src/HOL/Library/Permutation.thy
author wenzelm
Tue Aug 27 22:40:39 2013 +0200 (2013-08-27)
changeset 53238 01ef0a103fc9
parent 51542 738598beeb26
child 55584 a879f14b6f95
permissions -rw-r--r--
tuned proofs;
wenzelm@11054
     1
(*  Title:      HOL/Library/Permutation.thy
paulson@15005
     2
    Author:     Lawrence C Paulson and Thomas M Rasmussen and Norbert Voelker
wenzelm@11054
     3
*)
wenzelm@11054
     4
wenzelm@14706
     5
header {* Permutations *}
wenzelm@11054
     6
nipkow@15131
     7
theory Permutation
wenzelm@51542
     8
imports Multiset
nipkow@15131
     9
begin
wenzelm@11054
    10
wenzelm@53238
    11
inductive perm :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool"  ("_ <~~> _"  [50, 50] 50)  (* FIXME proper infix, without ambiguity!? *)
wenzelm@53238
    12
where
wenzelm@53238
    13
  Nil [intro!]: "[] <~~> []"
wenzelm@53238
    14
| swap [intro!]: "y # x # l <~~> x # y # l"
wenzelm@53238
    15
| Cons [intro!]: "xs <~~> ys \<Longrightarrow> z # xs <~~> z # ys"
wenzelm@53238
    16
| trans [intro]: "xs <~~> ys \<Longrightarrow> ys <~~> zs \<Longrightarrow> xs <~~> zs"
wenzelm@11054
    17
wenzelm@11054
    18
lemma perm_refl [iff]: "l <~~> l"
wenzelm@17200
    19
  by (induct l) auto
wenzelm@11054
    20
wenzelm@11054
    21
wenzelm@11054
    22
subsection {* Some examples of rule induction on permutations *}
wenzelm@11054
    23
wenzelm@53238
    24
lemma xperm_empty_imp: "[] <~~> ys \<Longrightarrow> ys = []"
wenzelm@25379
    25
  by (induct xs == "[]::'a list" ys pred: perm) simp_all
wenzelm@11054
    26
wenzelm@11054
    27
wenzelm@11054
    28
text {*
wenzelm@11054
    29
  \medskip This more general theorem is easier to understand!
wenzelm@11054
    30
  *}
wenzelm@11054
    31
wenzelm@53238
    32
lemma perm_length: "xs <~~> ys \<Longrightarrow> length xs = length ys"
wenzelm@25379
    33
  by (induct pred: perm) simp_all
wenzelm@11054
    34
wenzelm@53238
    35
lemma perm_empty_imp: "[] <~~> xs \<Longrightarrow> xs = []"
wenzelm@17200
    36
  by (drule perm_length) auto
wenzelm@11054
    37
wenzelm@53238
    38
lemma perm_sym: "xs <~~> ys \<Longrightarrow> ys <~~> xs"
wenzelm@25379
    39
  by (induct pred: perm) auto
wenzelm@11054
    40
wenzelm@11054
    41
wenzelm@11054
    42
subsection {* Ways of making new permutations *}
wenzelm@11054
    43
wenzelm@11054
    44
text {*
wenzelm@11054
    45
  We can insert the head anywhere in the list.
