src/HOL/Tools/Meson/meson_clausify.ML
author blanchet
Thu May 12 15:29:19 2011 +0200 (2011-05-12)
changeset 42739 017e5dac8642
parent 42361 23f352990944
child 42747 f132d13fcf75
permissions -rw-r--r--
added unfold set constant functionality to Meson/Metis -- disabled by default for now
blanchet@39941
     1
(*  Title:      HOL/Tools/Meson/meson_clausify.ML
blanchet@38027
     2
    Author:     Jia Meng, Cambridge University Computer Laboratory and NICTA
blanchet@36393
     3
    Author:     Jasmin Blanchette, TU Muenchen
paulson@15347
     4
blanchet@39941
     5
Transformation of HOL theorems into CNF forms.
paulson@15347
     6
*)
paulson@15347
     7
blanchet@39890
     8
signature MESON_CLAUSIFY =
wenzelm@21505
     9
sig
blanchet@39887
    10
  val new_skolem_var_prefix : string
blanchet@42098
    11
  val new_nonskolem_var_prefix : string
blanchet@42099
    12
  val is_zapped_var_name : string -> bool
blanchet@38632
    13
  val extensionalize_theorem : thm -> thm
blanchet@38001
    14
  val introduce_combinators_in_cterm : cterm -> thm
blanchet@38028
    15
  val introduce_combinators_in_theorem : thm -> thm
blanchet@39932
    16
  val cluster_of_zapped_var_name : string -> (int * (int * int)) * bool
blanchet@42336
    17
  val ss_only : thm list -> simpset
blanchet@39897
    18
  val cnf_axiom :
blanchet@39901
    19
    Proof.context -> bool -> int -> thm -> (thm * term) option * thm list
wenzelm@21505
    20
end;
mengj@19196
    21
blanchet@39890
    22
structure Meson_Clausify : MESON_CLAUSIFY =
paulson@15997
    23
struct
paulson@15347
    24
blanchet@39950
    25
open Meson
blanchet@39950
    26
blanchet@42072
    27
(* the extra "Meson" helps prevent clashes (FIXME) *)
blanchet@42072
    28
val new_skolem_var_prefix = "MesonSK"
blanchet@42072
    29
val new_nonskolem_var_prefix = "MesonV"
blanchet@39887
    30
blanchet@42099
    31
fun is_zapped_var_name s =
blanchet@42099
    32
  exists (fn prefix => String.isPrefix prefix s)
blanchet@42099
    33
         [new_skolem_var_prefix, new_nonskolem_var_prefix]
blanchet@42099
    34
paulson@15997
    35
(**** Transformation of Elimination Rules into First-Order Formulas****)
paulson@15347
    36
wenzelm@29064
    37
val cfalse = cterm_of @{theory HOL} HOLogic.false_const;
wenzelm@29064
    38
val ctp_false = cterm_of @{theory HOL} (HOLogic.mk_Trueprop HOLogic.false_const);
wenzelm@20461
    39
blanchet@38001
    40
(* Converts an elim-rule into an equivalent theorem that does not have the
blanchet@38001
    41
   predicate variable. Leaves other theorems unchanged. We simply instantiate
blanchet@38001
    42
   the conclusion variable to False. (Cf. "transform_elim_term" in
blanchet@38652
    43
   "Sledgehammer_Util".) *)
blanchet@38001
    44
fun transform_elim_theorem th =
paulson@21430
    45
  case concl_of th of    (*conclusion variable*)
blanchet@35963
    46
       @{const Trueprop} $ (v as Var (_, @{typ bool})) =>
wenzelm@29064
    47
           Thm.instantiate ([], [(cterm_of @{theory HOL} v, cfalse)]) th
blanchet@35963
    48
    | v as Var(_, @{typ prop}) =>
wenzelm@29064
    49
           Thm.instantiate ([], [(cterm_of @{theory HOL} v, ctp_false)]) th
blanchet@38001
    50
    | _ => th
paulson@15997
    51
wenzelm@28544
    52
paulson@16009
    53
(**** SKOLEMIZATION BY INFERENCE (lcp) ****)
paulson@16009
    54
blanchet@39886
    55
fun mk_old_skolem_term_wrapper t =
blanchet@37436
    56
  let val T = fastype_of t in
blanchet@39962
    57
    Const (@{const_name Meson.skolem}, T --> T) $ t
blanchet@37436
    58
  end
blanchet@37410
    59
blanchet@39931
    60
fun beta_eta_in_abs_body (Abs (s, T, t')) = Abs (s, T, beta_eta_in_abs_body t')
