src/HOL/Bali/AxSem.thy
author schirmer
Mon Jan 28 17:00:19 2002 +0100 (2002-01-28)
changeset 12854 00d4a435777f
child 12857 a4386cc9b1c3
permissions -rw-r--r--
Isabelle/Bali sources;
schirmer@12854
     1
(*  Title:      isabelle/Bali/AxSem.thy
schirmer@12854
     2
    ID:         $Id$
schirmer@12854
     3
    Author:     David von Oheimb
schirmer@12854
     4
    Copyright   1998 Technische Universitaet Muenchen
schirmer@12854
     5
*)
schirmer@12854
     6
schirmer@12854
     7
header {* Axiomatic semantics of Java expressions and statements 
schirmer@12854
     8
          (see also Eval.thy)
schirmer@12854
     9
        *}
schirmer@12854
    10
schirmer@12854
    11
theory AxSem = Evaln + TypeSafe:
schirmer@12854
    12
schirmer@12854
    13
text {*
schirmer@12854
    14
design issues:
schirmer@12854
    15
\begin{itemize}
schirmer@12854
    16
\item a strong version of validity for triples with premises, namely one that 
schirmer@12854
    17
      takes the recursive depth needed to complete execution, enables 
schirmer@12854
    18
      correctness proof
schirmer@12854
    19
\item auxiliary variables are handled first-class (-> Thomas Kleymann)
schirmer@12854
    20
\item expressions not flattened to elementary assignments (as usual for 
schirmer@12854
    21
      axiomatic semantics) but treated first-class => explicit result value 
schirmer@12854
    22
      handling
schirmer@12854
    23
\item intermediate values not on triple, but on assertion level 
schirmer@12854
    24
      (with result entry)
schirmer@12854
    25
\item multiple results with semantical substitution mechnism not requiring a 
schirmer@12854
    26
      stack 
schirmer@12854
    27
\item because of dynamic method binding, terms need to be dependent on state.
schirmer@12854
    28
  this is also useful for conditional expressions and statements
schirmer@12854
    29
\item result values in triples exactly as in eval relation (also for xcpt 
schirmer@12854
    30
      states)
schirmer@12854
    31
\item validity: additional assumption of state conformance and well-typedness,
schirmer@12854
    32
  which is required for soundness and thus rule hazard required of completeness
schirmer@12854
    33
\end{itemize}
schirmer@12854
    34
schirmer@12854
    35
restrictions:
schirmer@12854
    36
\begin{itemize}
schirmer@12854
    37
\item all triples in a derivation are of the same type (due to weak 
schirmer@12854
    38
      polymorphism)
schirmer@12854
    39
\end{itemize}
schirmer@12854
    40
*}
schirmer@12854
    41
schirmer@12854
    42
schirmer@12854
    43
schirmer@12854
    44
types  res = vals (* result entry *)
schirmer@12854
    45
syntax
schirmer@12854
    46
  Val  :: "val      \<Rightarrow> res"
schirmer@12854
    47
  Var  :: "var      \<Rightarrow> res"
schirmer@12854
    48
  Vals :: "val list \<Rightarrow> res"
schirmer@12854
    49
translations
schirmer@12854
    50
  "Val  x"     => "(In1 x)"
schirmer@12854
    51
  "Var  x"     => "(In2 x)"
schirmer@12854
    52
  "Vals x"     => "(In3 x)"
schirmer@12854
    53
schirmer@12854
    54
syntax
schirmer@12854
    55
  "Val_"    :: "[pttrn] => pttrn"     ("Val:_"  [951] 950)
schirmer@12854
    56
  "Var_"    :: "[pttrn] => pttrn"     ("Var:_"  [951] 950)
schirmer@12854
    57
  "Vals_"   :: "[pttrn] => pttrn"     ("Vals:_" [951] 950)
schirmer@12854
    58
schirmer@12854
    59
translations
schirmer@12854
    60
  "\<lambda>Val:v . b"  == "(\<lambda>v. b) \<circ> the_In1"
schirmer@12854
    61
  "\<lambda>Var:v . b"  == "(\<lambda>v. b) \<circ> the_In2"
schirmer@12854
    62
  "\<lambda>Vals:v. b"  == "(\<lambda>v. b) \<circ> the_In3"
schirmer@12854
    63
schirmer@12854
    64
  (* relation on result values, state and auxiliary variables *)
schirmer@12854
    65
types 'a assn   =        "res \<Rightarrow> state \<Rightarrow> 'a \<Rightarrow> bool"
schirmer@12854
    66
translations
schirmer@12854
    67
      "res"    <= (type) "AxSem.res"
schirmer@12854
    68
      "a assn" <= (type) "vals \<Rightarrow> state \<Rightarrow> a \<Rightarrow> bool"
schirmer@12854
    69
schirmer@12854
    70
constdefs
schirmer@12854
    71
  assn_imp   :: "'a assn \<Rightarrow> 'a assn \<Rightarrow> bool"             (infixr "\<Rightarrow>" 25)
schirmer@12854
    72
 "P \<Rightarrow> Q \<equiv> \<forall>Y s Z. P Y s Z \<longrightarrow> Q Y s Z"
schirmer@12854
    73
  
schirmer@12854
    74
lemma assn_imp_def2 [iff]: "(P \<Rightarrow> Q) = (\<forall>Y s Z. P Y s Z \<longrightarrow> Q Y s Z)"
schirmer@12854
    75
apply (unfold assn_imp_def)
schirmer@12854
    76
apply (rule HOL.refl)
schirmer@12854
    77
done
schirmer@12854
    78
schirmer@12854
    79
schirmer@12854
    80
section "assertion transformers"
schirmer@12854
    81
schirmer@12854
    82
subsection "peek-and"
schirmer@12854
    83
schirmer@12854
    84
constdefs
schirmer@12854
    85
  peek_and   :: "'a assn \<Rightarrow> (state \<Rightarrow>  bool) \<Rightarrow> 'a assn" (infixl "\<and>." 13)
schirmer@12854
    86
 "P \<and>. p \<equiv> \<lambda>Y s Z. P Y s Z \<and> p s"
schirmer@12854
    87
schirmer@12854
    88
lemma peek_and_def2 [simp]: "peek_and P p Y s = (\<lambda>Z. (P Y s Z \<and> p s))"
schirmer@12854
    89
apply (unfold peek_and_def)
schirmer@12854
    90
apply (simp (no_asm))
schirmer@12854
    91
done
schirmer@12854
    92
schirmer@12854
    93
lemma peek_and_Not [simp]: "(P \<and>. (\<lambda>s. \<not> f s)) = (P \<and>. Not \<circ> f)"
schirmer@12854
    94
apply (rule ext)
schirmer@12854
    95
apply (rule ext)
schirmer@12854
    96
apply (simp (no_asm))
schirmer@12854
    97
done
schirmer@12854
    98
schirmer@12854
    99
lemma peek_and_and [simp]: "peek_and (peek_and P p) p = peek_and P p"
schirmer@12854
   100
apply (unfold peek_and_def)
schirmer@12854
   101
apply (simp (no_asm))
schirmer@12854
   102
done
schirmer@12854
   103
schirmer@12854
   104
lemma peek_and_commut: "(P \<and>. p \<and>. q) = (P \<and>. q \<and>. p)"
schirmer@12854
   105
apply (rule ext)
schirmer@12854
   106
apply (rule ext)
schirmer@12854
   107
apply (rule ext)
schirmer@12854
   108
apply auto
schirmer@12854
   109
done
schirmer@12854
   110
schirmer@12854
   111
syntax
schirmer@12854
   112
  Normal     :: "'a assn \<Rightarrow> 'a assn"
schirmer@12854
   113
translations
schirmer@12854
   114
  "Normal P" == "P \<and>. normal"
schirmer@12854
   115
schirmer@12854
   116
lemma peek_and_Normal [simp]: "peek_and (Normal P) p = Normal (peek_and P p)"
schirmer@12854
   117
apply (rule ext)
schirmer@12854
   118
apply (rule ext)
schirmer@12854
   119
apply (rule ext)
schirmer@12854
   120
apply auto
schirmer@12854
   121
done
schirmer@12854
   122
schirmer@12854
   123
subsection "assn-supd"
schirmer@12854
   124
schirmer@12854
   125
constdefs
schirmer@12854
   126
  assn_supd  :: "'a assn \<Rightarrow> (state \<Rightarrow> state) \<Rightarrow> 'a assn" (infixl ";." 13)
schirmer@12854
   127
 "P ;. f \<equiv> \<lambda>Y s' Z. \<exists>s. P Y s Z \<and> s' = f s"
schirmer@12854
   128
schirmer@12854
   129
lemma assn_supd_def2 [simp]: "assn_supd P f Y s' Z = (\<exists>s. P Y s Z \<and> s' = f s)"
schirmer@12854
   130
apply (unfold assn_supd_def)
schirmer@12854
   131
apply (simp (no_asm))
schirmer@12854
   132
done
schirmer@12854
   133
schirmer@12854
   134
subsection "supd-assn"
schirmer@12854
   135
schirmer@12854
   136
constdefs
schirmer@12854
   137
  supd_assn  :: "(state \<Rightarrow> state) \<Rightarrow> 'a assn \<Rightarrow> 'a assn" (infixr ".;" 13)
schirmer@12854
   138
 "f .; P \<equiv> \<lambda>Y s. P Y (f s)"
schirmer@12854
   139
schirmer@12854
   140
schirmer@12854
   141
lemma supd_assn_def2 [simp]: "(f .; P) Y s = P Y (f s)"
schirmer@12854
   142
apply (unfold supd_assn_def)
schirmer@12854
   143
apply (simp (no_asm))
schirmer@12854
   144
done
schirmer@12854
   145
schirmer@12854
   146
lemma supd_assn_supdD [elim]: "((f .; Q) ;. f) Y s Z \<Longrightarrow> Q Y s Z"
schirmer@12854
   147
apply auto
schirmer@12854
   148
done
schirmer@12854
   149
schirmer@12854
   150
lemma supd_assn_supdI [elim]: "Q Y s Z \<Longrightarrow> (f .; (Q ;. f)) Y s Z"
schirmer@12854
   151
apply (auto simp del: split_paired_Ex)
schirmer@12854
   152
done
schirmer@12854
   153
schirmer@12854
   154
subsection "subst-res"
schirmer@12854
   155
schirmer@12854
   156
constdefs
schirmer@12854
   157
  subst_res   :: "'a assn \<Rightarrow> res \<Rightarrow> 'a assn"              ("_\<leftarrow>_"  [60,61] 60)
schirmer@12854
   158
 "P\<leftarrow>w \<equiv> \<lambda>Y. P w"
schirmer@12854
   159
schirmer@12854
   160
lemma subst_res_def2 [simp]: "(P\<leftarrow>w) Y = P w"
schirmer@12854
   161
apply (unfold subst_res_def)
schirmer@12854
   162
apply (simp (no_asm))
schirmer@12854
   163
done
schirmer@12854
   164
schirmer@12854
   165
lemma subst_subst_res [simp]: "P\<leftarrow>w\<leftarrow>v = P\<leftarrow>w"
schirmer@12854
   166
apply (rule ext)
schirmer@12854
   167
apply (simp (no_asm))
schirmer@12854
   168
done
schirmer@12854
   169
schirmer@12854
   170
lemma peek_and_subst_res [simp]: "(P \<and>. p)\<leftarrow>w = (P\<leftarrow>w \<and>. p)"
schirmer@12854
   171
apply (rule ext)
schirmer@12854
   172
