src/HOL/Lattices.thy
author haftmann
Tue Jan 16 08:06:57 2007 +0100 (2007-01-16)
changeset 22068 00bed5ac9884
parent 21734 283461c15fa7
child 22139 539a63b98f76
permissions -rw-r--r--
renamed locale partial_order to order
haftmann@21249
     1
(*  Title:      HOL/Lattices.thy
haftmann@21249
     2
    ID:         $Id$
haftmann@21249
     3
    Author:     Tobias Nipkow
haftmann@21249
     4
*)
haftmann@21249
     5
nipkow@21733
     6
header {* Lattices via Locales *}
haftmann@21249
     7
haftmann@21249
     8
theory Lattices
haftmann@21249
     9
imports Orderings
haftmann@21249
    10
begin
haftmann@21249
    11
haftmann@21249
    12
subsection{* Lattices *}
haftmann@21249
    13
haftmann@21249
    14
text{* This theory of lattice locales only defines binary sup and inf
haftmann@21249
    15
operations. The extension to finite sets is done in theory @{text
haftmann@21249
    16
Finite_Set}. In the longer term it may be better to define arbitrary
haftmann@21249
    17
sups and infs via @{text THE}. *}
haftmann@21249
    18
haftmann@22068
    19
locale lower_semilattice = order +
haftmann@21249
    20
  fixes inf :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "\<sqinter>" 70)
nipkow@21312
    21
  assumes inf_le1[simp]: "x \<sqinter> y \<sqsubseteq> x" and inf_le2[simp]: "x \<sqinter> y \<sqsubseteq> y"
nipkow@21733
    22
  and inf_greatest: "x \<sqsubseteq> y \<Longrightarrow> x \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> y \<sqinter> z"
haftmann@21249
    23
haftmann@22068
    24
locale upper_semilattice = order +
haftmann@21249
    25
  fixes sup :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "\<squnion>" 65)
nipkow@21312
    26
  assumes sup_ge1[simp]: "x \<sqsubseteq> x \<squnion> y" and sup_ge2[simp]: "y \<sqsubseteq> x \<squnion> y"
nipkow@21733
    27
  and sup_least: "y \<sqsubseteq> x \<Longrightarrow> z \<sqsubseteq> x \<Longrightarrow> y \<squnion> z \<sqsubseteq> x"
haftmann@21249
    28
haftmann@21249
    29
locale lattice = lower_semilattice + upper_semilattice
haftmann@21249
    30
nipkow@21733
    31
subsubsection{* Intro and elim rules*}
nipkow@21733
    32
nipkow@21733
    33
context lower_semilattice
nipkow@21733
    34
begin
haftmann@21249
    35
nipkow@21733
    36
lemmas antisym_intro[intro!] = antisym
haftmann@21249
    37
nipkow@21734
    38
lemma le_infI1[intro]: "a \<sqsubseteq> x \<Longrightarrow> a \<sqinter> b \<sqsubseteq> x"
nipkow@21733
    39
apply(subgoal_tac "a \<sqinter> b \<sqsubseteq> a")
nipkow@21733
    40
 apply(blast intro:trans)
nipkow@21733
    41
apply simp
nipkow@21733
    42
done
haftmann@21249
    43
nipkow@21734
    44
lemma le_infI2[intro]: "b \<sqsubseteq> x \<Longrightarrow> a \<sqinter> b \<sqsubseteq> x"
nipkow@21733
    45
apply(subgoal_tac "a \<sqinter> b \<sqsubseteq> b")
nipkow@21733
    46
 apply(blast intro:trans)
nipkow@21733
    47
apply simp
nipkow@21733
    48
done
nipkow@21733
    49
nipkow@21734
    50
lemma le_infI[intro!]: "x \<sqsubseteq> a \<Longrightarrow> x \<sqsubseteq> b \<Longrightarrow> x \<sqsubseteq> a \<sqinter> b"
nipkow@21733
    51
by(blast intro: inf_greatest)
haftmann@21249
    52
nipkow@21734
    53
lemma le_infE[elim!]: "x \<sqsubseteq> a \<sqinter> b \<Longrightarrow> (x \<sqsubseteq> a \<Longrightarrow> x \<sqsubseteq> b \<Longrightarrow> P) \<Longrightarrow> P"
nipkow@21733
    54
by(blast intro: trans)
haftmann@21249
    55
nipkow@21734
    56
lemma le_inf_iff [simp]:
nipkow@21733
    57