blanchet@39931
    61
  | beta_eta_in_abs_body t = Envir.beta_eta_contract t
blanchet@37512
    62
paulson@18141
    63
(*Traverse a theorem, accumulating Skolem function definitions.*)
blanchet@39886
    64
fun old_skolem_defs th =
blanchet@37399
    65
  let
blanchet@39376
    66
    fun dec_sko (Const (@{const_name Ex}, _) $ (body as Abs (_, T, p))) rhss =
blanchet@37399
    67
        (*Existential: declare a Skolem function, then insert into body and continue*)
blanchet@37399
    68
        let
blanchet@37617
    69
          val args = OldTerm.term_frees body
blanchet@37500
    70
          (* Forms a lambda-abstraction over the formal parameters *)
blanchet@37500
    71
          val rhs =
blanchet@37500
    72
            list_abs_free (map dest_Free args,
blanchet@39931
    73
                           HOLogic.choice_const T $ beta_eta_in_abs_body body)
blanchet@39886
    74
            |> mk_old_skolem_term_wrapper
blanchet@37518
    75
          val comb = list_comb (rhs, args)
blanchet@37617
    76
        in dec_sko (subst_bound (comb, p)) (rhs :: rhss) end
blanchet@37617
    77
      | dec_sko (Const (@{const_name All},_) $ Abs (a, T, p)) rhss =
blanchet@37399
    78
        (*Universal quant: insert a free variable into body and continue*)
blanchet@37399
    79
        let val fname = Name.variant (OldTerm.add_term_names (p,[])) a
blanchet@37617
    80
        in dec_sko (subst_bound (Free(fname,T), p)) rhss end
blanchet@39906
    81
      | dec_sko (@{const conj} $ p $ q) rhss = rhss |> dec_sko p |> dec_sko q
blanchet@39906
    82
      | dec_sko (@{const disj} $ p $ q) rhss = rhss |> dec_sko p |> dec_sko q
blanchet@37617
    83
      | dec_sko (@{const Trueprop} $ p) rhss = dec_sko p rhss
blanchet@37617
    84
      | dec_sko _ rhss = rhss
paulson@20419
    85
  in  dec_sko (prop_of th) []  end;
paulson@20419
    86
paulson@20419
    87
paulson@24827
    88
(**** REPLACING ABSTRACTIONS BY COMBINATORS ****)
paulson@20419
    89
nipkow@39302
    90
val fun_cong_all = @{thm fun_eq_iff [THEN iffD1]}
paulson@20419
    91
blanchet@38001
    92
(* Removes the lambdas from an equation of the form "t = (%x. u)".
blanchet@38608
    93
   (Cf. "extensionalize_term" in "Sledgehammer_Translate".) *)
blanchet@38000
    94
fun extensionalize_theorem th =
blanchet@37540
    95
  case prop_of th of
haftmann@38864
    96
    _ $ (Const (@{const_name HOL.eq}, Type (_, [Type (@{type_name fun}, _), _]))
blanchet@39376
    97
         $ _ $ Abs _) => extensionalize_theorem (th RS fun_cong_all)
blanchet@37540
    98
  | _ => th
paulson@20419
    99
blanchet@39962
   100
fun is_quasi_lambda_free (Const (@{const_name Meson.skolem}, _) $ _) = true
blanchet@37416
   101
  | is_quasi_lambda_free (t1 $ t2) =
blanchet@37416
   102
    is_quasi_lambda_free t1 andalso is_quasi_lambda_free t2
blanchet@37416
   103
  | is_quasi_lambda_free (Abs _) = false
blanchet@37416
   104
  | is_quasi_lambda_free _ = true
wenzelm@20461
   105
wenzelm@32010
   106
val [f_B,g_B] = map (cterm_of @{theory}) (OldTerm.term_vars (prop_of @{thm abs_B}));
wenzelm@32010
   107
val [g_C,f_C] = map (cterm_of @{theory}) (OldTerm.term_vars (prop_of @{thm abs_C}));
wenzelm@32010
   108
val [f_S,g_S] = map (cterm_of @{theory}) (OldTerm.term_vars (prop_of @{thm abs_S}));
paulson@20863
   109
blanchet@38282
   110
(* FIXME: Requires more use of cterm constructors. *)
paulson@24827
   111
fun abstract ct =
wenzelm@28544
   112
  let
wenzelm@28544
   113
      val thy = theory_of_cterm ct
paulson@25256
   114
      val Abs(x,_,body) = term_of ct
blanchet@35963
   115
      val Type(@{type_name fun}, [xT,bodyT]) = typ_of (ctyp_of_term ct)