apply (rule ext)
schirmer@12854
   173
apply (simp (no_asm))
schirmer@12854
   174
done
schirmer@12854
   175
schirmer@12854
   176
(*###Do not work for some strange (unification?) reason
schirmer@12854
   177
lemma subst_res_Val_beta [simp]: "(\<lambda>Y. P (the_In1 Y))\<leftarrow>Val v = (\<lambda>Y. P v)"
schirmer@12854
   178
apply (rule ext)
schirmer@12854
   179
by simp
schirmer@12854
   180
schirmer@12854
   181
lemma subst_res_Var_beta [simp]: "(\<lambda>Y. P (the_In2 Y))\<leftarrow>Var vf = (\<lambda>Y. P vf)";
schirmer@12854
   182
apply (rule ext)
schirmer@12854
   183
by simp
schirmer@12854
   184
schirmer@12854
   185
lemma subst_res_Vals_beta [simp]: "(\<lambda>Y. P (the_In3 Y))\<leftarrow>Vals vs = (\<lambda>Y. P vs)";
schirmer@12854
   186
apply (rule ext)
schirmer@12854
   187
by simp
schirmer@12854
   188
*)
schirmer@12854
   189
schirmer@12854
   190
subsection "subst-Bool"
schirmer@12854
   191
schirmer@12854
   192
constdefs
schirmer@12854
   193
  subst_Bool  :: "'a assn \<Rightarrow> bool \<Rightarrow> 'a assn"             ("_\<leftarrow>=_" [60,61] 60)
schirmer@12854
   194
 "P\<leftarrow>=b \<equiv> \<lambda>Y s Z. \<exists>v. P (Val v) s Z \<and> (normal s \<longrightarrow> the_Bool v=b)"
schirmer@12854
   195
schirmer@12854
   196
lemma subst_Bool_def2 [simp]: 
schirmer@12854
   197
"(P\<leftarrow>=b) Y s Z = (\<exists>v. P (Val v) s Z \<and> (normal s \<longrightarrow> the_Bool v=b))"
schirmer@12854
   198
apply (unfold subst_Bool_def)
schirmer@12854
   199
apply (simp (no_asm))
schirmer@12854
   200
done
schirmer@12854
   201
schirmer@12854
   202
lemma subst_Bool_the_BoolI: "P (Val b) s Z \<Longrightarrow> (P\<leftarrow>=the_Bool b) Y s Z"
schirmer@12854
   203
apply auto
schirmer@12854
   204
done
schirmer@12854
   205
schirmer@12854
   206
subsection "peek-res"
schirmer@12854
   207
schirmer@12854
   208
constdefs
schirmer@12854
   209
  peek_res    :: "(res \<Rightarrow> 'a assn) \<Rightarrow> 'a assn"
schirmer@12854
   210
 "peek_res Pf \<equiv> \<lambda>Y. Pf Y Y"
schirmer@12854
   211
schirmer@12854
   212
syntax
schirmer@12854
   213
"@peek_res"  :: "pttrn \<Rightarrow> 'a assn \<Rightarrow> 'a assn"            ("\<lambda>_:. _" [0,3] 3)
schirmer@12854
   214
translations
schirmer@12854
   215
  "\<lambda>w:. P"   == "peek_res (\<lambda>w. P)"
schirmer@12854
   216
schirmer@12854
   217
lemma peek_res_def2 [simp]: "peek_res P Y = P Y Y"
schirmer@12854
   218
apply (unfold peek_res_def)
schirmer@12854
   219
apply (simp (no_asm))
schirmer@12854
   220
done
schirmer@12854
   221
schirmer@12854
   222
lemma peek_res_subst_res [simp]: "peek_res P\<leftarrow>w = P w\<leftarrow>w"
schirmer@12854
   223
apply (rule ext)
schirmer@12854
   224
apply (simp (no_asm))
schirmer@12854
   225
done
schirmer@12854
   226
schirmer@12854
   227
(* unused *)
schirmer@12854
   228
lemma peek_subst_res_allI: 
schirmer@12854
   229
 "(\<And>a. T a (P (f a)\<leftarrow>f a)) \<Longrightarrow> \<forall>a. T a (peek_res P\<leftarrow>f a)"
schirmer@12854
   230
apply (rule allI)
schirmer@12854
   231
apply (simp (no_asm))
schirmer@12854
   232
apply fast
schirmer@12854
   233
done
schirmer@12854
   234
schirmer@12854
   235
subsection "ign-res"
schirmer@12854
   236
schirmer@12854
   237
constdefs
schirmer@12854
   238
  ign_res    ::  "        'a assn \<Rightarrow> 'a assn"            ("_\<down>" [1000] 1000)
schirmer@12854
   239
  "P\<down>        \<equiv> \<lambda>Y s Z. \<exists>Y. P Y s Z"
schirmer@12854
   240
schirmer@12854
   241
lemma ign_res_def2 [simp]: "P\<down> Y s Z = (\<exists>Y. P Y s Z)"
schirmer@12854
   242
apply (unfold ign_res_def)
schirmer@12854
   243
apply (simp (no_asm))
schirmer@12854
   244
done
schirmer@12854
   245
schirmer@12854
   246
lemma ign_ign_res [simp]: "P\<down>\<down> = P\<down>"
schirmer@12854
   247
apply (rule ext)
schirmer@12854
   248
apply (rule ext)
schirmer@12854
   249
apply (rule ext)
schirmer@12854
   250
apply (simp (no_asm))
schirmer@12854
   251
done
schirmer@12854
   252
schirmer@12854
   253
lemma ign_subst_res [simp]: "P\<down>\<leftarrow>w = P\<down>"
schirmer@12854
   254
apply (rule ext)
schirmer@12854
   255
apply (rule ext)
schirmer@12854
   256
apply (rule ext)
schirmer@12854
   257
apply (simp (no_asm))
schirmer@12854
   258
done
schirmer@12854
   259
schirmer@12854
   260
lemma peek_and_ign_res [simp]: "(P \<and>. p)\<down> = (P\<down> \<and>. p)"
schirmer@12854
   261
apply (rule ext)
schirmer@12854
   262
apply (rule ext)
schirmer@12854
   263
apply (rule ext)
schirmer@12854
   264
apply (simp (no_asm))
schirmer@12854
   265
done
schirmer@12854
   266
schirmer@12854
   267
subsection "peek-st"
schirmer@12854
   268
schirmer@12854
   269
constdefs
schirmer@12854
   270
  peek_st    :: "(st \<Rightarrow> 'a assn) \<Rightarrow> 'a assn"
schirmer@12854
   271
 "peek_st P \<equiv> \<lambda>Y s. P (store s) Y s"
schirmer@12854
   272
schirmer@12854
   273
syntax
schirmer@12854
   274
"@peek_st"   :: "pttrn \<Rightarrow> 'a assn \<Rightarrow> 'a assn"            ("\<lambda>_.. _" [0,3] 3)
schirmer@12854
   275
translations
schirmer@12854
   276
  "\<lambda>s.. P"   == "peek_st (\<lambda>s. P)"
schirmer@12854
   277
schirmer@12854
   278
lemma peek_st_def2 [simp]: "(\<lambda>s.. Pf s) Y s = Pf (store s) Y s"
schirmer@12854
   279
apply (unfold peek_st_def)
schirmer@12854
   280
apply (simp (no_asm))
schirmer@12854
   281
done
schirmer@12854
   282
schirmer@12854
   283
lemma peek_st_triv [simp]: "(\<lambda>s.. P) = P"
schirmer@12854
   284
apply (rule ext)
schirmer@12854
   285
apply (rule ext)
schirmer@12854
   286
apply (simp (no_asm))
schirmer@12854
   287
done
schirmer@12854
   288
schirmer@12854
   289
lemma peek_st_st [simp]: "(\<lambda>s.. \<lambda>s'.. P s s') = (\<lambda>s.. P s s)"
schirmer@12854
   290
apply (rule ext)
schirmer@12854
   291
apply (rule ext)
schirmer@12854
   292
apply (simp (no_asm))
schirmer@12854
   293
done
schirmer@12854
   294
schirmer@12854
   295
lemma peek_st_split [simp]: "(\<lambda>s.. \<lambda>Y s'. P s Y s') = (\<lambda>Y s. P (store s) Y s)"
schirmer@12854
   296
apply (rule ext)
schirmer@12854
   297
apply (rule ext)
schirmer@12854
   298
apply (simp (no_asm))
schirmer@12854
   299
done
schirmer@12854
   300
schirmer@12854
   301
lemma peek_st_subst_res [simp]: "(\<lambda>s.. P s)\<leftarrow>w = (\<lambda>s.. P s\<leftarrow>w)"
schirmer@12854
   302
apply (rule ext)
schirmer@12854
   303
apply (simp (no_asm))
schirmer@12854
   304
done
schirmer@12854
   305
schirmer@12854
   306
lemma peek_st_Normal [simp]: "(\<lambda>s..(Normal (P s))) = Normal (\<lambda>s.. P s)"
schirmer@12854
   307
apply (rule ext)
schirmer@12854
   308
apply (rule ext)
schirmer@12854
   309
apply (simp (no_asm))
schirmer@12854
   310
done
schirmer@12854
   311
schirmer@12854
   312
subsection "ign-res-eq"
schirmer@12854
   313
schirmer@12854
   314
constdefs
schirmer@12854
   315
  ign_res_eq :: "'a assn \<Rightarrow> res \<Rightarrow> 'a assn"               ("_\<down>=_"  [60,61] 60)
schirmer@12854
   316
 "P\<down>=w       \<equiv> \<lambda>Y:. P\<down> \<and>. (\<lambda>s. Y=w)"
schirmer@12854
   317
schirmer@12854
   318
lemma ign_res_eq_def2 [simp]: "(P\<down>=w) Y s Z = ((\<exists>Y. P Y s Z) \<and> Y=w)"
schirmer@12854
   319
apply (unfold ign_res_eq_def)
schirmer@12854
   320
apply auto
schirmer@12854
   321
done
schirmer@12854
   322
schirmer@12854
   323
lemma ign_ign_res_eq [simp]: "(P\<down>=w)\<down> = P\<down>"
schirmer@12854
   324
apply (rule ext)
schirmer@12854
   325
apply (rule ext)
schirmer@12854
   326
apply (rule ext)
schirmer@12854
   327
apply (simp (no_asm))
schirmer@12854
   328
done
schirmer@12854
   329
schirmer@12854
   330
(* unused *)
schirmer@12854
   331
lemma ign_res_eq_subst_res: "P\<down>=w\<leftarrow>w = P\<down>"
schirmer@12854
   332
apply (rule ext)
schirmer@12854
   333
apply (rule ext)
schirmer@12854
   334
apply (rule ext)
schirmer@12854
   335
apply (simp (no_asm))
schirmer@12854
   336
done
schirmer@12854
   337
schirmer@12854
   338
(* unused *)
schirmer@12854
   339
lemma subst_Bool_ign_res_eq: "((P\<leftarrow>=b)\<down>=x) Y s Z = ((P\<leftarrow>=b) Y s Z  \<and> Y=x)"
schirmer@12854
   340
apply (simp (no_asm))
schirmer@12854
   341
done
schirmer@12854
   342
schirmer@12854
   343
subsection "RefVar"
schirmer@12854
   344
schirmer@12854
   345
constdefs
schirmer@12854
   346
  RefVar    :: "(state \<Rightarrow> vvar \<times> state) \<Rightarrow> 'a assn \<Rightarrow> 'a assn"(infixr "..;" 13)
schirmer@12854
   347
 "vf ..; P \<equiv> \<lambda>Y s. let (v,s') = vf s in P (Var v) s'"
schirmer@12854
   348
 
schirmer@12854
   349
lemma RefVar_def2 [simp]: "(vf ..; P) Y s =  
schirmer@12854
   350
  P (Var (fst (vf s))) (snd (vf s))"
schirmer@12854
   351
apply (unfold RefVar_def Let_def)
schirmer@12854
   352
apply (simp (no_asm) add: split_beta)
schirmer@12854
   353
done
schirmer@12854
   354
schirmer@12854
   355
subsection "allocation"
schirmer@12854
   356
schirmer@12854
   357
constdefs
schirmer@12854
   358
  Alloc      :: "prog \<Rightarrow> obj_tag \<Rightarrow> 'a assn \<Rightarrow> 'a assn"
schirmer@12854
   359
 "Alloc G otag P \<equiv> \<lambda>Y s Z.