wenzelm@11054
    46
*}
wenzelm@11054
    47
wenzelm@11054
    48
lemma perm_append_Cons: "a # xs @ ys <~~> xs @ a # ys"
wenzelm@17200
    49
  by (induct xs) auto
wenzelm@11054
    50
wenzelm@11054
    51
lemma perm_append_swap: "xs @ ys <~~> ys @ xs"
wenzelm@17200
    52
  apply (induct xs)
wenzelm@17200
    53
    apply simp_all
wenzelm@11054
    54
  apply (blast intro: perm_append_Cons)
wenzelm@11054
    55
  done
wenzelm@11054
    56
wenzelm@11054
    57
lemma perm_append_single: "a # xs <~~> xs @ [a]"
wenzelm@17200
    58
  by (rule perm.trans [OF _ perm_append_swap]) simp
wenzelm@11054
    59
wenzelm@11054
    60
lemma perm_rev: "rev xs <~~> xs"
wenzelm@17200
    61
  apply (induct xs)
wenzelm@17200
    62
   apply simp_all
paulson@11153
    63
  apply (blast intro!: perm_append_single intro: perm_sym)
wenzelm@11054
    64
  done
wenzelm@11054
    65
wenzelm@53238
    66
lemma perm_append1: "xs <~~> ys \<Longrightarrow> l @ xs <~~> l @ ys"
wenzelm@17200
    67
  by (induct l) auto
wenzelm@11054
    68
wenzelm@53238
    69
lemma perm_append2: "xs <~~> ys \<Longrightarrow> xs @ l <~~> ys @ l"
wenzelm@17200
    70
  by (blast intro!: perm_append_swap perm_append1)
wenzelm@11054
    71
wenzelm@11054
    72
wenzelm@11054
    73
subsection {* Further results *}
wenzelm@11054
    74
wenzelm@11054
    75
lemma perm_empty [iff]: "([] <~~> xs) = (xs = [])"
wenzelm@17200
    76
  by (blast intro: perm_empty_imp)
wenzelm@11054
    77
wenzelm@11054
    78
lemma perm_empty2 [iff]: "(xs <~~> []) = (xs = [])"
wenzelm@11054
    79
  apply auto
wenzelm@11054
    80
  apply (erule perm_sym [THEN perm_empty_imp])
wenzelm@11054
    81
  done
wenzelm@11054
    82
wenzelm@53238
    83
lemma perm_sing_imp: "ys <~~> xs \<Longrightarrow> xs = [y] \<Longrightarrow> ys = [y]"
wenzelm@25379
    84
  by (induct pred: perm) auto
wenzelm@11054
    85
wenzelm@11054
    86
lemma perm_sing_eq [iff]: "(ys <~~> [y]) = (ys = [y])"
wenzelm@17200
    87
  by (blast intro: perm_sing_imp)
wenzelm@11054
    88
wenzelm@11054
    89
lemma perm_sing_eq2 [iff]: "([y] <~~> ys) = (ys = [y])"
wenzelm@17200
    90
  by (blast dest: perm_sym)
wenzelm@11054
    91
wenzelm@11054
    92
wenzelm@11054
    93
subsection {* Removing elements *}
wenzelm@11054
    94
wenzelm@53238
    95
lemma perm_remove: "x \<in> set ys \<Longrightarrow> ys <~~> x # remove1 x ys"
wenzelm@17200
    96
  by (induct ys) auto
wenzelm@11054
    97
wenzelm@11054
    98
wenzelm@11054
    99
text {* \medskip Congruence rule *}
wenzelm@11054
   100
wenzelm@53238
   101
lemma perm_remove_perm: "xs <~~> ys \<Longrightarrow> remove1 z xs <~~> remove1 z ys"
wenzelm@25379
   102
  by (induct pred: perm) auto
wenzelm@11054
   103
nipkow@36903
   104
lemma remove_hd [simp]: "remove1 z (z # xs) = xs"
paulson@15072
   105
  by auto
wenzelm@11054
   106
wenzelm@53238
   107
lemma cons_perm_imp_perm: "z # xs <~~> z # ys \<Longrightarrow> xs <~~> ys"
wenzelm@17200
   108
  by (drule_tac z = z in perm_remove_perm) auto
wenzelm@11054
   109
wenzelm@11054
   110
lemma cons_perm_eq [iff]: "(z#xs <~~> z#ys) = (xs <~~> ys)"
wenzelm@17200
   111
  by (blast intro: cons_perm_imp_perm)
wenzelm@11054
   112
wenzelm@53238
   113
lemma append_perm_imp_perm: "zs @ xs <~~> zs @ ys \<Longrightarrow> xs <~~> ys"
wenzelm@53238
   114
  by (induct zs arbitrary: xs ys rule: rev_induct) auto
wenzelm@11054
   115
wenzelm@11054
   116
lemma perm_append1_eq [iff]: "(zs @ xs <~~> zs @ ys) = (xs <~~> ys)"
wenzelm@17200
   117