blanchet@38005
   116
      val cxT = ctyp_of thy xT
blanchet@38005
   117
      val cbodyT = ctyp_of thy bodyT
blanchet@38005
   118
      fun makeK () =
blanchet@38005
   119
        instantiate' [SOME cxT, SOME cbodyT] [SOME (cterm_of thy body)]
blanchet@38005
   120
                     @{thm abs_K}
paulson@24827
   121
  in
paulson@24827
   122
      case body of
paulson@24827
   123
          Const _ => makeK()
paulson@24827
   124
        | Free _ => makeK()
paulson@24827
   125
        | Var _ => makeK()  (*though Var isn't expected*)
wenzelm@27184
   126
        | Bound 0 => instantiate' [SOME cxT] [] @{thm abs_I} (*identity: I*)
paulson@24827
   127
        | rator$rand =>
wenzelm@42083
   128
            if Term.is_dependent rator then (*C or S*)
wenzelm@42083
   129
               if Term.is_dependent rand then (*S*)
wenzelm@27179
   130
                 let val crator = cterm_of thy (Abs(x,xT,rator))
wenzelm@27179
   131
                     val crand = cterm_of thy (Abs(x,xT,rand))
wenzelm@27184
   132
                     val abs_S' = cterm_instantiate [(f_S,crator),(g_S,crand)] @{thm abs_S}
wenzelm@27184
   133
                     val (_,rhs) = Thm.dest_equals (cprop_of abs_S')
wenzelm@27179
   134
                 in
wenzelm@27179
   135
                   Thm.transitive abs_S' (Conv.binop_conv abstract rhs)
wenzelm@27179
   136
                 end
wenzelm@27179
   137
               else (*C*)
wenzelm@27179
   138
                 let val crator = cterm_of thy (Abs(x,xT,rator))
wenzelm@27184
   139
                     val abs_C' = cterm_instantiate [(f_C,crator),(g_C,cterm_of thy rand)] @{thm abs_C}
wenzelm@27184
   140
                     val (_,rhs) = Thm.dest_equals (cprop_of abs_C')
wenzelm@27179
   141
                 in
wenzelm@27179
   142
                   Thm.transitive abs_C' (Conv.fun_conv (Conv.arg_conv abstract) rhs)
wenzelm@27179
   143
                 end
wenzelm@42083
   144
            else if Term.is_dependent rand then (*B or eta*)
wenzelm@36945
   145
               if rand = Bound 0 then Thm.eta_conversion ct
wenzelm@27179
   146
               else (*B*)
wenzelm@27179
   147
                 let val crand = cterm_of thy (Abs(x,xT,rand))
wenzelm@27179
   148
                     val crator = cterm_of thy rator
wenzelm@27184
   149
                     val abs_B' = cterm_instantiate [(f_B,crator),(g_B,crand)] @{thm abs_B}
wenzelm@27184
   150
                     val (_,rhs) = Thm.dest_equals (cprop_of abs_B')
blanchet@37349
   151
                 in Thm.transitive abs_B' (Conv.arg_conv abstract rhs) end
wenzelm@27179
   152
            else makeK()
blanchet@37349
   153
        | _ => raise Fail "abstract: Bad term"
paulson@24827
   154
  end;
paulson@20863
   155
blanchet@37349
   156
(* Traverse a theorem, remplacing lambda-abstractions with combinators. *)
blanchet@38001
   157
fun introduce_combinators_in_cterm ct =
blanchet@37416
   158
  if is_quasi_lambda_free (term_of ct) then
blanchet@37349
   159
    Thm.reflexive ct
blanchet@37349
   160
  else case term_of ct of
blanchet@37349
   161
    Abs _ =>
blanchet@37349
   162
    let
blanchet@37349
   163
      val (cv, cta) = Thm.dest_abs NONE ct
blanchet@37349
   164
      val (v, _) = dest_Free (term_of cv)
blanchet@38001
   165
      val u_th = introduce_combinators_in_cterm cta
blanchet@37349
   166
      val cu = Thm.rhs_of u_th
blanchet@37349
   167
      val comb_eq = abstract (Thm.cabs cv cu)
blanchet@37349
   168
    in Thm.transitive (Thm.abstract_rule v cv u_th) comb_eq end
blanchet@37349
   169
  | _ $ _ =>
blanchet@37349
   170
    let val (ct1, ct2) = Thm.dest_comb ct in
blanchet@38001