schirmer@12854
   360
                   \<forall>s' a. G\<turnstile>s \<midarrow>halloc otag\<succ>a\<rightarrow> s'\<longrightarrow> P (Val (Addr a)) s' Z"
schirmer@12854
   361
schirmer@12854
   362
  SXAlloc     :: "prog \<Rightarrow> 'a assn \<Rightarrow> 'a assn"
schirmer@12854
   363
 "SXAlloc G P \<equiv> \<lambda>Y s Z. \<forall>s'. G\<turnstile>s \<midarrow>sxalloc\<rightarrow> s' \<longrightarrow> P Y s' Z"
schirmer@12854
   364
schirmer@12854
   365
schirmer@12854
   366
lemma Alloc_def2 [simp]: "Alloc G otag P Y s Z =  
schirmer@12854
   367
       (\<forall>s' a. G\<turnstile>s \<midarrow>halloc otag\<succ>a\<rightarrow> s'\<longrightarrow> P (Val (Addr a)) s' Z)"
schirmer@12854
   368
apply (unfold Alloc_def)
schirmer@12854
   369
apply (simp (no_asm))
schirmer@12854
   370
done
schirmer@12854
   371
schirmer@12854
   372
lemma SXAlloc_def2 [simp]: 
schirmer@12854
   373
  "SXAlloc G P Y s Z = (\<forall>s'. G\<turnstile>s \<midarrow>sxalloc\<rightarrow> s' \<longrightarrow> P Y s' Z)"
schirmer@12854
   374
apply (unfold SXAlloc_def)
schirmer@12854
   375
apply (simp (no_asm))
schirmer@12854
   376
done
schirmer@12854
   377
schirmer@12854
   378
section "validity"
schirmer@12854
   379
schirmer@12854
   380
constdefs
schirmer@12854
   381
  type_ok  :: "prog \<Rightarrow> term \<Rightarrow> state \<Rightarrow> bool"
schirmer@12854
   382
 "type_ok G t s \<equiv> \<exists>L T C. (normal s \<longrightarrow> \<lparr>prg=G,cls=C,lcl=L\<rparr>\<turnstile>t\<Colon>T) \<and> s\<Colon>\<preceq>(G,L)"
schirmer@12854
   383
schirmer@12854
   384
datatype    'a triple = triple "('a assn)" "term" "('a assn)" (** should be
schirmer@12854
   385
something like triple = \<forall>'a. triple ('a assn) term ('a assn)   **)
schirmer@12854
   386
                                        ("{(1_)}/ _>/ {(1_)}"      [3,65,3]75)
schirmer@12854
   387
types    'a triples = "'a triple set"
schirmer@12854
   388
schirmer@12854
   389
syntax
schirmer@12854
   390
schirmer@12854
   391
  var_triple   :: "['a assn, var         ,'a assn] \<Rightarrow> 'a triple"
schirmer@12854
   392
                                         ("{(1_)}/ _=>/ {(1_)}"    [3,80,3] 75)
schirmer@12854
   393
  expr_triple  :: "['a assn, expr        ,'a assn] \<Rightarrow> 'a triple"
schirmer@12854
   394
                                         ("{(1_)}/ _->/ {(1_)}"    [3,80,3] 75)
schirmer@12854
   395
  exprs_triple :: "['a assn, expr list   ,'a assn] \<Rightarrow> 'a triple"
schirmer@12854
   396
                                         ("{(1_)}/ _#>/ {(1_)}"    [3,65,3] 75)
schirmer@12854
   397
  stmt_triple  :: "['a assn, stmt,        'a assn] \<Rightarrow> 'a triple"
schirmer@12854
   398
                                         ("{(1_)}/ ._./ {(1_)}"     [3,65,3] 75)
schirmer@12854
   399
schirmer@12854
   400
syntax (xsymbols)
schirmer@12854
   401
schirmer@12854
   402
  triple       :: "['a assn, term        ,'a assn] \<Rightarrow> 'a triple"
schirmer@12854
   403
                                         ("{(1_)}/ _\<succ>/ {(1_)}"     [3,65,3] 75)
schirmer@12854
   404
  var_triple   :: "['a assn, var         ,'a assn] \<Rightarrow> 'a triple"
schirmer@12854
   405
                                         ("{(1_)}/ _=\<succ>/ {(1_)}"    [3,80,3] 75)
schirmer@12854
   406
  expr_triple  :: "['a assn, expr        ,'a assn] \<Rightarrow> 'a triple"
schirmer@12854
   407
                                         ("{(1_)}/ _-\<succ>/ {(1_)}"    [3,80,3] 75)
schirmer@12854
   408
  exprs_triple :: "['a assn, expr list   ,'a assn] \<Rightarrow> 'a triple"
schirmer@12854
   409
                                         ("{(1_)}/ _\<doteq>\<succ>/ {(1_)}"    [3,65,3] 75)
schirmer@12854
   410
schirmer@12854
   411
translations
schirmer@12854
   412
  "{P} e-\<succ> {Q}" == "{P} In1l e\<succ> {Q}"
schirmer@12854
   413
  "{P} e=\<succ> {Q}" == "{P} In2  e\<succ> {Q}"
schirmer@12854
   414
  "{P} e\<doteq>\<succ> {Q}" == "{P} In3  e\<succ> {Q}"
schirmer@12854
   415
  "{P} .c. {Q}" == "{P} In1r c\<succ> {Q}"
schirmer@12854
   416
schirmer@12854
   417
lemma inj_triple: "inj (\<lambda>(P,t,Q). {P} t\<succ> {Q})"
schirmer@12854
   418
apply (rule injI)
schirmer@12854
   419
apply auto
schirmer@12854
   420
done
schirmer@12854
   421
schirmer@12854
   422
lemma triple_inj_eq: "({P} t\<succ> {Q} = {P'} t'\<succ> {Q'} ) = (P=P' \<and> t=t' \<and> Q=Q')"
schirmer@12854
   423
apply auto
schirmer@12854
   424
done
schirmer@12854
   425
schirmer@12854
   426
constdefs
schirmer@12854
   427
  mtriples  :: "('c \<Rightarrow> 'sig \<Rightarrow> 'a assn) \<Rightarrow> ('c \<Rightarrow> 'sig \<Rightarrow> expr) \<Rightarrow> 
schirmer@12854
   428
                ('c \<Rightarrow> 'sig \<Rightarrow> 'a assn) \<Rightarrow> ('c \<times>  'sig) set \<Rightarrow> 'a triples"
schirmer@12854
   429
                                     ("{{(1_)}/ _-\<succ>/ {(1_)} | _}"[3,65,3,65]75)
schirmer@12854
   430
 "{{P} tf-\<succ> {Q} | ms} \<equiv> (\<lambda>(C,sig). {Normal(P C sig)} tf C sig-\<succ> {Q C sig})`ms"
schirmer@12854
   431
  
schirmer@12854
   432
consts
schirmer@12854
   433
schirmer@12854
   434
 triple_valid :: "prog \<Rightarrow> nat \<Rightarrow>        'a triple  \<Rightarrow> bool"
schirmer@12854
   435
                                                (   "_\<Turnstile>_:_" [61,0, 58] 57)
schirmer@12854
   436
    ax_valids :: "prog \<Rightarrow> 'b triples \<Rightarrow> 'a triples \<Rightarrow> bool"
schirmer@12854
   437
                                                ("_,_|\<Turnstile>_"   [61,58,58] 57)
schirmer@12854
   438
    ax_derivs :: "prog \<Rightarrow> ('b triples \<times> 'a triples) set"
schirmer@12854
   439
schirmer@12854
   440
syntax
schirmer@12854
   441
schirmer@12854
   442
 triples_valid:: "prog \<Rightarrow> nat \<Rightarrow>         'a triples \<Rightarrow> bool"
schirmer@12854
   443
                                                (  "_||=_:_" [61,0, 58] 57)
schirmer@12854
   444
     ax_valid :: "prog \<Rightarrow>  'b triples \<Rightarrow> 'a triple  \<Rightarrow> bool"
schirmer@12854
   445
                                                ( "_,_|=_"   [61,58,58] 57)
schirmer@12854
   446
     ax_Derivs:: "prog \<Rightarrow>  'b triples \<Rightarrow> 'a triples \<Rightarrow> bool"
schirmer@12854
   447
                                                ("_,_||-_"   [61,58,58] 57)
schirmer@12854
   448
     ax_Deriv :: "prog \<Rightarrow>  'b triples \<Rightarrow> 'a triple  \<Rightarrow> bool"
schirmer@12854
   449
                                                ( "_,_|-_"   [61,58,58] 57)
schirmer@12854
   450
schirmer@12854
   451
syntax (xsymbols)
schirmer@12854
   452
schirmer@12854
   453
 triples_valid:: "prog \<Rightarrow> nat \<Rightarrow>         'a triples \<Rightarrow> bool"
schirmer@12854
   454
                                                (  "_|\<Turnstile>_:_" [61,0, 58] 57)
schirmer@12854
   455
     ax_valid :: "prog \<Rightarrow>  'b triples \<Rightarrow> 'a triple  \<Rightarrow> bool"
schirmer@12854
   456
                                                ( "_,_\<Turnstile>_"   [61,58,58] 57)
schirmer@12854
   457
     ax_Derivs:: "prog \<Rightarrow>  'b triples \<Rightarrow> 'a triples \<Rightarrow> bool"
schirmer@12854
   458
                                                ("_,_|\<turnstile>_"   [61,58,58] 57)
schirmer@12854
   459
     ax_Deriv :: "prog \<Rightarrow>  'b triples \<Rightarrow> 'a triple  \<Rightarrow> bool"
schirmer@12854
   460
                                                ( "_,_\<turnstile>_"   [61,58,58] 57)
schirmer@12854
   461
schirmer@12854
   462
defs  triple_valid_def:  "G\<Turnstile>n:t  \<equiv> case t of {P} t\<succ> {Q} \<Rightarrow>
schirmer@12854
   463
                          \<forall>Y s Z. P Y s Z \<longrightarrow> type_ok G t s \<longrightarrow>
schirmer@12854
   464
                          (\<forall>Y' s'. G\<turnstile>s \<midarrow>t\<succ>\<midarrow>n\<rightarrow> (Y',s') \<longrightarrow> Q Y' s' Z)"
schirmer@12854
   465
translations         "G|\<Turnstile>n:ts" == "Ball ts (triple_valid G n)"
schirmer@12854
   466
defs   ax_valids_def:"G,A|\<Turnstile>ts  \<equiv>  \<forall>n. G|\<Turnstile>n:A \<longrightarrow> G|\<Turnstile>n:ts"
schirmer@12854
   467
translations         "G,A \<Turnstile>t"  == "G,A|\<Turnstile>{t}"
schirmer@12854
   468
                     "G,A|\<turnstile>ts" == "(A,ts) \<in> ax_derivs G"
schirmer@12854
   469
                     "G,A \<turnstile>t"  == "G,A|\<turnstile>{t}"
schirmer@12854
   470
schirmer@12854
   471
lemma triple_valid_def2: "G\<Turnstile>n:{P} t\<succ> {Q} =  
schirmer@12854
   472
 (\<forall>Y s Z. P Y s Z 
schirmer@12854
   473
  \<longrightarrow> (\<exists>L. (normal s \<longrightarrow> (\<exists>T C. \<lparr>prg=G,cls=C,lcl=L\<rparr>\<turnstile>t\<Colon>T)) \<and> s\<Colon>\<preceq>(G,L)) \<longrightarrow> 
schirmer@12854
   474
  (\<forall>Y' s'. G\<turnstile>s \<midarrow>t\<succ>\<midarrow>n\<rightarrow> (Y',s')\<longrightarrow> Q Y' s' Z))"
schirmer@12854
   475
apply (unfold triple_valid_def type_ok_def)
schirmer@12854
   476
apply (simp (no_asm))
schirmer@12854
   477
done
schirmer@12854
   478
schirmer@12854
   479
schirmer@12854
   480
declare split_paired_All [simp del] split_paired_Ex [simp del] 
schirmer@12854
   481
declare split_if     [split del] split_if_asm     [split del] 
schirmer@12854
   482
        option.split [split del] option.split_asm [split del]
schirmer@12854
   483
ML_setup {*
schirmer@12854
   484
simpset_ref() := simpset() delloop "split_all_tac";
schirmer@12854
   485
claset_ref () := claset () delSWrapper "split_all_tac"
schirmer@12854
   486
*}
schirmer@12854
   487
schirmer@12854
   488
schirmer@12854
   489
inductive "ax_derivs G" intros
schirmer@12854
   490
schirmer@12854
   491
  empty: " G,A|\<turnstile>{}"
schirmer@12854
   492
  insert:"\<lbrakk>G,A\<turnstile>t; G,A|\<turnstile>ts\<rbrakk> \<Longrightarrow>
schirmer@12854
   493
          G,A|\<turnstile>insert t ts"
schirmer@12854
   494
schirmer@12854
   495
  asm:   "ts\<subseteq>A \<Longrightarrow> G,A|\<turnstile>ts"
schirmer@12854
   496
schirmer@12854
   497
(* could be added for convenience and efficiency, but is not necessary
schirmer@12854
   498
  cut:   "\<lbrakk>G,A'|\<turnstile>ts; G,A|\<turnstile>A'\<rbrakk> \<Longrightarrow>
schirmer@12854
   499
           G,A |\<turnstile>ts"
schirmer@12854
   500
*)
schirmer@12854
   501
  weaken:"\<lbrakk>G,A|\<turnstile>ts'; ts \<subseteq> ts'\<rbrakk> \<Longrightarrow> G,A|\<turnstile>ts"
schirmer@12854
   502
schirmer@12854
   503
  conseq:"\<forall>Y s Z . P  Y s Z  \<longrightarrow> (\<exists>P' Q'. G,A\<turnstile>{P'} t\<succ> {Q'} \<and> (\<forall>Y' s'. 