 "x \<sqsubseteq> y \<sqinter> z = (x \<sqsubseteq> y \<and> x \<sqsubseteq> z)"
nipkow@21733
    58
by blast
nipkow@21733
    59
nipkow@21734
    60
lemma le_iff_inf: "(x \<sqsubseteq> y) = (x \<sqinter> y = x)"
nipkow@21734
    61
apply rule
nipkow@21734
    62
 apply(simp add: antisym)
nipkow@21734
    63
apply(subgoal_tac "x \<sqinter> y \<sqsubseteq> y")
nipkow@21734
    64
 apply(simp)
nipkow@21734
    65
apply(simp (no_asm))
nipkow@21734
    66
done
haftmann@21249
    67
nipkow@21733
    68
end
nipkow@21733
    69
nipkow@21733
    70
nipkow@21733
    71
context upper_semilattice
nipkow@21733
    72
begin
haftmann@21249
    73
nipkow@21733
    74
lemmas antisym_intro[intro!] = antisym
haftmann@21249
    75
nipkow@21734
    76
lemma le_supI1[intro]: "x \<sqsubseteq> a \<Longrightarrow> x \<sqsubseteq> a \<squnion> b"
nipkow@21733
    77
apply(subgoal_tac "a \<sqsubseteq> a \<squnion> b")
nipkow@21733
    78
 apply(blast intro:trans)
nipkow@21733
    79
apply simp
nipkow@21733
    80
done
haftmann@21249
    81
nipkow@21734
    82
lemma le_supI2[intro]: "x \<sqsubseteq> b \<Longrightarrow> x \<sqsubseteq> a \<squnion> b"
nipkow@21733
    83
apply(subgoal_tac "b \<sqsubseteq> a \<squnion> b")
nipkow@21733
    84
 apply(blast intro:trans)
nipkow@21733
    85
apply simp
nipkow@21733
    86
done
nipkow@21733
    87
nipkow@21734
    88
lemma le_supI[intro!]: "a \<sqsubseteq> x \<Longrightarrow> b \<sqsubseteq> x \<Longrightarrow> a \<squnion> b \<sqsubseteq> x"
nipkow@21733
    89
by(blast intro: sup_least)
haftmann@21249
    90
nipkow@21734
    91
lemma le_supE[elim!]: "a \<squnion> b \<sqsubseteq> x \<Longrightarrow> (a \<sqsubseteq> x \<Longrightarrow> b \<sqsubseteq> x \<Longrightarrow> P) \<Longrightarrow> P"
nipkow@21733
    92
by(blast intro: trans)
haftmann@21249
    93
nipkow@21734
    94
lemma ge_sup_conv[simp]:
nipkow@21733
    95
 "x \<squnion> y \<sqsubseteq> z = (x \<sqsubseteq> z \<and> y \<sqsubseteq> z)"
nipkow@21733
    96
by blast
nipkow@21733
    97
nipkow@21734
    98
lemma le_iff_sup: "(x \<sqsubseteq> y) = (x \<squnion> y = y)"
nipkow@21734
    99
apply rule
nipkow@21734
   100
 apply(simp add: antisym)
nipkow@21734
   101
apply(subgoal_tac "x \<sqsubseteq> x \<squnion> y")
nipkow@21734
   102
apply(simp)
nipkow@21734
   103
 apply(simp (no_asm))
nipkow@21734
   104
done
nipkow@21734
   105
nipkow@21733
   106
end
nipkow@21733
   107
nipkow@21733
   108
nipkow@21733
   109
subsubsection{* Equational laws *}
haftmann@21249
   110
haftmann@21249
   111
nipkow@21733
   112
context lower_semilattice
nipkow@21733
   113
begin
nipkow@21733
   114
nipkow@21733
   115
lemma inf_commute: "(x \<sqinter> y) = (y \<sqinter> x)"
nipkow@21733
   116
by blast
nipkow@21733
   117
nipkow@21733
   118
lemma inf_assoc: "(x \<sqinter> y) \<sqinter> z = x \<sqinter> (y \<sqinter> z)"
nipkow@21733
   119
by blast
nipkow@21733
   120
nipkow@21733
   121
lemma inf_idem[simp]: "x \<sqinter> x = x"
nipkow@21733
   122
by blast
nipkow@21733
   123
nipkow@21733
   124
lemma inf_left_idem[simp]: "x \<sqinter> (x \<sqinter> y) = x \<sqinter> y"
nipkow@21733
   125
by blast
nipkow@21733
   126
nipkow@21733
   127
lemma inf_absorb1: "x \<sqsubseteq> y \<Longrightarrow> x \<sqinter> y = x"
nipkow@21733
   128
by blast
nipkow@21733
   129
nipkow@21733
   130
lemma inf_absorb2: "y \<sqsubseteq> x \<Longrightarrow> x \<sqinter> y = y"
nipkow@21733
   131
by blast
nipkow@21733
   132
nipkow@21733
   133