   171
        Thm.combination (introduce_combinators_in_cterm ct1)
blanchet@38001
   172
                        (introduce_combinators_in_cterm ct2)
blanchet@37349
   173
    end
blanchet@37349
   174
blanchet@38001
   175
fun introduce_combinators_in_theorem th =
blanchet@37416
   176
  if is_quasi_lambda_free (prop_of th) then
blanchet@37349
   177
    th
paulson@24827
   178
  else
blanchet@37349
   179
    let
blanchet@37349
   180
      val th = Drule.eta_contraction_rule th
blanchet@38001
   181
      val eqth = introduce_combinators_in_cterm (cprop_of th)
blanchet@37349
   182
    in Thm.equal_elim eqth th end
blanchet@37349
   183
    handle THM (msg, _, _) =>
blanchet@37349
   184
           (warning ("Error in the combinator translation of " ^
blanchet@37349
   185
                     Display.string_of_thm_without_context th ^
blanchet@37349
   186
                     "\nException message: " ^ msg ^ ".");
blanchet@37349
   187
            (* A type variable of sort "{}" will make abstraction fail. *)
blanchet@37349
   188
            TrueI)
paulson@16009
   189
paulson@16009
   190
(*cterms are used throughout for efficiency*)
blanchet@38280
   191
val cTrueprop = cterm_of @{theory HOL} HOLogic.Trueprop;
paulson@16009
   192
paulson@16009
   193
(*Given an abstraction over n variables, replace the bound variables by free
paulson@16009
   194
  ones. Return the body, along with the list of free variables.*)
wenzelm@20461
   195
fun c_variant_abs_multi (ct0, vars) =
paulson@16009
   196
      let val (cv,ct) = Thm.dest_abs NONE ct0
paulson@16009
   197
      in  c_variant_abs_multi (ct, cv::vars)  end
paulson@16009
   198
      handle CTERM _ => (ct0, rev vars);
paulson@16009
   199
blanchet@39355
   200
val skolem_def_raw = @{thms skolem_def_raw}
blanchet@37617
   201
blanchet@37617
   202
(* Given the definition of a Skolem function, return a theorem to replace
blanchet@37617
   203
   an existential formula by a use of that function.
paulson@18141
   204
   Example: "EX x. x : A & x ~: B ==> sko A B : A & sko A B ~: B"  [.] *)
blanchet@39886
   205
fun old_skolem_theorem_from_def thy rhs0 =
blanchet@37399
   206
  let
blanchet@38280
   207
    val rhs = rhs0 |> Type.legacy_freeze_thaw |> #1 |> cterm_of thy
blanchet@37617
   208
    val rhs' = rhs |> Thm.dest_comb |> snd
blanchet@37617
   209
    val (ch, frees) = c_variant_abs_multi (rhs', [])
blanchet@37617
   210
    val (hilbert, cabs) = ch |> Thm.dest_comb |>> term_of
blanchet@37617
   211
    val T =
blanchet@37617
   212
      case hilbert of
blanchet@39941
   213
        Const (_, Type (@{type_name fun}, [_, T])) => T
blanchet@39886
   214
      | _ => raise TERM ("old_skolem_theorem_from_def: expected \"Eps\"",
blanchet@39886
   215
                         [hilbert])
blanchet@38280
   216
    val cex = cterm_of thy (HOLogic.exists_const T)
blanchet@37617
   217
    val ex_tm = Thm.capply cTrueprop (Thm.capply cex cabs)
blanchet@37629
   218
    val conc =
blanchet@37617
   219
      Drule.list_comb (rhs, frees)
blanchet@37617
   220
      |> Drule.beta_conv cabs |> Thm.capply cTrueprop
blanchet@37617
   221
    fun tacf [prem] =
blanchet@39355
   222
      rewrite_goals_tac skolem_def_raw
blanchet@39941
   223
      THEN rtac ((prem |> rewrite_rule skolem_def_raw)
blanchet@39949
   224
                 RS Global_Theory.get_thm thy "Hilbert_Choice.someI_ex") 1
blanchet@37617
   225
  in
blanchet@37629
   226
    Goal.prove_internal [ex_tm] conc tacf
blanchet@37629
   227
    |> forall_intr_list frees
blanchet@37629
   228
    |> Thm.forall_elim_vars 0  (*Introduce Vars, but don't discharge defs.*)
blanchet@37629
   229
