat_mult_commute)
done
```

The disadvantage of such proofs is that you have no idea why they are true.
With Sledgehammer

- It can be started with ctrl-c/ctrl-a/ctrl-s.

```
lemma even_mult_auto:
  assumes a: "even n"
  shows "even (n * m)"
using a
apply (induct)
apply (metis eZ mult_is_0)
apply (metis even_add even_twice mult_Suc_right
        nat_add_assoc nat_mult_commute)
done
```

- The disadvantage of such proofs is that you have no idea why they are true.
Decision Procedures

- You can write your own proof procedures either within Isabelle or feed back certificates like Sledgehammer.

- We have a tutorial explaining the Isabelle interfaces, but this is well beyond this tutorial.

http://isabelle.in.tum.de/nominal/activities/idp/
Functions

Let us return to function definitions: for example the Fibonacci function

```haskell
fun
  fib :: "nat ⇒ nat"
where
  "fib 0 = 0"
| "fib (Suc 0) = 1"
| "fib (Suc (Suc n)) = fib n + fib (Suc n)"
```

We have to make sure every function terminates (this is proved automatically for the Fibonacci function).

\[f(x) = f(x) + 1 \]

0 = 1
Functions

Let us return to function definitions: for example the Fibonacci function

\begin{verbatim}
fun fib :: "nat ⇒ nat"
where "fib 0 = 0"
 | "fib (Suc 0) = 1"
 | "fib (Suc (Suc n)) = fib n + fib (Suc n)"
\end{verbatim}

We have to make sure every function terminates (this is proved automatically for the Fibonacci function).

\[f(x) = f(x) + 1 \]
\[0 = 1 \]
The Ackermann function is also automatically proved to be terminating:

```isar
definition ack :: "nat ⇒ nat ⇒ nat"
where
  "ack 0 m = Suc m"
| "ack (Suc n) 0 = ack n (Suc 0)"
| "ack (Suc n) (Suc m) = ack n (ack (Suc n) m)"
```

The Ackermann function is also automatically proved to be terminating:

fun
 ack :: "nat ⇒ nat ⇒ nat"
where
 "ack 0 m = Suc m"
| "ack (Suc n) 0 = ack n (Suc 0)"
| "ack (Suc n) (Suc m) = ack n (ack (Suc n) m)"

For others you might have to show explicitly that they are terminating (for example by a decreasing measure).
For example a generalised version of the Fibonacci function to integers cannot be automatically shown terminating.

function
 \texttt{fib'} :: "int } \Rightarrow \texttt{ int"

where
 "n < -1 } \Rightarrow \texttt{ fib'} n = \texttt{ fib'} (n + 2) - \texttt{ fib'} (n + 1)"
 | "\texttt{ fib'} -1 = (1::int)"
 | "\texttt{ fib'} 0 = (0::int)"
 | "\texttt{ fib'} 1 = (1::int)"
 | "n > 1 } \Rightarrow \texttt{ fib'} n = \texttt{ fib'} (n - 1) + \texttt{ fib'} (n - 2)"

by (atomize_elim, presburger) (auto)

termination
 by (relation "measure (λx. nat (|x|))")
 (simp_all add: zabs_def)
Datatypes

You can introduce new datatypes. For example “my”-lists:

```haskell
datatype 'a mylist =
  MyNil ("[]")
| MyCons "'a" "'a mylist" (_ ::: _) 65)
```

```haskell
fun myappend :: 'a mylist ⇒ 'a mylist ⇒ 'a mylist =
  "[] @@ xs = xs"
| "(y:::ys) @@ xs = y:::(ys @@ xs)"

fun myrev :: 'a mylist ⇒ 'a mylist =
  myrev "[] = "[]"
| myrev "x:::xs = (myrev xs) @@ (x:::"[]")"
```
You can introduce new datatypes. For example "my"-lists:

```isabelle
datatype 'a mylist =
  MyNil ("[]")
| MyCons "a" "a mylist" (_ :::_ 65)
```

```isabelle
fun myappend :: "'a mylist ⇒ 'a mylist ⇒ 'a mylist" (_ @@ _) 65
where
  
  "[] @@ xs = xs"
| "(y:::ys) @@ xs = y:::(ys @@ xs)"
```

```isabelle
fun myrev :: "'a mylist ⇒ 'a mylist"
where
  "myrev [] = []"
| "myrev (x:::xs) = (myrev xs) @@ (x:::[])"
```
lemma myrev_append:
 shows "myrev (xs @@ ys) = (myrev ys) @@ (myrev xs)"
proof (induct xs)
 case MyNil
 show "myrev ([] @@ ys) = myrev ys @@ myrev []" sorry

next
 case (MyCons x xs)
 have ih: "myrev (xs @@ ys) = myrev ys @@ myrev xs" by fact

 show "myrev ((x:::xs) @@ ys) = myrev ys @@ myrev (x:::xs)"
 sorry
qed
A WHILE Language

- The memory is a function from nat to nat.

types memory = "nat ⇒ nat"
A WHILE Language

- The memory is a function from nat to nat.