schirmer@12854
   504
         (\<forall>Y   Z'. P' Y s Z' \<longrightarrow> Q' Y' s' Z') \<longrightarrow>
schirmer@12854
   505
                                 Q  Y' s' Z ))
schirmer@12854
   506
                                         \<Longrightarrow> G,A\<turnstile>{P } t\<succ> {Q }"
schirmer@12854
   507
schirmer@12854
   508
  hazard:"G,A\<turnstile>{P \<and>. Not \<circ> type_ok G t} t\<succ> {Q}"
schirmer@12854
   509
schirmer@12854
   510
  Abrupt:  "G,A\<turnstile>{P\<leftarrow>(arbitrary3 t) \<and>. Not \<circ> normal} t\<succ> {P}"
schirmer@12854
   511
schirmer@12854
   512
  (* variables *)
schirmer@12854
   513
  LVar:  " G,A\<turnstile>{Normal (\<lambda>s.. P\<leftarrow>Var (lvar vn s))} LVar vn=\<succ> {P}"
schirmer@12854
   514
schirmer@12854
   515
  FVar: "\<lbrakk>G,A\<turnstile>{Normal P} .Init C. {Q};
schirmer@12854
   516
          G,A\<turnstile>{Q} e-\<succ> {\<lambda>Val:a:. fvar C stat fn a ..; R}\<rbrakk> \<Longrightarrow>
schirmer@12854
   517
                                 G,A\<turnstile>{Normal P} {C,stat}e..fn=\<succ> {R}"
schirmer@12854
   518
schirmer@12854
   519
  AVar:  "\<lbrakk>G,A\<turnstile>{Normal P} e1-\<succ> {Q};
schirmer@12854
   520
          \<forall>a. G,A\<turnstile>{Q\<leftarrow>Val a} e2-\<succ> {\<lambda>Val:i:. avar G i a ..; R}\<rbrakk> \<Longrightarrow>
schirmer@12854
   521
                                 G,A\<turnstile>{Normal P} e1.[e2]=\<succ> {R}"
schirmer@12854
   522
  (* expressions *)
schirmer@12854
   523
schirmer@12854
   524
  NewC: "\<lbrakk>G,A\<turnstile>{Normal P} .Init C. {Alloc G (CInst C) Q}\<rbrakk> \<Longrightarrow>
schirmer@12854
   525
                                 G,A\<turnstile>{Normal P} NewC C-\<succ> {Q}"
schirmer@12854
   526
schirmer@12854
   527
  NewA: "\<lbrakk>G,A\<turnstile>{Normal P} .init_comp_ty T. {Q};  G,A\<turnstile>{Q} e-\<succ>
schirmer@12854
   528
	  {\<lambda>Val:i:. abupd (check_neg i) .; Alloc G (Arr T (the_Intg i)) R}\<rbrakk> \<Longrightarrow>
schirmer@12854
   529
                                 G,A\<turnstile>{Normal P} New T[e]-\<succ> {R}"
schirmer@12854
   530
schirmer@12854
   531
  Cast: "\<lbrakk>G,A\<turnstile>{Normal P} e-\<succ> {\<lambda>Val:v:. \<lambda>s..
schirmer@12854
   532
          abupd (raise_if (\<not>G,s\<turnstile>v fits T) ClassCast) .; Q\<leftarrow>Val v}\<rbrakk> \<Longrightarrow>
schirmer@12854
   533
                                 G,A\<turnstile>{Normal P} Cast T e-\<succ> {Q}"
schirmer@12854
   534
schirmer@12854
   535
  Inst: "\<lbrakk>G,A\<turnstile>{Normal P} e-\<succ> {\<lambda>Val:v:. \<lambda>s..
schirmer@12854
   536
                  Q\<leftarrow>Val (Bool (v\<noteq>Null \<and> G,s\<turnstile>v fits RefT T))}\<rbrakk> \<Longrightarrow>
schirmer@12854
   537
                                 G,A\<turnstile>{Normal P} e InstOf T-\<succ> {Q}"
schirmer@12854
   538
schirmer@12854
   539
  Lit:                          "G,A\<turnstile>{Normal (P\<leftarrow>Val v)} Lit v-\<succ> {P}"
schirmer@12854
   540
schirmer@12854
   541
  Super:" G,A\<turnstile>{Normal (\<lambda>s.. P\<leftarrow>Val (val_this s))} Super-\<succ> {P}"
schirmer@12854
   542
schirmer@12854
   543
  Acc:  "\<lbrakk>G,A\<turnstile>{Normal P} va=\<succ> {\<lambda>Var:(v,f):. Q\<leftarrow>Val v}\<rbrakk> \<Longrightarrow>
schirmer@12854
   544
                                 G,A\<turnstile>{Normal P} Acc va-\<succ> {Q}"
schirmer@12854
   545
schirmer@12854
   546
  Ass:  "\<lbrakk>G,A\<turnstile>{Normal P} va=\<succ> {Q};
schirmer@12854
   547
     \<forall>vf. G,A\<turnstile>{Q\<leftarrow>Var vf} e-\<succ> {\<lambda>Val:v:. assign (snd vf) v .; R}\<rbrakk> \<Longrightarrow>
schirmer@12854
   548
                                 G,A\<turnstile>{Normal P} va:=e-\<succ> {R}"
schirmer@12854
   549
schirmer@12854
   550
  Cond: "\<lbrakk>G,A \<turnstile>{Normal P} e0-\<succ> {P'};
schirmer@12854
   551
          \<forall>b. G,A\<turnstile>{P'\<leftarrow>=b} (if b then e1 else e2)-\<succ> {Q}\<rbrakk> \<Longrightarrow>
schirmer@12854
   552
                                 G,A\<turnstile>{Normal P} e0 ? e1 : e2-\<succ> {Q}"
schirmer@12854
   553
schirmer@12854
   554
  Call: 
schirmer@12854
   555
"\<lbrakk>G,A\<turnstile>{Normal P} e-\<succ> {Q}; \<forall>a. G,A\<turnstile>{Q\<leftarrow>Val a} args\<doteq>\<succ> {R a};
schirmer@12854
   556
  \<forall>a vs invC declC l. G,A\<turnstile>{(R a\<leftarrow>Vals vs \<and>.
schirmer@12854
   557
 (\<lambda>s. declC=invocation_declclass G mode (store s) a statT \<lparr>name=mn,parTs=pTs\<rparr> \<and>
schirmer@12854
   558
      invC = invocation_class mode (store s) a statT \<and>
schirmer@12854
   559
         l = locals (store s)) ;.
schirmer@12854
   560
      init_lvars G declC \<lparr>name=mn,parTs=pTs\<rparr> mode a vs) \<and>.
schirmer@12854
   561
      (\<lambda>s. normal s \<longrightarrow> G\<turnstile>mode\<rightarrow>invC\<preceq>statT)}
schirmer@12854
   562
 Methd declC \<lparr>name=mn,parTs=pTs\<rparr>-\<succ> {set_lvars l .; S}\<rbrakk> \<Longrightarrow>
schirmer@12854
   563
         G,A\<turnstile>{Normal P} {statT,mode}e\<cdot>mn({pTs}args)-\<succ> {S}"
schirmer@12854
   564
schirmer@12854
   565
  Methd:"\<lbrakk>G,A\<union> {{P} Methd-\<succ> {Q} | ms} |\<turnstile> {{P} body G-\<succ> {Q} | ms}\<rbrakk> \<Longrightarrow>
schirmer@12854
   566
                                 G,A|\<turnstile>{{P} Methd-\<succ>  {Q} | ms}"
schirmer@12854
   567
schirmer@12854
   568
  Body: "\<lbrakk>G,A\<turnstile>{Normal P} .Init D. {Q}; 
schirmer@12854
   569
  G,A\<turnstile>{Q} .c. {\<lambda>s.. abupd (absorb Ret) .; R\<leftarrow>(In1 (the (locals s Result)))}\<rbrakk> 
schirmer@12854
   570
    \<Longrightarrow>
schirmer@12854
   571
                                 G,A\<turnstile>{Normal P} Body D c-\<succ> {R}"
schirmer@12854
   572
  
schirmer@12854
   573
  (* expression lists *)
schirmer@12854
   574
schirmer@12854
   575
  Nil:                          "G,A\<turnstile>{Normal (P\<leftarrow>Vals [])} []\<doteq>\<succ> {P}"
schirmer@12854
   576
schirmer@12854
   577
  Cons: "\<lbrakk>G,A\<turnstile>{Normal P} e-\<succ> {Q};
schirmer@12854
   578
          \<forall>v. G,A\<turnstile>{Q\<leftarrow>Val v} es\<doteq>\<succ> {\<lambda>Vals:vs:. R\<leftarrow>Vals (v#vs)}\<rbrakk> \<Longrightarrow>
schirmer@12854
   579
                                 G,A\<turnstile>{Normal P} e#es\<doteq>\<succ> {R}"
schirmer@12854
   580
schirmer@12854
   581
  (* statements *)
schirmer@12854
   582
schirmer@12854
   583
  Skip:                         "G,A\<turnstile>{Normal (P\<leftarrow>\<diamondsuit>)} .Skip. {P}"
schirmer@12854
   584
schirmer@12854
   585
  Expr: "\<lbrakk>G,A\<turnstile>{Normal P} e-\<succ> {Q\<leftarrow>\<diamondsuit>}\<rbrakk> \<Longrightarrow>
schirmer@12854
   586
                                 G,A\<turnstile>{Normal P} .Expr e. {Q}"
schirmer@12854
   587
schirmer@12854
   588
  Lab: "\<lbrakk>G,A\<turnstile>{Normal P} .c. {abupd (absorb (Break l)) .; Q}\<rbrakk> \<Longrightarrow>
schirmer@12854
   589
                           G,A\<turnstile>{Normal P} .l\<bullet> c. {Q}"
schirmer@12854
   590
schirmer@12854
   591
  Comp: "\<lbrakk>G,A\<turnstile>{Normal P} .c1. {Q};
schirmer@12854
   592
          G,A\<turnstile>{Q} .c2. {R}\<rbrakk> \<Longrightarrow>
schirmer@12854
   593
                                 G,A\<turnstile>{Normal P} .c1;;c2. {R}"
schirmer@12854
   594
schirmer@12854
   595
  If:   "\<lbrakk>G,A \<turnstile>{Normal P} e-\<succ> {P'};
schirmer@12854
   596
          \<forall>b. G,A\<turnstile>{P'\<leftarrow>=b} .(if b then c1 else c2). {Q}\<rbrakk> \<Longrightarrow>
schirmer@12854
   597
                                 G,A\<turnstile>{Normal P} .If(e) c1 Else c2. {Q}"
schirmer@12854
   598
(* unfolding variant of Loop, not needed here
schirmer@12854
   599
  LoopU:"\<lbrakk>G,A \<turnstile>{Normal P} e-\<succ> {P'};
schirmer@12854
   600
          \<forall>b. G,A\<turnstile>{P'\<leftarrow>=b} .(if b then c;;While(e) c else Skip).{Q}\<rbrakk>
schirmer@12854
   601
         \<Longrightarrow>              G,A\<turnstile>{Normal P} .While(e) c. {Q}"
schirmer@12854
   602
*)
schirmer@12854
   603
  Loop: "\<lbrakk>G,A\<turnstile>{P} e-\<succ> {P'}; 
schirmer@12854
   604
          G,A\<turnstile>{Normal (P'\<leftarrow>=True)} .c. {abupd (absorb (Cont l)) .; P}\<rbrakk> \<Longrightarrow>
schirmer@12854
   605
                            G,A\<turnstile>{P} .l\<bullet> While(e) c. {(P'\<leftarrow>=False)\<down>=\<diamondsuit>}"
schirmer@12854
   606
(** Beware of polymorphic_Loop below: should be identical terms **)
schirmer@12854
   607
  
schirmer@12854
   608
  Do: "G,A\<turnstile>{Normal (abupd (\<lambda>a. (Some (Jump j))) .; P\<leftarrow>\<diamondsuit>)} .Do j. {P}"
schirmer@12854
   609
schirmer@12854
   610
  Throw:"\<lbrakk>G,A\<turnstile>{Normal P} e-\<succ> {\<lambda>Val:a:. abupd (throw a) .; Q\<leftarrow>\<diamondsuit>}\<rbrakk> \<Longrightarrow>
schirmer@12854
   611
                                 G,A\<turnstile>{Normal P} .Throw e. {Q}"
schirmer@12854
   612
schirmer@12854
   613
  Try:  "\<lbrakk>G,A\<turnstile>{Normal P} .c1. {SXAlloc G Q};
schirmer@12854
   614
          G,A\<turnstile>{Q \<and>. (\<lambda>s.  G,s\<turnstile>catch C) ;. new_xcpt_var vn} .c2. {R};
schirmer@12854
   615
              (Q \<and>. (\<lambda>s. \<not>G,s\<turnstile>catch C)) \<Rightarrow> R\<rbrakk> \<Longrightarrow>
schirmer@12854
   616
                                 G,A\<turnstile>{Normal P} .Try c1 Catch(C vn) c2. {R}"
schirmer@12854
   617
schirmer@12854
   618
  Fin:  "\<lbrakk>G,A\<turnstile>{Normal P} .c1. {Q};
schirmer@12854
   619
      \<forall>x. G,A\<turnstile>{Q \<and>. (\<lambda>s. x = fst s) ;. abupd (\<lambda>x. None)}
schirmer@12854
   620
              .c2. {abupd (abrupt_if (x\<noteq>None) x) .; R}\<rbrakk> \<Longrightarrow>
schirmer@12854
   621
                                 G,A\<turnstile>{Normal P} .c1 Finally c2. {R}"
schirmer@12854
   622
schirmer@12854
   623
  Done:                       "G,A\<turnstile>{Normal (P\<leftarrow>\<diamondsuit> \<and>. initd C)} .Init C. {P}"
schirmer@12854
   624
schirmer@12854
   625
  Init: "\<lbrakk>the (class G C) = c;
schirmer@12854
   626
          G,A\<turnstile>{Normal ((P \<and>. Not \<circ> initd C) ;. supd (init_class_obj G C))}
schirmer@12854
   627
              .(if C = Object then Skip else Init (super c)). {Q};
schirmer@12854
   628
      \<forall>l. G,A\<turnstile>{Q \<and>. (\<lambda>s. l = locals (store s)) ;. set_lvars empty}
schirmer@12854
   629
              .init c. {set_lvars l .; R}\<rbrakk> \<Longrightarrow>
schirmer@12854
   630
                               G,A\<turnstile>{Normal (P \<and>. Not \<circ> initd C)} .Init C. {R}"
schirmer@12854
   631
schirmer@12854
   632
axioms (** these terms are the same as above, but with generalized typing **)
schirmer@12854
   633
  polymorphic_conseq:
schirmer@12854
   634
        "\<forall>Y s Z . P  Y s Z  \<longrightarrow> (\<exists>P' Q'. G,A\<turnstile>{P'} t\<succ> {Q'} \<and> (\<forall>Y' s'. 