    |> Thm.varifyT_global
blanchet@37617
   230
  end
paulson@24742
   231
blanchet@42335
   232
fun to_definitional_cnf_with_quantifiers ctxt th =
blanchet@39036
   233
  let
blanchet@42335
   234
    val eqth = cnf.make_cnfx_thm ctxt (HOLogic.dest_Trueprop (prop_of th))
blanchet@39036
   235
    val eqth = eqth RS @{thm eq_reflection}
blanchet@39036
   236
    val eqth = eqth RS @{thm TruepropI}
blanchet@39036
   237
  in Thm.equal_elim eqth th end
blanchet@39036
   238
blanchet@39932
   239
fun zapped_var_name ((ax_no, cluster_no), skolem) index_no s =
blanchet@39896
   240
  (if skolem then new_skolem_var_prefix else new_nonskolem_var_prefix) ^
blanchet@39932
   241
  "_" ^ string_of_int ax_no ^ "_" ^ string_of_int cluster_no ^ "_" ^
blanchet@40261
   242
  string_of_int index_no ^ "_" ^ Name.desymbolize false s
blanchet@39896
   243
blanchet@39899
   244
fun cluster_of_zapped_var_name s =
blanchet@39932
   245
  let val get_int = the o Int.fromString o nth (space_explode "_" s) in
blanchet@39932
   246
    ((get_int 1, (get_int 2, get_int 3)),
blanchet@39932
   247
     String.isPrefix new_skolem_var_prefix s)
blanchet@39932
   248
  end
blanchet@39897
   249
blanchet@40260
   250
fun rename_bound_vars_to_be_zapped ax_no =
blanchet@40260
   251
  let
blanchet@40260
   252
    fun aux (cluster as (cluster_no, cluster_skolem)) index_no pos t =
blanchet@40260
   253
      case t of
blanchet@40260
   254
        (t1 as Const (s, _)) $ Abs (s', T, t') =>
blanchet@39906
   255
        if s = @{const_name all} orelse s = @{const_name All} orelse
blanchet@39906
   256
           s = @{const_name Ex} then
blanchet@39932
   257
          let
blanchet@39932
   258
            val skolem = (pos = (s = @{const_name Ex}))
blanchet@39932
   259
            val (cluster, index_no) =
blanchet@39932
   260
              if skolem = cluster_skolem then (cluster, index_no)
blanchet@39932
   261
              else ((cluster_no ||> cluster_skolem ? Integer.add 1, skolem), 0)
blanchet@40260
   262
            val s' = zapped_var_name cluster index_no s'
blanchet@40260
   263
          in t1 $ Abs (s', T, aux cluster (index_no + 1) pos t') end
blanchet@40260
   264
        else
blanchet@40260
   265
          t
blanchet@40260
   266
      | (t1 as Const (s, _)) $ t2 $ t3 =>
blanchet@40260
   267
        if s = @{const_name "==>"} orelse s = @{const_name HOL.implies} then
blanchet@40260
   268
          t1 $ aux cluster index_no (not pos) t2 $ aux cluster index_no pos t3
blanchet@40260
   269
        else if s = @{const_name HOL.conj} orelse
blanchet@40260
   270
                s = @{const_name HOL.disj} then
blanchet@40260
   271
          t1 $ aux cluster index_no pos t2 $ aux cluster index_no pos t3
blanchet@40260
   272
        else
blanchet@40260
   273
          t
blanchet@40260
   274
      | (t1 as Const (s, _)) $ t2 =>
blanchet@40260
   275
        if s = @{const_name Trueprop} then
blanchet@40260
   276
          t1 $ aux cluster index_no pos t2
blanchet@40260
   277
        else if s = @{const_name Not} then
blanchet@40260
   278
          t1 $ aux cluster index_no (not pos) t2
blanchet@40260
   279
        else
blanchet@40260
   280
          t
blanchet@40260
   281
      | _ => t
blanchet@40260
   282
  in aux ((ax_no, 0), true) 0 true end
blanchet@40260
   283
blanchet@40260
   284
fun zap pos ct =
blanchet@40260
   285
  ct
blanchet@40260
   286
  |> (case term_of ct of
blanchet@40260
   287
        Const (s, _) $ Abs (s', _, _) =>
blanchet@40260
   288
        if s = @{const_name all} orelse s = @{const_name All} orelse
blanchet@40260
   289
           s = @{const_name Ex} then
blanchet@40260
   290