lemma inf_left_commute: "x \<sqinter> (y \<sqinter> z) = y \<sqinter> (x \<sqinter> z)"
nipkow@21733
   134
by blast
nipkow@21733
   135
nipkow@21733
   136
lemmas inf_ACI = inf_commute inf_assoc inf_left_commute inf_left_idem
nipkow@21733
   137
nipkow@21733
   138
end
nipkow@21733
   139
nipkow@21733
   140
nipkow@21733
   141
context upper_semilattice
nipkow@21733
   142
begin
haftmann@21249
   143
nipkow@21733
   144
lemma sup_commute: "(x \<squnion> y) = (y \<squnion> x)"
nipkow@21733
   145
by blast
nipkow@21733
   146
nipkow@21733
   147
lemma sup_assoc: "(x \<squnion> y) \<squnion> z = x \<squnion> (y \<squnion> z)"
nipkow@21733
   148
by blast
nipkow@21733
   149
nipkow@21733
   150
lemma sup_idem[simp]: "x \<squnion> x = x"
nipkow@21733
   151
by blast
nipkow@21733
   152
nipkow@21733
   153
lemma sup_left_idem[simp]: "x \<squnion> (x \<squnion> y) = x \<squnion> y"
nipkow@21733
   154
by blast
nipkow@21733
   155
nipkow@21733
   156
lemma sup_absorb1: "y \<sqsubseteq> x \<Longrightarrow> x \<squnion> y = x"
nipkow@21733
   157
by blast
nipkow@21733
   158
nipkow@21733
   159
lemma sup_absorb2: "x \<sqsubseteq> y \<Longrightarrow> x \<squnion> y = y"
nipkow@21733
   160
by blast
haftmann@21249
   161
nipkow@21733
   162
lemma sup_left_commute: "x \<squnion> (y \<squnion> z) = y \<squnion> (x \<squnion> z)"
nipkow@21733
   163
by blast
nipkow@21733
   164
nipkow@21733
   165
lemmas sup_ACI = sup_commute sup_assoc sup_left_commute sup_left_idem
nipkow@21733
   166
nipkow@21733
   167
end
haftmann@21249
   168
nipkow@21733
   169
context lattice
nipkow@21733
   170
begin
nipkow@21733
   171
nipkow@21733
   172
lemma inf_sup_absorb: "x \<sqinter> (x \<squnion> y) = x"
nipkow@21733
   173
by(blast intro: antisym inf_le1 inf_greatest sup_ge1)
nipkow@21733
   174
nipkow@21733
   175
lemma sup_inf_absorb: "x \<squnion> (x \<sqinter> y) = x"
nipkow@21733
   176
by(blast intro: antisym sup_ge1 sup_least inf_le1)
nipkow@21733
   177
nipkow@21734
   178
lemmas ACI = inf_ACI sup_ACI
nipkow@21734
   179
nipkow@21734
   180
text{* Towards distributivity *}
haftmann@21249
   181
nipkow@21734
   182
lemma distrib_sup_le: "x \<squnion> (y \<sqinter> z) \<sqsubseteq> (x \<squnion> y) \<sqinter> (x \<squnion> z)"
nipkow@21734
   183
by blast
nipkow@21734
   184
nipkow@21734
   185
lemma distrib_inf_le: "(x \<sqinter> y) \<squnion> (x \<sqinter> z) \<sqsubseteq> x \<sqinter> (y \<squnion> z)"
nipkow@21734
   186
by blast
nipkow@21734
   187
nipkow@21734
   188
nipkow@21734
   189
text{* If you have one of them, you have them all. *}
haftmann@21249
   190
nipkow@21733
   191
lemma distrib_imp1:
haftmann@21249
   192
assumes D: "!!x y z. x \<sqinter> (y \<squnion> z) = (x \<sqinter> y) \<squnion> (x \<sqinter> z)"
haftmann@21249
   193
shows "x \<squnion> (y \<sqinter> z) = (x \<squnion> y) \<sqinter> (x \<squnion> z)"
haftmann@21249
   194
proof-
haftmann@21249
   195
  have "x \<squnion> (y \<sqinter> z) = (x \<squnion> (x \<sqinter> z)) \<squnion> (y \<sqinter> z)" by(simp add:sup_inf_absorb)
haftmann@21249
   196
  also have "\<dots> = x \<squnion> (z \<sqinter> (x \<squnion> y))" by(simp add:D inf_commute sup_assoc)
haftmann@21249
   197
  also have "\<dots> = ((x \<squnion> y) \<sqinter> x) \<squnion> ((x \<squnion> y) \<sqinter> z)"
haftmann@21249
   198
    by(simp add:inf_sup_absorb inf_commute)
haftmann@21249
   199
  also have "\<dots> = (x \<squnion> y) \<sqinter> (x \<squnion> z)" by(simp add:D)
haftmann@21249
   200
  finally show ?thesis .