schirmer@12854
   635
        (\<forall>Y   Z'. P' Y s Z' \<longrightarrow> Q' Y' s' Z') \<longrightarrow>
schirmer@12854
   636
                                Q  Y' s' Z ))
schirmer@12854
   637
                                         \<Longrightarrow> G,A\<turnstile>{P } t\<succ> {Q }"
schirmer@12854
   638
schirmer@12854
   639
  polymorphic_Loop:
schirmer@12854
   640
        "\<lbrakk>G,A\<turnstile>{P} e-\<succ> {P'}; 
schirmer@12854
   641
          G,A\<turnstile>{Normal (P'\<leftarrow>=True)} .c. {abupd (absorb (Cont l)) .; P}\<rbrakk> \<Longrightarrow>
schirmer@12854
   642
                            G,A\<turnstile>{P} .l\<bullet> While(e) c. {(P'\<leftarrow>=False)\<down>=\<diamondsuit>}"
schirmer@12854
   643
schirmer@12854
   644
constdefs
schirmer@12854
   645
 adapt_pre :: "'a assn \<Rightarrow> 'a assn \<Rightarrow> 'a assn \<Rightarrow> 'a assn"
schirmer@12854
   646
"adapt_pre P Q Q'\<equiv>\<lambda>Y s Z. \<forall>Y' s'. \<exists>Z'. P Y s Z' \<and> (Q Y' s' Z' \<longrightarrow> Q' Y' s' Z)"
schirmer@12854
   647
schirmer@12854
   648
schirmer@12854
   649
section "rules derived by induction"
schirmer@12854
   650
schirmer@12854
   651
lemma cut_valid: "\<lbrakk>G,A'|\<Turnstile>ts; G,A|\<Turnstile>A'\<rbrakk> \<Longrightarrow> G,A|\<Turnstile>ts"
schirmer@12854
   652
apply (unfold ax_valids_def)
schirmer@12854
   653
apply fast
schirmer@12854
   654
done
schirmer@12854
   655
schirmer@12854
   656
(*if cut is available
schirmer@12854
   657
Goal "\<lbrakk>G,A'|\<turnstile>ts; A' \<subseteq> A; \<forall>P Q t. {P} t\<succ> {Q} \<in> A' \<longrightarrow> (\<exists>T. (G,L)\<turnstile>t\<Colon>T) \<rbrakk> \<Longrightarrow>  
schirmer@12854
   658
       G,A|\<turnstile>ts"
schirmer@12854
   659
b y etac ax_derivs.cut 1;
schirmer@12854
   660
b y eatac ax_derivs.asm 1 1;
schirmer@12854
   661
qed "ax_thin";
schirmer@12854
   662
*)
schirmer@12854
   663
lemma ax_thin [rule_format (no_asm)]: 
schirmer@12854
   664
  "G,(A'::'a triple set)|\<turnstile>(ts::'a triple set) \<Longrightarrow> \<forall>A. A' \<subseteq> A \<longrightarrow> G,A|\<turnstile>ts"
schirmer@12854
   665
apply (erule ax_derivs.induct)
schirmer@12854
   666
apply                (tactic "ALLGOALS(EVERY'[Clarify_tac,REPEAT o smp_tac 1])")
schirmer@12854
   667
apply                (rule ax_derivs.empty)
schirmer@12854
   668
apply               (erule (1) ax_derivs.insert)
schirmer@12854
   669
apply              (fast intro: ax_derivs.asm)
schirmer@12854
   670
(*apply           (fast intro: ax_derivs.cut) *)
schirmer@12854
   671
apply            (fast intro: ax_derivs.weaken)
schirmer@12854
   672
apply           (rule ax_derivs.conseq, intro strip, tactic "smp_tac 3 1",clarify, tactic "smp_tac 1 1",rule exI, rule exI, erule (1) conjI)
schirmer@12854
   673
(* 31 subgoals *)
schirmer@12854
   674
prefer 16 (* Methd *)
schirmer@12854
   675
apply (rule ax_derivs.Methd, drule spec, erule mp, fast)
schirmer@12854
   676
apply (tactic {* TRYALL (resolve_tac ((funpow 5 tl) (thms "ax_derivs.intros")) 
schirmer@12854
   677
                     THEN_ALL_NEW Blast_tac) *})
schirmer@12854
   678
apply (erule ax_derivs.Call)
schirmer@12854
   679
apply   clarify 
schirmer@12854
   680
apply   blast
schirmer@12854
   681
schirmer@12854
   682
apply   (rule allI)+ 
schirmer@12854
   683
apply   (drule spec)+
schirmer@12854
   684
apply   blast
schirmer@12854
   685
done
schirmer@12854
   686
schirmer@12854
   687
lemma ax_thin_insert: "G,(A::'a triple set)\<turnstile>(t::'a triple) \<Longrightarrow> G,insert x A\<turnstile>t"
schirmer@12854
   688
apply (erule ax_thin)
schirmer@12854
   689
apply fast
schirmer@12854
   690
done
schirmer@12854
   691
schirmer@12854
   692
lemma subset_mtriples_iff: 
schirmer@12854
   693
  "ts \<subseteq> {{P} mb-\<succ> {Q} | ms} = (\<exists>ms'. ms'\<subseteq>ms \<and>  ts = {{P} mb-\<succ> {Q} | ms'})"
schirmer@12854
   694
apply (unfold mtriples_def)
schirmer@12854
   695
apply (rule subset_image_iff)
schirmer@12854
   696
done
schirmer@12854
   697
schirmer@12854
   698
lemma weaken: 
schirmer@12854
   699
 "G,(A::'a triple set)|\<turnstile>(ts'::'a triple set) \<Longrightarrow> !ts. ts \<subseteq> ts' \<longrightarrow> G,A|\<turnstile>ts"
schirmer@12854
   700
apply (erule ax_derivs.induct)
schirmer@12854
   701
(*36 subgoals*)
schirmer@12854
   702
apply       (tactic "ALLGOALS strip_tac")
schirmer@12854
   703
apply       (tactic {* ALLGOALS(REPEAT o (EVERY'[dtac (thm "subset_singletonD"),
schirmer@12854
   704
         etac disjE, fast_tac (claset() addSIs [thm "ax_derivs.empty"])]))*})
schirmer@12854
   705
apply       (tactic "TRYALL hyp_subst_tac")
schirmer@12854
   706
apply       (simp, rule ax_derivs.empty)
schirmer@12854
   707
apply      (drule subset_insertD)
schirmer@12854
   708
apply      (blast intro: ax_derivs.insert)
schirmer@12854
   709
apply     (fast intro: ax_derivs.asm)
schirmer@12854
   710
(*apply  (blast intro: ax_derivs.cut) *)
schirmer@12854
   711
apply   (fast intro: ax_derivs.weaken)
schirmer@12854
   712
apply  (rule ax_derivs.conseq, clarify, tactic "smp_tac 3 1", blast(* unused *))
schirmer@12854
   713
(*31 subgoals*)
schirmer@12854
   714
apply (tactic {* TRYALL (resolve_tac ((funpow 5 tl) (thms "ax_derivs.intros")) 
schirmer@12854
   715
                   THEN_ALL_NEW Fast_tac) *})
schirmer@12854
   716
(*1 subgoal*)
schirmer@12854
   717
apply (clarsimp simp add: subset_mtriples_iff)
schirmer@12854
   718
apply (rule ax_derivs.Methd)
schirmer@12854
   719
apply (drule spec)
schirmer@12854
   720
apply (erule impE)
schirmer@12854
   721
apply  (rule exI)
schirmer@12854
   722
apply  (erule conjI)
schirmer@12854
   723
apply  (rule HOL.refl)
schirmer@12854
   724
oops (* dead end, Methd is to blame *)
schirmer@12854
   725
schirmer@12854
   726
schirmer@12854
   727
section "rules derived from conseq"
schirmer@12854
   728
schirmer@12854
   729
lemma conseq12: "\<lbrakk>G,A\<turnstile>{P'} t\<succ> {Q'};  
schirmer@12854
   730
 \<forall>Y s Z. P Y s Z \<longrightarrow> (\<forall>Y' s'. (\<forall>Y Z'. P' Y s Z' \<longrightarrow> Q' Y' s' Z') \<longrightarrow>  
schirmer@12854
   731
  Q Y' s' Z)\<rbrakk>  
schirmer@12854
   732
  \<Longrightarrow>  G,A\<turnstile>{P ::'a assn} t\<succ> {Q }"
schirmer@12854
   733
apply (rule polymorphic_conseq)
schirmer@12854
   734
apply clarsimp
schirmer@12854
   735
apply blast
schirmer@12854
   736
done
schirmer@12854
   737
schirmer@12854
   738
(*unused, but nice variant*)
schirmer@12854
   739
lemma conseq12': "\<lbrakk>G,A\<turnstile>{P'} t\<succ> {Q'}; \<forall>s Y' s'.  