          Thm.dest_comb #> snd #> Thm.dest_abs (SOME s') #> snd #> zap pos
blanchet@39906
   291
        else
blanchet@39906
   292
          Conv.all_conv
blanchet@39906
   293
      | Const (s, _) $ _ $ _ =>
blanchet@39906
   294
        if s = @{const_name "==>"} orelse s = @{const_name implies} then
blanchet@40260
   295
          Conv.combination_conv (Conv.arg_conv (zap (not pos))) (zap pos)
blanchet@39906
   296
        else if s = @{const_name conj} orelse s = @{const_name disj} then
blanchet@40260
   297
          Conv.combination_conv (Conv.arg_conv (zap pos)) (zap pos)
blanchet@39906
   298
        else
blanchet@39906
   299
          Conv.all_conv
blanchet@39906
   300
      | Const (s, _) $ _ =>
blanchet@40260
   301
        if s = @{const_name Trueprop} then Conv.arg_conv (zap pos)
blanchet@40260
   302
        else if s = @{const_name Not} then Conv.arg_conv (zap (not pos))
blanchet@40260
   303
        else Conv.all_conv
blanchet@39906
   304
      | _ => Conv.all_conv)
blanchet@39887
   305
wenzelm@41225
   306
fun ss_only ths = Simplifier.clear_ss HOL_basic_ss addsimps ths
blanchet@39901
   307
blanchet@40261
   308
val cheat_choice =
blanchet@39901
   309
  @{prop "ALL x. EX y. Q x y ==> EX f. ALL x. Q x (f x)"}
blanchet@39901
   310
  |> Logic.varify_global
blanchet@39901
   311
  |> Skip_Proof.make_thm @{theory}
blanchet@39887
   312
blanchet@39887
   313
(* Converts an Isabelle theorem into NNF. *)
blanchet@39901
   314
fun nnf_axiom choice_ths new_skolemizer ax_no th ctxt =
blanchet@39887
   315
  let
wenzelm@42361
   316
    val thy = Proof_Context.theory_of ctxt
blanchet@39887
   317
    val th =
blanchet@39887
   318
      th |> transform_elim_theorem
blanchet@39887
   319
         |> zero_var_indexes
blanchet@39887
   320
         |> new_skolemizer ? forall_intr_vars
blanchet@39887
   321
    val (th, ctxt) = Variable.import true [th] ctxt |>> snd |>> the_single
blanchet@39887
   322
    val th = th |> Conv.fconv_rule Object_Logic.atomize
blanchet@42739
   323
                |> Raw_Simplifier.rewrite_rule (unfold_set_const_simps ctxt)
blanchet@39887
   324
                |> extensionalize_theorem
blanchet@39950
   325
                |> make_nnf ctxt
blanchet@39887
   326
  in
blanchet@39887
   327
    if new_skolemizer then
blanchet@39887
   328
      let
blanchet@39901
   329
        fun skolemize choice_ths =
blanchet@39950
   330
          skolemize_with_choice_theorems ctxt choice_ths
blanchet@39901
   331
          #> simplify (ss_only @{thms all_simps[symmetric]})
blanchet@42347
   332
        val no_choice = null choice_ths
blanchet@39901
   333
        val pull_out =
blanchet@42347
   334
          if no_choice then
blanchet@42347
   335
            simplify (ss_only @{thms all_simps[symmetric] ex_simps[symmetric]})
blanchet@42347
   336
          else
blanchet@42347
   337
            skolemize choice_ths
blanchet@42347
   338
        val discharger_th = th |> pull_out
blanchet@40260
   339
        val discharger_th =
blanchet@42347
   340
          discharger_th |> has_too_many_clauses ctxt (concl_of discharger_th)
blanchet@42347
   341
                           ? (to_definitional_cnf_with_quantifiers ctxt
blanchet@42347
   342
                              #> pull_out)
blanchet@42099
   343
        val zapped_th =
blanchet@40263
   344
          discharger_th |> prop_of |> rename_bound_vars_to_be_zapped ax_no
blanchet@40263
   345
          |> (if no_choice then
blanchet@40263
   346
                Skip_Proof.make_thm thy #> skolemize [cheat_choice] #> cprop_of
blanchet@40263
   347
              else
blanchet@40263
   348
                cterm_of thy)
blanchet@42099
   349