haftmann@21249
   201
qed
haftmann@21249
   202
nipkow@21733
   203
lemma distrib_imp2:
haftmann@21249
   204
assumes D: "!!x y z. x \<squnion> (y \<sqinter> z) = (x \<squnion> y) \<sqinter> (x \<squnion> z)"
haftmann@21249
   205
shows "x \<sqinter> (y \<squnion> z) = (x \<sqinter> y) \<squnion> (x \<sqinter> z)"
haftmann@21249
   206
proof-
haftmann@21249
   207
  have "x \<sqinter> (y \<squnion> z) = (x \<sqinter> (x \<squnion> z)) \<sqinter> (y \<squnion> z)" by(simp add:inf_sup_absorb)
haftmann@21249
   208
  also have "\<dots> = x \<sqinter> (z \<squnion> (x \<sqinter> y))" by(simp add:D sup_commute inf_assoc)
haftmann@21249
   209
  also have "\<dots> = ((x \<sqinter> y) \<squnion> x) \<sqinter> ((x \<sqinter> y) \<squnion> z)"
haftmann@21249
   210
    by(simp add:sup_inf_absorb sup_commute)
haftmann@21249
   211
  also have "\<dots> = (x \<sqinter> y) \<squnion> (x \<sqinter> z)" by(simp add:D)
haftmann@21249
   212
  finally show ?thesis .
haftmann@21249
   213
qed
haftmann@21249
   214
nipkow@21734
   215
(* seems unused *)
nipkow@21734
   216
lemma modular_le: "x \<sqsubseteq> z \<Longrightarrow> x \<squnion> (y \<sqinter> z) \<sqsubseteq> (x \<squnion> y) \<sqinter> z"
nipkow@21734
   217
by blast
nipkow@21734
   218
nipkow@21733
   219
end
haftmann@21249
   220
haftmann@21249
   221
haftmann@21249
   222
subsection{* Distributive lattices *}
haftmann@21249
   223
haftmann@21249
   224
locale distrib_lattice = lattice +
haftmann@21249
   225
  assumes sup_inf_distrib1: "x \<squnion> (y \<sqinter> z) = (x \<squnion> y) \<sqinter> (x \<squnion> z)"
haftmann@21249
   226
nipkow@21733
   227
context distrib_lattice
nipkow@21733
   228
begin
nipkow@21733
   229
nipkow@21733
   230
lemma sup_inf_distrib2:
haftmann@21249
   231
 "(y \<sqinter> z) \<squnion> x = (y \<squnion> x) \<sqinter> (z \<squnion> x)"
haftmann@21249
   232
by(simp add:ACI sup_inf_distrib1)
haftmann@21249
   233
nipkow@21733
   234
lemma inf_sup_distrib1:
haftmann@21249
   235
 "x \<sqinter> (y \<squnion> z) = (x \<sqinter> y) \<squnion> (x \<sqinter> z)"
haftmann@21249
   236
by(rule distrib_imp2[OF sup_inf_distrib1])
haftmann@21249
   237
nipkow@21733
   238
lemma inf_sup_distrib2:
haftmann@21249
   239
 "(y \<squnion> z) \<sqinter> x = (y \<sqinter> x) \<squnion> (z \<sqinter> x)"
haftmann@21249
   240
by(simp add:ACI inf_sup_distrib1)
haftmann@21249
   241
nipkow@21733
   242
lemmas distrib =
haftmann@21249
   243
  sup_inf_distrib1 sup_inf_distrib2 inf_sup_distrib1 inf_sup_distrib2
haftmann@21249
   244
nipkow@21733
   245
end
nipkow@21733
   246
haftmann@21249
   247
haftmann@21381
   248
subsection {* min/max on linear orders as special case of inf/sup *}
haftmann@21249
   249
haftmann@21249
   250
interpretation min_max:
haftmann@21381
   251
  distrib_lattice ["op \<le>" "op <" "min \<Colon> 'a\<Colon>linorder \<Rightarrow> 'a \<Rightarrow> 'a" "max"]
haftmann@21249
   252
apply unfold_locales
haftmann@21381
   253