schirmer@12854
   740
       (\<forall>Y Z. P' Y s Z \<longrightarrow> Q' Y' s' Z) \<longrightarrow>  
schirmer@12854
   741
       (\<forall>Y Z. P  Y s Z \<longrightarrow> Q  Y' s' Z)\<rbrakk>  
schirmer@12854
   742
  \<Longrightarrow>  G,A\<turnstile>{P } t\<succ> {Q }"
schirmer@12854
   743
apply (erule conseq12)
schirmer@12854
   744
apply fast
schirmer@12854
   745
done
schirmer@12854
   746
schirmer@12854
   747
lemma conseq12_from_conseq12': "\<lbrakk>G,A\<turnstile>{P'} t\<succ> {Q'};  
schirmer@12854
   748
 \<forall>Y s Z. P Y s Z \<longrightarrow> (\<forall>Y' s'. (\<forall>Y Z'. P' Y s Z' \<longrightarrow> Q' Y' s' Z') \<longrightarrow>  
schirmer@12854
   749
  Q Y' s' Z)\<rbrakk>  
schirmer@12854
   750
  \<Longrightarrow>  G,A\<turnstile>{P } t\<succ> {Q }"
schirmer@12854
   751
apply (erule conseq12')
schirmer@12854
   752
apply blast
schirmer@12854
   753
done
schirmer@12854
   754
schirmer@12854
   755
lemma conseq1: "\<lbrakk>G,A\<turnstile>{P'} t\<succ> {Q}; P \<Rightarrow> P'\<rbrakk> \<Longrightarrow> G,A\<turnstile>{P } t\<succ> {Q}"
schirmer@12854
   756
apply (erule conseq12)
schirmer@12854
   757
apply blast
schirmer@12854
   758
done
schirmer@12854
   759
schirmer@12854
   760
lemma conseq2: "\<lbrakk>G,A\<turnstile>{P} t\<succ> {Q'}; Q' \<Rightarrow> Q\<rbrakk> \<Longrightarrow> G,A\<turnstile>{P} t\<succ> {Q}"
schirmer@12854
   761
apply (erule conseq12)
schirmer@12854
   762
apply blast
schirmer@12854
   763
done
schirmer@12854
   764
schirmer@12854
   765
lemma ax_escape: "\<lbrakk>\<forall>Y s Z. P Y s Z \<longrightarrow> G,A\<turnstile>{\<lambda>Y' s' Z'. (Y',s') = (Y,s)} t\<succ> {\<lambda>Y s Z'. Q Y s Z}\<rbrakk> \<Longrightarrow>  
schirmer@12854
   766
  G,A\<turnstile>{P} t\<succ> {Q}"
schirmer@12854
   767
apply (rule polymorphic_conseq)
schirmer@12854
   768
apply force
schirmer@12854
   769
done
schirmer@12854
   770
schirmer@12854
   771
(* unused *)
schirmer@12854
   772
lemma ax_constant: "\<lbrakk> C \<Longrightarrow> G,A\<turnstile>{P} t\<succ> {Q}\<rbrakk> \<Longrightarrow> G,A\<turnstile>{\<lambda>Y s Z. C \<and> P Y s Z} t\<succ> {Q}"
schirmer@12854
   773
apply (rule ax_escape (* unused *))
schirmer@12854
   774
apply clarify
schirmer@12854
   775
apply (rule conseq12)
schirmer@12854
   776
apply  fast
schirmer@12854
   777
apply auto
schirmer@12854
   778
done
schirmer@12854
   779
(*alternative (more direct) proof:
schirmer@12854
   780
apply (rule ax_derivs.conseq) *)(* unused *)(*
schirmer@12854
   781
apply (fast)
schirmer@12854
   782
*)
schirmer@12854
   783
schirmer@12854
   784
schirmer@12854
   785
lemma ax_impossible [intro]: "G,A\<turnstile>{\<lambda>Y s Z. False} t\<succ> {Q}"
schirmer@12854
   786
apply (rule ax_escape)
schirmer@12854
   787
apply clarify
schirmer@12854
   788
done
schirmer@12854
   789
schirmer@12854
   790
(* unused *)
schirmer@12854
   791
lemma ax_nochange_lemma: "\<lbrakk>P Y s; All (op = w)\<rbrakk> \<Longrightarrow> P w s"
schirmer@12854
   792
apply auto
schirmer@12854
   793
done
schirmer@12854
   794
lemma ax_nochange:"G,A\<turnstile>{\<lambda>Y s Z. (Y,s)=Z} t\<succ> {\<lambda>Y s Z. (Y,s)=Z} \<Longrightarrow> G,A\<turnstile>{P} t\<succ> {P}"
schirmer@12854
   795
apply (erule conseq12)
schirmer@12854
   796
apply auto
schirmer@12854
   797
apply (erule (1) ax_nochange_lemma)
schirmer@12854
   798
done
schirmer@12854
   799
schirmer@12854
   800
(* unused *)
schirmer@12854
   801
lemma ax_trivial: "G,A\<turnstile>{P}  t\<succ> {\<lambda>Y s Z. True}"
schirmer@12854
   802
apply (rule polymorphic_conseq(* unused *))
schirmer@12854
   803
apply auto
schirmer@12854
   804
done
schirmer@12854
   805
schirmer@12854
   806
(* unused *)
schirmer@12854
   807
lemma ax_disj: "\<lbrakk>G,A\<turnstile>{P1} t\<succ> {Q1}; G,A\<turnstile>{P2} t\<succ> {Q2}\<rbrakk> \<Longrightarrow>  
schirmer@12854
   808
  G,A\<turnstile>{\<lambda>Y s Z. P1 Y s Z \<or> P2 Y s Z} t\<succ> {\<lambda>Y s Z. Q1 Y s Z \<or> Q2 Y s Z}"
schirmer@12854
   809
apply (rule ax_escape (* unused *))
schirmer@12854
   810
apply safe
schirmer@12854
   811
apply  (erule conseq12, fast)+
schirmer@12854
   812
done
schirmer@12854
   813
schirmer@12854
   814
(* unused *)
schirmer@12854
   815
lemma ax_supd_shuffle: "(\<exists>Q. G,A\<turnstile>{P} .c1. {Q} \<and> G,A\<turnstile>{Q ;. f} .c2. {R}) =  
schirmer@12854
   816
       (\<exists>Q'. G,A\<turnstile>{P} .c1. {f .; Q'} \<and> G,A\<turnstile>{Q'} .c2. {R})"
schirmer@12854
   817
apply (best elim!: conseq1 conseq2)
schirmer@12854
   818
done
schirmer@12854
   819
schirmer@12854
   820
lemma ax_cases: "\<lbrakk>G,A\<turnstile>{P \<and>.       C} t\<succ> {Q};  
schirmer@12854
   821
                       G,A\<turnstile>{P \<and>. Not \<circ> C} t\<succ> {Q}\<rbrakk> \<Longrightarrow> G,A\<turnstile>{P} t\<succ> {Q}"
schirmer@12854
   822
apply (unfold peek_and_def)
schirmer@12854
   823
apply (rule ax_escape)
schirmer@12854
   824
apply clarify
schirmer@12854
   825
apply (case_tac "C s")
schirmer@12854
   826
apply  (erule conseq12, force)+
schirmer@12854
   827
done
schirmer@12854
   828
(*alternative (more direct) proof:
schirmer@12854
   829
apply (rule rtac ax_derivs.conseq) *)(* unused *)(*
schirmer@12854
   830
apply clarify
schirmer@12854
   831
apply (case_tac "C s")
schirmer@12854
   832
apply  force+
schirmer@12854
   833
*)
schirmer@12854
   834
schirmer@12854
   835
lemma ax_adapt: "G,A\<turnstile>{P} t\<succ> {Q} \<Longrightarrow> G,A\<turnstile>{adapt_pre P Q Q'} t\<succ> {Q'}"
schirmer@12854
   836
apply (unfold adapt_pre_def)
schirmer@12854
   837
apply (erule conseq12)
schirmer@12854
   838
apply fast
schirmer@12854
   839
done
schirmer@12854
   840
schirmer@12854
   841
lemma adapt_pre_adapts: "G,A\<Turnstile>{P} t\<succ> {Q} \<longrightarrow> G,A\<Turnstile>{adapt_pre P Q Q'} t\<succ> {Q'}"
schirmer@12854
   842
apply (unfold adapt_pre_def)
schirmer@12854
   843
apply (simp add: ax_valids_def triple_valid_def2)
schirmer@12854
   844
apply fast
schirmer@12854
   845
done
schirmer@12854
   846
schirmer@12854
   847
schirmer@12854
   848
lemma adapt_pre_weakest: 
schirmer@12854
   849
"\<forall>G (A::'a triple set) t. G,A\<Turnstile>{P} t\<succ> {Q} \<longrightarrow> G,A\<Turnstile>{P'} t\<succ> {Q'} \<Longrightarrow>  
schirmer@12854
   850
  P' \<Rightarrow> adapt_pre P Q (Q'::'a assn)"
schirmer@12854
   851
apply (unfold adapt_pre_def)
schirmer@12854
   852
apply (drule spec)
schirmer@12854
   853
apply (drule_tac x = "{}" in spec)
schirmer@12854
   854
apply (drule_tac x = "In1r Skip" in spec)
schirmer@12854
   855
apply (simp add: ax_valids_def triple_valid_def2)
schirmer@12854
   856
oops
schirmer@12854
   857
schirmer@12854
   858
(*
schirmer@12854
   859
Goal "\<forall>(A::'a triple set) t. G,A\<Turnstile>{P} t\<succ> {Q} \<longrightarrow> G,A\<Turnstile>{P'} t\<succ> {Q'} \<Longrightarrow>  
schirmer@12854
   860
  wf_prog G \<Longrightarrow> G,(A::'a triple set)\<turnstile>{P} t\<succ> {Q::'a assn} \<Longrightarrow> G,A\<turnstile>{P'} t\<succ> {Q'::'a assn}"
schirmer@12854
   861
b y fatac ax_sound 1 1;
schirmer@12854
   862
b y asm_full_simp_tac (simpset() addsimps [ax_valids_def,triple_valid_def2]) 1;
schirmer@12854
   863
b y rtac ax_no_hazard 1; 
schirmer@12854
   864
b y etac conseq12 1;
schirmer@12854
   865
b y Clarify_tac 1;
schirmer@12854
   866
b y case_tac "\<forall>Z. \<not>P Y s Z" 1;
schirmer@12854
   867
b y smp_tac 2 1;
schirmer@12854
   868
b y etac thin_rl 1;
schirmer@12854
   869
b y etac thin_rl 1;
schirmer@12854
   870
b y clarsimp_tac (claset(), simpset() addsimps [type_ok_def]) 1;
schirmer@12854
   871
b y subgoal_tac "G|\<Turnstile>n:A" 1;
schirmer@12854
   872
b y smp_tac 1 1;
schirmer@12854
   873
b y smp_tac 3 1;
schirmer@12854
   874
b y etac impE 1;
schirmer@12854
   875
 back();
schirmer@12854
   876
 b y Fast_tac 1;
schirmer@12854
   877
b y 
schirmer@12854
   878
b y rotate_tac 2 1;
schirmer@12854
   879
b y etac thin_rl 1;
schirmer@12854
   880
b y  etac thin_rl 2;
schirmer@12854
   881
b y  etac thin_rl 2;
schirmer@12854
   882
b y  Clarify_tac 2;
schirmer@12854
   883
b y  dtac spec 2;
schirmer@12854
   884
b y  EVERY'[dtac spec, mp_tac] 2;
schirmer@12854
   885
b y  thin_tac "\<forall>n Y s Z. ?PP n Y s Z" 2;
schirmer@12854
   886
b y  thin_tac "P' Y s Z" 2;
schirmer@12854
   887
b y  Blast_tac 2;
schirmer@12854
   888
b y smp_tac 3 1;
schirmer@12854
   889
b y case_tac "\<forall>Z. \<not>P Y s Z" 1;
schirmer@12854
   890
b y dres_inst_tac [("x","In1r Skip")] spec 1;
schirmer@12854
   891
b y Full_simp_tac 1;
schirmer@12854
   892
*)
schirmer@12854
   893
schirmer@12854
   894
lemma peek_and_forget1_Normal: 
schirmer@12854
   895
 "G,A\<turnstile>{Normal P} t\<succ> {Q} \<Longrightarrow> G,A\<turnstile>{Normal (P \<and>. p)} t\<succ> {Q}"
schirmer@12854
   896
apply (erule conseq1)
schirmer@12854
   897
apply (simp (no_asm))
schirmer@12854
   898
done
schirmer@12854
   899
schirmer@12854
   900
lemma peek_and_forget1: "G,A\<turnstile>{P} t\<succ> {Q} \<Longrightarrow> G,A\<turnstile>{P \<and>. p} t\<succ> {Q}"
schirmer@12854
   901
apply (erule conseq1)
schirmer@12854
   902
apply (simp (no_asm))
schirmer@12854
   903
done
schirmer@12854
   904
schirmer@12854
   905
lemmas ax_NormalD = peek_and_forget1 [of _ _ _ _ _ normal] 