          |> zap true
blanchet@42099
   350
        val fixes =
blanchet@42335
   351
          [] |> Term.add_free_names (prop_of zapped_th)
blanchet@42335
   352
             |> filter is_zapped_var_name
blanchet@42269
   353
        val ctxt' = ctxt |> Variable.add_fixes_direct fixes
blanchet@42099
   354
        val fully_skolemized_t =
blanchet@42333
   355
          zapped_th |> singleton (Variable.export ctxt' ctxt)
blanchet@42333
   356
                    |> cprop_of |> Thm.dest_equals |> snd |> term_of
blanchet@39887
   357
      in
blanchet@39887
   358
        if exists_subterm (fn Var ((s, _), _) =>
blanchet@39887
   359
                              String.isPrefix new_skolem_var_prefix s
blanchet@40260
   360
                            | _ => false) fully_skolemized_t then
blanchet@39887
   361
          let
blanchet@40260
   362
            val (fully_skolemized_ct, ctxt) =
blanchet@40260
   363
              Variable.import_terms true [fully_skolemized_t] ctxt
blanchet@39887
   364
              |>> the_single |>> cterm_of thy
blanchet@40260
   365
          in
blanchet@40260
   366
            (SOME (discharger_th, fully_skolemized_ct),
blanchet@40262
   367
             (Thm.assume fully_skolemized_ct, ctxt))
blanchet@40260
   368
          end
blanchet@39887
   369
       else
blanchet@40262
   370
         (NONE, (th, ctxt))
blanchet@39887
   371
      end
blanchet@39887
   372
    else
blanchet@42347
   373
      (NONE, (th |> has_too_many_clauses ctxt (concl_of th)
blanchet@42347
   374
                    ? to_definitional_cnf_with_quantifiers ctxt, ctxt))
blanchet@39887
   375
  end
blanchet@39887
   376
blanchet@39887
   377
(* Convert a theorem to CNF, with additional premises due to skolemization. *)
blanchet@39901
   378
fun cnf_axiom ctxt0 new_skolemizer ax_no th =
blanchet@37626
   379
  let
wenzelm@42361
   380
    val thy = Proof_Context.theory_of ctxt0
blanchet@39950
   381
    val choice_ths = choice_theorems thy
blanchet@40262
   382
    val (opt, (nnf_th, ctxt)) =
blanchet@40262
   383
      nnf_axiom choice_ths new_skolemizer ax_no th ctxt0
blanchet@39894
   384
    fun clausify th =
blanchet@42347
   385
      make_cnf (if new_skolemizer orelse null choice_ths then []
blanchet@42347
   386
                else map (old_skolem_theorem_from_def thy) (old_skolem_defs th))
blanchet@42347
   387
               th ctxt
blanchet@42347
   388
    val (cnf_ths, ctxt) = clausify nnf_th
blanchet@39894
   389
    fun intr_imp ct th =
blanchet@39950
   390
      Thm.instantiate ([], map (pairself (cterm_of thy))
blanchet@39962
   391
                               [(Var (("i", 0), @{typ nat}),
blanchet@39902
   392
                                 HOLogic.mk_nat ax_no)])
blanchet@39962
   393
                      (zero_var_indexes @{thm skolem_COMBK_D})
blanchet@39894
   394
      RS Thm.implies_intr ct th
blanchet@37626
   395
  in
blanchet@39897
   396
    (opt |> Option.map (I #>> singleton (Variable.export ctxt ctxt0)
blanchet@39897
   397
                        ##> (term_of #> HOLogic.dest_Trueprop
blanchet@39897
   398
                             #> singleton (Variable.export_terms ctxt ctxt0))),
blanchet@39887
   399
     cnf_ths |> map (introduce_combinators_in_theorem
blanchet@39894
   400
                     #> (case opt of SOME (_, ct) => intr_imp ct | NONE => I))
blanchet@39897
   401
             |> Variable.export ctxt ctxt0
blanchet@39950
   402
             |> finish_cnf
blanchet@39887
   403
             |> map Thm.close_derivation)
blanchet@37626
   404
  end
blanchet@39887
   405
  handle THM _ => (NONE, [])
wenzelm@27184
   406
wenzelm@20461
   407
end;