apply (simp add: min_def linorder_not_le order_less_imp_le)
haftmann@21381
   254
apply (simp add: min_def linorder_not_le order_less_imp_le)
haftmann@21381
   255
apply (simp add: min_def linorder_not_le order_less_imp_le)
haftmann@21381
   256
apply (simp add: max_def linorder_not_le order_less_imp_le)
haftmann@21381
   257
apply (simp add: max_def linorder_not_le order_less_imp_le)
haftmann@21381
   258
unfolding min_def max_def by auto
haftmann@21249
   259
nipkow@21733
   260
text{* Now we have inherited antisymmetry as an intro-rule on all
nipkow@21733
   261
linear orders. This is a problem because it applies to bool, which is
nipkow@21733
   262
undesirable. *}
nipkow@21733
   263
nipkow@21733
   264
declare
nipkow@21733
   265
 min_max.antisym_intro[rule del]
nipkow@21734
   266
 min_max.le_infI[rule del] min_max.le_supI[rule del]
nipkow@21734
   267
 min_max.le_supE[rule del] min_max.le_infE[rule del]
nipkow@21734
   268
 min_max.le_supI1[rule del] min_max.le_supI2[rule del]
nipkow@21734
   269
 min_max.le_infI1[rule del] min_max.le_infI2[rule del]
nipkow@21733
   270
haftmann@21249
   271
lemmas le_maxI1 = min_max.sup_ge1
haftmann@21249
   272
lemmas le_maxI2 = min_max.sup_ge2
haftmann@21381
   273
 
haftmann@21249
   274
lemmas max_ac = min_max.sup_assoc min_max.sup_commute
haftmann@21249
   275
               mk_left_commute[of max,OF min_max.sup_assoc min_max.sup_commute]
haftmann@21249
   276
haftmann@21249
   277
lemmas min_ac = min_max.inf_assoc min_max.inf_commute
haftmann@21249
   278
               mk_left_commute[of min,OF min_max.inf_assoc min_max.inf_commute]
haftmann@21249
   279
nipkow@21733
   280
text {* ML legacy bindings *}
nipkow@21733
   281
nipkow@21733
   282
ML {*
nipkow@21733
   283
val Least_def = thm "Least_def";
nipkow@21733
   284
val Least_equality = thm "Least_equality";
nipkow@21733
   285
val min_def = thm "min_def";
nipkow@21733
   286
val min_of_mono = thm "min_of_mono";
nipkow@21733
   287
val max_def = thm "max_def";
nipkow@21733
   288
val max_of_mono = thm "max_of_mono";
nipkow@21733
   289
val min_leastL = thm "min_leastL";
nipkow@21733
   290
val max_leastL = thm "max_leastL";
nipkow@21733
   291
val min_leastR = thm "min_leastR";
nipkow@21733
   292
val max_leastR = thm "max_leastR";
nipkow@21733
   293
val le_max_iff_disj = thm "le_max_iff_disj";
nipkow@21733
   294
val le_maxI1 = thm "le_maxI1";
nipkow@21733
   295
val le_maxI2 = thm "le_maxI2";
nipkow@21733
   296
val less_max_iff_disj = thm "less_max_iff_disj";
nipkow@21733
   297
val max_less_iff_conj = thm "max_less_iff_conj";
nipkow@21733
   298
val min_less_iff_conj = thm "min_less_iff_conj";
nipkow@21733
   299
val min_le_iff_disj = thm "min_le_iff_disj";
nipkow@21733
   300
val min_less_iff_disj = thm "min_less_iff_disj";
nipkow@21733
   301
val split_min = thm "split_min";
nipkow@21733
   302
val split_max = thm "split_max";
nipkow@21733
   303
*}
nipkow@21733
   304
haftmann@21249
   305
end