schirmer@12854
   906
schirmer@12854
   907
lemma peek_and_forget2: "G,A\<turnstile>{P} t\<succ> {Q \<and>. p} \<Longrightarrow> G,A\<turnstile>{P} t\<succ> {Q}"
schirmer@12854
   908
apply (erule conseq2)
schirmer@12854
   909
apply (simp (no_asm))
schirmer@12854
   910
done
schirmer@12854
   911
schirmer@12854
   912
lemma ax_subst_Val_allI: "\<forall>v. G,A\<turnstile>{(P'               v )\<leftarrow>Val v} t\<succ> {Q v} \<Longrightarrow>  
schirmer@12854
   913
      \<forall>v. G,A\<turnstile>{(\<lambda>w:. P' (the_In1 w))\<leftarrow>Val v} t\<succ> {Q v}"
schirmer@12854
   914
apply (force elim!: conseq1)
schirmer@12854
   915
done
schirmer@12854
   916
schirmer@12854
   917
lemma ax_subst_Var_allI: "\<forall>v. G,A\<turnstile>{(P'               v )\<leftarrow>Var v} t\<succ> {Q v} \<Longrightarrow>  
schirmer@12854
   918
      \<forall>v. G,A\<turnstile>{(\<lambda>w:. P' (the_In2 w))\<leftarrow>Var v} t\<succ> {Q v}"
schirmer@12854
   919
apply (force elim!: conseq1)
schirmer@12854
   920
done
schirmer@12854
   921
schirmer@12854
   922
lemma ax_subst_Vals_allI: "(\<forall>v. G,A\<turnstile>{(     P'          v )\<leftarrow>Vals v} t\<succ> {Q v}) \<Longrightarrow>  
schirmer@12854
   923
       \<forall>v. G,A\<turnstile>{(\<lambda>w:. P' (the_In3 w))\<leftarrow>Vals v} t\<succ> {Q v}"
schirmer@12854
   924
apply (force elim!: conseq1)
schirmer@12854
   925
done
schirmer@12854
   926
schirmer@12854
   927
schirmer@12854
   928
section "alternative axioms"
schirmer@12854
   929
schirmer@12854
   930
lemma ax_Lit2: 
schirmer@12854
   931
  "G,(A::'a triple set)\<turnstile>{Normal P::'a assn} Lit v-\<succ> {Normal (P\<down>=Val v)}"
schirmer@12854
   932
apply (rule ax_derivs.Lit [THEN conseq1])
schirmer@12854
   933
apply force
schirmer@12854
   934
done
schirmer@12854
   935
lemma ax_Lit2_test_complete: 
schirmer@12854
   936
  "G,(A::'a triple set)\<turnstile>{Normal (P\<leftarrow>Val v)::'a assn} Lit v-\<succ> {P}"
schirmer@12854
   937
apply (rule ax_Lit2 [THEN conseq2])
schirmer@12854
   938
apply force
schirmer@12854
   939
done
schirmer@12854
   940
schirmer@12854
   941
lemma ax_LVar2: "G,(A::'a triple set)\<turnstile>{Normal P::'a assn} LVar vn=\<succ> {Normal (\<lambda>s.. P\<down>=Var (lvar vn s))}"
schirmer@12854
   942
apply (rule ax_derivs.LVar [THEN conseq1])
schirmer@12854
   943
apply force
schirmer@12854
   944
done
schirmer@12854
   945
schirmer@12854
   946
lemma ax_Super2: "G,(A::'a triple set)\<turnstile>
schirmer@12854
   947
  {Normal P::'a assn} Super-\<succ> {Normal (\<lambda>s.. P\<down>=Val (val_this s))}"
schirmer@12854
   948
apply (rule ax_derivs.Super [THEN conseq1])
schirmer@12854
   949
apply force
schirmer@12854
   950
done
schirmer@12854
   951
schirmer@12854
   952
lemma ax_Nil2: 
schirmer@12854
   953
  "G,(A::'a triple set)\<turnstile>{Normal P::'a assn} []\<doteq>\<succ> {Normal (P\<down>=Vals [])}"
schirmer@12854
   954
apply (rule ax_derivs.Nil [THEN conseq1])
schirmer@12854
   955
apply force
schirmer@12854
   956
done
schirmer@12854
   957
schirmer@12854
   958
schirmer@12854
   959
section "misc derived structural rules"
schirmer@12854
   960
schirmer@12854
   961
(* unused *)
schirmer@12854
   962
lemma ax_finite_mtriples_lemma: "\<lbrakk>F \<subseteq> ms; finite ms; \<forall>(C,sig)\<in>ms. 
schirmer@12854
   963
    G,(A::'a triple set)\<turnstile>{Normal (P C sig)::'a assn} mb C sig-\<succ> {Q C sig}\<rbrakk> \<Longrightarrow> 
schirmer@12854
   964
       G,A|\<turnstile>{{P} mb-\<succ> {Q} | F}"
schirmer@12854
   965
apply (frule (1) finite_subset)
schirmer@12854
   966
apply (erule make_imp)
schirmer@12854
   967
apply (erule thin_rl)
schirmer@12854
   968
apply (erule finite_induct)
schirmer@12854
   969
apply  (unfold mtriples_def)
schirmer@12854
   970
apply  (clarsimp intro!: ax_derivs.empty ax_derivs.insert)+
schirmer@12854
   971
apply force
schirmer@12854
   972
done
schirmer@12854
   973
lemmas ax_finite_mtriples = ax_finite_mtriples_lemma [OF subset_refl]
schirmer@12854
   974
schirmer@12854
   975
lemma ax_derivs_insertD: 
schirmer@12854
   976
 "G,(A::'a triple set)|\<turnstile>insert (t::'a triple) ts \<Longrightarrow> G,A\<turnstile>t \<and> G,A|\<turnstile>ts"
schirmer@12854
   977
apply (fast intro: ax_derivs.weaken)
schirmer@12854
   978
done
schirmer@12854
   979
schirmer@12854
   980
lemma ax_methods_spec: 
schirmer@12854
   981
"\<lbrakk>G,(A::'a triple set)|\<turnstile>split f ` ms; (C,sig) \<in> ms\<rbrakk>\<Longrightarrow> G,A\<turnstile>((f C sig)::'a triple)"
schirmer@12854
   982
apply (erule ax_derivs.weaken)
schirmer@12854
   983
apply (force del: image_eqI intro: rev_image_eqI)
schirmer@12854
   984
done
schirmer@12854
   985
schirmer@12854
   986
(* this version is used to avoid using the cut rule *)
schirmer@12854
   987
lemma ax_finite_pointwise_lemma [rule_format]: "\<lbrakk>F \<subseteq> ms; finite ms\<rbrakk> \<Longrightarrow>  
schirmer@12854
   988
  ((\<forall>(C,sig)\<in>F. G,(A::'a triple set)\<turnstile>(f C sig::'a triple)) \<longrightarrow> (\<forall>(C,sig)\<in>ms. G,A\<turnstile>(g C sig::'a triple))) \<longrightarrow>  
schirmer@12854
   989
      G,A|\<turnstile>split f ` F \<longrightarrow> G,A|\<turnstile>split g ` F"
schirmer@12854
   990
apply (frule (1) finite_subset)
schirmer@12854
   991
apply (erule make_imp)
schirmer@12854
   992
apply (erule thin_rl)
schirmer@12854
   993
apply (erule finite_induct)
schirmer@12854
   994
apply  clarsimp+
schirmer@12854
   995
apply (drule ax_derivs_insertD)
schirmer@12854
   996
apply (rule ax_derivs.insert)
schirmer@12854
   997
apply  (simp (no_asm_simp) only: split_tupled_all)
schirmer@12854
   998
apply  (auto elim: ax_methods_spec)
schirmer@12854
   999
done
schirmer@12854
  1000
lemmas ax_finite_pointwise = ax_finite_pointwise_lemma [OF subset_refl]
schirmer@12854
  1001
 
schirmer@12854
  1002
lemma ax_no_hazard: 
schirmer@12854
  1003
  "G,(A::'a triple set)\<turnstile>{P \<and>. type_ok G t} t\<succ> {Q::'a assn} \<Longrightarrow> G,A\<turnstile>{P} t\<succ> {Q}"
schirmer@12854
  1004
apply (erule ax_cases)
schirmer@12854
  1005
apply (rule ax_derivs.hazard [THEN conseq1])
schirmer@12854
  1006
apply force
schirmer@12854
  1007
done
schirmer@12854
  1008
schirmer@12854
  1009
lemma ax_free_wt: 
schirmer@12854
  1010
 "(\<exists>T L C. \<lparr>prg=G,cls=C,lcl=L\<rparr>\<turnstile>t\<Colon>T) 
schirmer@12854
  1011
  \<longrightarrow> G,(A::'a triple set)\<turnstile>{Normal P} t\<succ> {Q::'a assn} \<Longrightarrow> 
schirmer@12854
  1012
  G,A\<turnstile>{Normal P} t\<succ> {Q}"
schirmer@12854
  1013
apply (rule ax_no_hazard)
schirmer@12854
  1014
apply (rule ax_escape)
schirmer@12854
  1015
apply clarify
schirmer@12854
  1016
apply (erule mp [THEN conseq12])
schirmer@12854
  1017
apply  (auto simp add: type_ok_def)
schirmer@12854
  1018
done
schirmer@12854
  1019
schirmer@12854
  1020
ML {*
schirmer@12854
  1021
bind_thms ("ax_Abrupts", sum3_instantiate (thm "ax_derivs.Abrupt"))
schirmer@12854
  1022
*}
schirmer@12854
  1023
declare ax_Abrupts [intro!]
schirmer@12854
  1024
schirmer@12854
  1025
lemmas ax_Normal_cases = ax_cases [of _ _ normal]
schirmer@12854
  1026
schirmer@12854
  1027
lemma ax_Skip [intro!]: "G,(A::'a triple set)\<turnstile>{P\<leftarrow>\<diamondsuit>} .Skip. {P::'a assn}"
schirmer@12854
  1028
apply (rule ax_Normal_cases)
schirmer@12854
  1029
apply  (rule ax_derivs.Skip)
schirmer@12854
  1030
apply fast
schirmer@12854
  1031
done
schirmer@12854
  1032
lemmas ax_SkipI = ax_Skip [THEN conseq1, standard]
schirmer@12854
  1033
schirmer@12854
  1034
schirmer@12854
  1035
section "derived rules for methd call"
schirmer@12854
  1036
schirmer@12854
  1037
lemma ax_Call_known_DynT: 
schirmer@12854
  1038
"\<lbrakk>G\<turnstile>IntVir\<rightarrow>C\<preceq>statT; 
schirmer@12854
  1039
  \<forall>a vs l. G,A\<turnstile>{(R a\<leftarrow>Vals vs \<and>. (\<lambda>s. l = locals (store s)) ;.
schirmer@12854
  1040
  init_lvars G C \<lparr>name=mn,parTs=pTs\<rparr> IntVir a vs)} 
schirmer@12854
  1041
    Methd C \<lparr>name=mn,parTs=pTs\<rparr>-\<succ> {set_lvars l .; S}; 
schirmer@12854
  1042
  \<forall>a. G,A\<turnstile>{Q\<leftarrow>Val a} args\<doteq>\<succ>  
schirmer@12854
  1043
       {R a \<and>. (\<lambda>s. C = obj_class (the (heap (store s) (the_Addr a))) \<and>
schirmer@12854
  1044
                     C = invocation_declclass 
schirmer@12854
  1045
                            G IntVir (store s) a statT \<lparr>name=mn,parTs=pTs\<rparr> )};  
schirmer@12854
  1046
       G,(A::'a triple set)\<turnstile>{Normal P} e-\<succ> {Q::'a assn}\<rbrakk>  
schirmer@12854
  1047
   \<Longrightarrow> G,A\<turnstile>{Normal P} {statT,IntVir}e\<cdot>mn({pTs}args)-\<succ> {S}"
schirmer@12854
  1048
apply (erule ax_derivs.Call)
schirmer@12854
  1049
apply  safe
schirmer@12854
  1050
apply  (erule spec)
schirmer@12854
  1051
apply (rule ax_escape, clarsimp)
schirmer@12854
  1052
apply (drule spec, drule spec, drule spec,erule conseq12)
schirmer@12854
  1053
apply force
schirmer@12854
  1054
done
schirmer@12854
  1055
schirmer@12854
  1056
schirmer@12854
  1057
lemma ax_Call_Static: 
schirmer@12854
  1058
 "\<lbrakk>\<forall>a vs l. G,A\<turnstile>{R a\<leftarrow>Vals vs \<and>. (\<lambda>s. l = locals (store s)) ;.  