```
types memory = "nat ⇒ nat"
```

- Arithmetical expressions are defined as:

```
datatype aexp =
    C nat |
    X nat |
    Op1 "nat ⇒ nat" aexp |
    Op2 "nat ⇒ nat ⇒ nat" aexp aexp
```

- Arithmetical expressions are defined as:

```
datatype bexp =
    TRUE | FALSE |
    ROp "nat ⇒ nat ⇒ bool" aexp aexp |
    NOT bexp | AND bexp bexp | OR bexp bexp
```
Commands

Commands are defined also as datatype:

\[
\text{datatype cmd =}
\begin{align*}
&\text{SKIP} \\
&\text{ASSIGN nat aexp} \quad (_ ::= _ \ 60) \\
&\text{SEQ cmd cmd} \quad (_; _ \ [60, 60] \ 10) \\
&\text{COND bexp cmd cmd} \quad \text{IF } _ \text{ THEN } _ \text{ ELSE } _ \ 60) \\
&\text{WHILE bexp cmd} \quad \text{WHILE } _ \text{ DO } _ \ 60)
\end{align*}
\]

We use ::=, because := is already used for function update.
Commands

- Commands are defined also as datatype:

\[
\text{datatype \ cmd = } \\
\quad \text{SKIP} \\
\quad \text{ASSIGN nat aexp ("_ ::= _" 60)} \\
\quad \text{SEQ \ cmd cmd ("_; _" [60, 60] 10)} \\
\quad \text{COND \ bexp cmd cmd ("IF _ THEN _ ELSE _" 60)} \\
\quad \text{WHILE \ bexp cmd ("WHILE _ DO _" 60)}
\]

- We use ::=, because := is already used for function update.

- We have to define a semantics for the WHILE programs...
An Abstract Machine

The instruction set

```plaintext
datatype instr =
    JPFZ "nat" jump forward n steps, if stack is 0
  | JPB "nat" jump backward n steps
  | FETCH "nat" move memory to top of stack
  | STORE "nat" pop top from stack to memory
  | PUSH "nat" push to stack
  | OPU "nat ⇒ nat" pop one from stack and apply f
  | OPB "nat ⇒ nat ⇒ nat" pop two from stack and apply f
```

A machine program is a list of instructions.

Representation of booleans is 0 and 1
fun compa
where
 "compa (C n) = [PUSH n]"
| "compa (X l) = [FETCH l]"
| "compa (Op1 f e) = (compa e) @ [OPU f]"
| "compa (Op2 f e₁ e₂) = (compa e₁) @ (compa e₂) @ [OPB f]"

fun compb
where
 "compb (TRUE) = [PUSH 1]"
| "compb (FALSE) = [PUSH 0]"
| "compb (ROp f e₁ e₂) = (compa e₁) @ (compa e₂)
 @ [OPB (λx y. WRAP (f x y))]"
| "compb (NOT e) = (compb e) @ [OPU MNot]"
| "compb (AND e₁ e₂) = (compb e₁) @ (compb e₂) @ [OPB MAnd]"
| "compb (OR e₁ e₂) = (compb e₁) @ (compb e₂) @ [OPB MOr]"
fun
compc :: "cmd ⇒ instr list"
where
"compc SKIP = []"
| "compc (x ::= a) = (compa a) @ [STORE x]"
| "compc (c₁;c₂) = compc c₁ @ compc c₂"
| "compc (IF b THEN c₁ ELSE c₂) =
 (compb b) @ [JPFZ (length(compc c₁) + 2)] @ compc c₁ @
 [PUSH 0, JPFZ (length(compc c₂))] @ compc c₂"
| "compc (WHILE b DO c) =
 (compb b) @
 [JPFZ (length(compc c) + 1)] @ compc c @
 [JPB (length(compc c) + length(compb b)+1)]"
fun
comp :: "cmd ⇒ instr list"

where
"compc SKIP = []"
| "compc (x:=a) = (comp a) @ [STORE x]"
| "compc (c₁;c₂) = compc c₁ @ compc c₂"
| "compc (IF b THEN c₁ ELSE c₂) =
 (compb b) @ [JPFZ (length(compc c₁) + 2)] @ compc c₁ @
 [PUSH 0, JPFZ (length(compc c₂))] @ compc c₂"
| "compc (WHILE b DO c) =
 (compb b) @
 [JPFZ (length(compc c) + 1)] @ compc c @
 [JPB (length(compc c) + length(compb b)+1)]"

We now have to specify how the machine behaves.
We like to prove:

Lemma compa:

assumes a:

\((e, m) \rightarrow a\ n \)

shows

\((\text{compa } e, [], [], m) \rightarrow m^* ([], \text{rev (compa } e), [n], m) \)

Lemma compb:

assumes a:

\((e, m) \rightarrow b\ b \)

shows

\((\text{compb } e, [], [], m) \rightarrow m^* ([], \text{rev (compb } e), [\text{WRAP } b], m) \)

Lemma compc:

assumes a:

\((c, m) \rightarrow c\ m' \)

shows

\((\text{compc } c, [], [], m) \rightarrow m^* ([], \text{rev (compc } c), [], m') \)
They can be found automatically:

`lemma compa_aux_cheating:
 assumes a: "(e,m) → a n"
 shows "(compa e@p,q,s,m) → m* (p,rev (compa e)@q,n#s,m)"
using a
by (induct arbitrary: p q s)
 (force intro: steps_trans simp add: steps_simp exec_simp)+

But that is cheating!!! It is like playing chess with the help of Kasparov.
Compiler Lemmas

- They can be found automatically:

```
lemma compa_aux_cheating:
    assumes a: "(e,m) \rightarrow a n"
    shows "(compa e@p,q,s,m) \rightarrow m* (p,rev (compa e)@q,n#s,m)"
using a
by (induct arbitrary: p q s)
    (force intro: steps_trans simp add: steps_simp exec_simp)+
```

- But that is cheating!!! It is like playing chess with the help of Kasparov.
Please also come tomorrow.

- 9:30 - 11:30, Tuesday, 2 June

- If Isabelle still does not run, maybe I can help.
- Please ask any question.