schirmer@12854
  1059
               init_lvars G C \<lparr>name=mn,parTs=pTs\<rparr> Static any_Addr vs}  
schirmer@12854
  1060
              Methd C \<lparr>name=mn,parTs=pTs\<rparr>-\<succ> {set_lvars l .; S}; 
schirmer@12854
  1061
  G,A\<turnstile>{Normal P} e-\<succ> {Q};
schirmer@12854
  1062
  \<forall> a. G,(A::'a triple set)\<turnstile>{Q\<leftarrow>Val a} args\<doteq>\<succ> {(R::val \<Rightarrow> 'a assn)  a 
schirmer@12854
  1063
  \<and>. (\<lambda> s. C=invocation_declclass 
schirmer@12854
  1064
                G Static (store s) a statT \<lparr>name=mn,parTs=pTs\<rparr>)}
schirmer@12854
  1065
\<rbrakk>  \<Longrightarrow>  G,A\<turnstile>{Normal P} {statT,Static}e\<cdot>mn({pTs}args)-\<succ> {S}"
schirmer@12854
  1066
apply (erule ax_derivs.Call)
schirmer@12854
  1067
apply  safe
schirmer@12854
  1068
apply  (erule spec)
schirmer@12854
  1069
apply (rule ax_escape, clarsimp)
schirmer@12854
  1070
apply (erule_tac V = "?P \<longrightarrow> ?Q" in thin_rl)
schirmer@12854
  1071
apply (drule spec,drule spec,drule spec, erule conseq12)
schirmer@12854
  1072
apply (force simp add: init_lvars_def)
schirmer@12854
  1073
done
schirmer@12854
  1074
schirmer@12854
  1075
lemma ax_Methd1: 
schirmer@12854
  1076
 "\<lbrakk>G,A\<union>{{P} Methd-\<succ> {Q} | ms}|\<turnstile> {{P} body G-\<succ> {Q} | ms}; (C,sig)\<in> ms\<rbrakk> \<Longrightarrow> 
schirmer@12854
  1077
       G,A\<turnstile>{Normal (P C sig)} Methd C sig-\<succ> {Q C sig}"
schirmer@12854
  1078
apply (drule ax_derivs.Methd)
schirmer@12854
  1079
apply (unfold mtriples_def)
schirmer@12854
  1080
apply (erule (1) ax_methods_spec)
schirmer@12854
  1081
done
schirmer@12854
  1082
schirmer@12854
  1083
lemma ax_MethdN: 
schirmer@12854
  1084
"G,insert({Normal P} Methd  C sig-\<succ> {Q}) A\<turnstile> 
schirmer@12854
  1085
          {Normal P} body G C sig-\<succ> {Q} \<Longrightarrow>  
schirmer@12854
  1086
      G,A\<turnstile>{Normal P} Methd   C sig-\<succ> {Q}"
schirmer@12854
  1087
apply (rule ax_Methd1)
schirmer@12854
  1088
apply  (rule_tac [2] singletonI)
schirmer@12854
  1089
apply (unfold mtriples_def)
schirmer@12854
  1090
apply clarsimp
schirmer@12854
  1091
done
schirmer@12854
  1092
schirmer@12854
  1093
lemma ax_StatRef: 
schirmer@12854
  1094
  "G,(A::'a triple set)\<turnstile>{Normal (P\<leftarrow>Val Null)} StatRef rt-\<succ> {P::'a assn}"
schirmer@12854
  1095
apply (rule ax_derivs.Cast)
schirmer@12854
  1096
apply (rule ax_Lit2 [THEN conseq2])
schirmer@12854
  1097
apply clarsimp
schirmer@12854
  1098
done
schirmer@12854
  1099
schirmer@12854
  1100
section "rules derived from Init and Done"
schirmer@12854
  1101
schirmer@12854
  1102
  lemma ax_InitS: "\<lbrakk>the (class G C) = c; C \<noteq> Object;  
schirmer@12854
  1103
     \<forall>l. G,A\<turnstile>{Q \<and>. (\<lambda>s. l = locals (store s)) ;. set_lvars empty}  
schirmer@12854
  1104
            .init c. {set_lvars l .; R};   
schirmer@12854
  1105
         G,A\<turnstile>{Normal ((P \<and>. Not \<circ> initd C) ;. supd (init_class_obj G C))}  
schirmer@12854
  1106
  .Init (super c). {Q}\<rbrakk> \<Longrightarrow>  
schirmer@12854
  1107
  G,(A::'a triple set)\<turnstile>{Normal (P \<and>. Not \<circ> initd C)} .Init C. {R::'a assn}"
schirmer@12854
  1108
apply (erule ax_derivs.Init)
schirmer@12854
  1109
apply  (simp (no_asm_simp))
schirmer@12854
  1110
apply assumption
schirmer@12854
  1111
done
schirmer@12854
  1112
schirmer@12854
  1113
lemma ax_Init_Skip_lemma: 
schirmer@12854
  1114
"\<forall>l. G,(A::'a triple set)\<turnstile>{P\<leftarrow>\<diamondsuit> \<and>. (\<lambda>s. l = locals (store s)) ;. set_lvars l'}
schirmer@12854
  1115
  .Skip. {(set_lvars l .; P)::'a assn}"
schirmer@12854
  1116
apply (rule allI)
schirmer@12854
  1117
apply (rule ax_SkipI)
schirmer@12854
  1118
apply clarsimp
schirmer@12854
  1119
done
schirmer@12854
  1120
schirmer@12854
  1121
lemma ax_triv_InitS: "\<lbrakk>the (class G C) = c;init c = Skip; C \<noteq> Object; 
schirmer@12854
  1122
       P\<leftarrow>\<diamondsuit> \<Rightarrow> (supd (init_class_obj G C) .; P);  
schirmer@12854
  1123
       G,A\<turnstile>{Normal (P \<and>. initd C)} .Init (super c). {(P \<and>. initd C)\<leftarrow>\<diamondsuit>}\<rbrakk> \<Longrightarrow>  
schirmer@12854
  1124
       G,(A::'a triple set)\<turnstile>{Normal P\<leftarrow>\<diamondsuit>} .Init C. {(P \<and>. initd C)::'a assn}"
schirmer@12854
  1125
apply (rule_tac C = "initd C" in ax_cases)
schirmer@12854
  1126
apply  (rule conseq1, rule ax_derivs.Done, clarsimp)
schirmer@12854
  1127
apply (simp (no_asm))
schirmer@12854
  1128
apply (erule (1) ax_InitS)
schirmer@12854
  1129
apply  simp
schirmer@12854
  1130
apply  (rule ax_Init_Skip_lemma)
schirmer@12854
  1131
apply (erule conseq1)
schirmer@12854
  1132
apply force
schirmer@12854
  1133
done
schirmer@12854
  1134
schirmer@12854
  1135
lemma ax_Init_Object: "wf_prog G \<Longrightarrow> G,(A::'a triple set)\<turnstile>
schirmer@12854
  1136
  {Normal ((supd (init_class_obj G Object) .; P\<leftarrow>\<diamondsuit>) \<and>. Not \<circ> initd Object)} 
schirmer@12854
  1137
       .Init Object. {(P \<and>. initd Object)::'a assn}"
schirmer@12854
  1138
apply (rule ax_derivs.Init)
schirmer@12854
  1139
apply   (drule class_Object, force)
schirmer@12854
  1140
apply (simp_all (no_asm))
schirmer@12854
  1141
apply (rule_tac [2] ax_Init_Skip_lemma)
schirmer@12854
  1142
apply (rule ax_SkipI, force)
schirmer@12854
  1143
done
schirmer@12854
  1144
schirmer@12854
  1145
lemma ax_triv_Init_Object: "\<lbrakk>wf_prog G;  
schirmer@12854
  1146
       (P::'a assn) \<Rightarrow> (supd (init_class_obj G Object) .; P)\<rbrakk> \<Longrightarrow>  
schirmer@12854
  1147
  G,(A::'a triple set)\<turnstile>{Normal P\<leftarrow>\<diamondsuit>} .Init Object. {P \<and>. initd Object}"
schirmer@12854
  1148
apply (rule_tac C = "initd Object" in ax_cases)
schirmer@12854
  1149
apply  (rule conseq1, rule ax_derivs.Done, clarsimp)
schirmer@12854
  1150
apply (erule ax_Init_Object [THEN conseq1])
schirmer@12854
  1151
apply force
schirmer@12854
  1152
done
schirmer@12854
  1153
schirmer@12854
  1154
schirmer@12854
  1155
section "introduction rules for Alloc and SXAlloc"
schirmer@12854
  1156
schirmer@12854
  1157
lemma ax_SXAlloc_Normal: "G,A\<turnstile>{P} .c. {Normal Q} \<Longrightarrow> G,A\<turnstile>{P} .c. {SXAlloc G Q}"
schirmer@12854
  1158
apply (erule conseq2)
schirmer@12854
  1159
apply (clarsimp elim!: sxalloc_elim_cases simp add: split_tupled_all)
schirmer@12854
  1160
done
schirmer@12854
  1161
schirmer@12854
  1162
lemma ax_Alloc: 
schirmer@12854
  1163
  "G,A\<turnstile>{P} t\<succ> {Normal (\<lambda>Y (x,s) Z. (\<forall>a. new_Addr (heap s) = Some a \<longrightarrow>  
schirmer@12854
  1164
 Q (Val (Addr a)) (Norm(init_obj G (CInst C) (Heap a) s)) Z)) \<and>. 
schirmer@12854
  1165
    heap_free (Suc (Suc 0))}
schirmer@12854
  1166
   \<Longrightarrow> G,A\<turnstile>{P} t\<succ> {Alloc G (CInst C) Q}"
schirmer@12854
  1167
apply (erule conseq2)
schirmer@12854
  1168
apply (auto elim!: halloc_elim_cases)
schirmer@12854
  1169
done
schirmer@12854
  1170
schirmer@12854
  1171
lemma ax_Alloc_Arr: 
schirmer@12854
  1172
 "G,A\<turnstile>{P} t\<succ> {\<lambda>Val:i:. Normal (\<lambda>Y (x,s) Z. \<not>the_Intg i<0 \<and>  
schirmer@12854
  1173
  (\<forall>a. new_Addr (heap s) = Some a \<longrightarrow>  
schirmer@12854
  1174
  Q (Val (Addr a)) (Norm (init_obj G (Arr T (the_Intg i)) (Heap a) s)) Z)) \<and>. 
schirmer@12854
  1175
   heap_free (Suc (Suc 0))} \<Longrightarrow>  
schirmer@12854
  1176
 G,A\<turnstile>{P} t\<succ> {\<lambda>Val:i:. abupd (check_neg i) .; Alloc G (Arr T(the_Intg i)) Q}"
schirmer@12854
  1177
apply (erule conseq2)
schirmer@12854
  1178
apply (auto elim!: halloc_elim_cases)
schirmer@12854
  1179
done
schirmer@12854
  1180
schirmer@12854
  1181
lemma ax_SXAlloc_catch_SXcpt: 
schirmer@12854
  1182
 "\<lbrakk>G,A\<turnstile>{P} t\<succ> {(\<lambda>Y (x,s) Z. x=Some (Xcpt (Std xn)) \<and>  
schirmer@12854
  1183
  (\<forall>a. new_Addr (heap s) = Some a \<longrightarrow>  
schirmer@12854
  1184
  Q Y (Some (Xcpt (Loc a)),init_obj G (CInst (SXcpt xn)) (Heap a) s) Z))  
schirmer@12854
  1185
  \<and>. heap_free (Suc (Suc 0))}\<rbrakk> \<Longrightarrow>  
schirmer@12854
  1186
  G,A\<turnstile>{P} t\<succ> {SXAlloc G (\<lambda>Y s Z. Q Y s Z \<and> G,s\<turnstile>catch SXcpt xn)}"
schirmer@12854
  1187
apply (erule conseq2)
schirmer@12854
  1188
apply (auto elim!: sxalloc_elim_cases halloc_elim_cases)
schirmer@12854
  1189
done
schirmer@12854
  1190
schirmer@12854
  1191
end