  by (blast intro: append_perm_imp_perm perm_append1)
wenzelm@11054
   118
wenzelm@11054
   119
lemma perm_append2_eq [iff]: "(xs @ zs <~~> ys @ zs) = (xs <~~> ys)"
wenzelm@11054
   120
  apply (safe intro!: perm_append2)
wenzelm@11054
   121
  apply (rule append_perm_imp_perm)
wenzelm@11054
   122
  apply (rule perm_append_swap [THEN perm.trans])
wenzelm@11054
   123
    -- {* the previous step helps this @{text blast} call succeed quickly *}
wenzelm@11054
   124
  apply (blast intro: perm_append_swap)
wenzelm@11054
   125
  done
wenzelm@11054
   126
paulson@15072
   127
lemma multiset_of_eq_perm: "(multiset_of xs = multiset_of ys) = (xs <~~> ys) "
wenzelm@17200
   128
  apply (rule iffI)
wenzelm@17200
   129
  apply (erule_tac [2] perm.induct, simp_all add: union_ac)
wenzelm@17200
   130
  apply (erule rev_mp, rule_tac x=ys in spec)
wenzelm@17200
   131
  apply (induct_tac xs, auto)
nipkow@36903
   132
  apply (erule_tac x = "remove1 a x" in allE, drule sym, simp)
wenzelm@17200
   133
  apply (subgoal_tac "a \<in> set x")
wenzelm@53238
   134
  apply (drule_tac z = a in perm.Cons)
wenzelm@17200
   135
  apply (erule perm.trans, rule perm_sym, erule perm_remove)
paulson@15005
   136
  apply (drule_tac f=set_of in arg_cong, simp)
paulson@15005
   137
  done
paulson@15005
   138
wenzelm@53238
   139
lemma multiset_of_le_perm_append: "multiset_of xs \<le> multiset_of ys \<longleftrightarrow> (\<exists>zs. xs @ zs <~~> ys)"
wenzelm@17200
   140
  apply (auto simp: multiset_of_eq_perm[THEN sym] mset_le_exists_conv)
paulson@15072
   141
  apply (insert surj_multiset_of, drule surjD)
paulson@15072
   142
  apply (blast intro: sym)+
paulson@15072
   143
  done
paulson@15005
   144
wenzelm@53238
   145
lemma perm_set_eq: "xs <~~> ys \<Longrightarrow> set xs = set ys"
wenzelm@25379
   146
  by (metis multiset_of_eq_perm multiset_of_eq_setD)
nipkow@25277
   147
wenzelm@53238
   148
lemma perm_distinct_iff: "xs <~~> ys \<Longrightarrow> distinct xs = distinct ys"
wenzelm@25379
   149
  apply (induct pred: perm)
wenzelm@25379
   150
     apply simp_all
nipkow@44890
   151
   apply fastforce
wenzelm@25379
   152
  apply (metis perm_set_eq)
wenzelm@25379
   153
  done
nipkow@25277
   154
wenzelm@53238
   155
lemma eq_set_perm_remdups: "set xs = set ys \<Longrightarrow> remdups xs <~~> remdups ys"
wenzelm@25379
   156
  apply (induct xs arbitrary: ys rule: length_induct)
wenzelm@53238
   157
  apply (case_tac "remdups xs")
wenzelm@53238
   158
   apply simp_all
wenzelm@53238
   159
  apply (subgoal_tac "a \<in> set (remdups ys)")
wenzelm@25379
   160
   prefer 2 apply (metis set.simps(2) insert_iff set_remdups)
wenzelm@25379
   161
  apply (drule split_list) apply(elim exE conjE)
wenzelm@25379
   162
  apply (drule_tac x=list in spec) apply(erule impE) prefer 2
wenzelm@25379
   163
   apply (drule_tac x="ysa@zs" in spec) apply(erule impE) prefer 2
wenzelm@25379
   164
    apply simp
wenzelm@53238
   165
    apply (subgoal_tac "a # list <~~> a # ysa @ zs")
wenzelm@25379
   166
     apply (metis Cons_eq_appendI perm_append_Cons trans)
haftmann@40122
   167
    apply (metis Cons Cons_eq_appendI distinct.simps(2)
wenzelm@25379
   168
      distinct_remdups distinct_remdups_id perm_append_swap perm_distinct_iff)
wenzelm@25379
   169
   apply (subgoal_tac "set (a#list) = set (ysa@a#zs) & distinct (a#list) & distinct (ysa@a#zs)")
nipkow@44890
   170
    apply (fastforce simp add: insert_ident)
wenzelm@25379
   171
   apply (metis distinct_remdups set_remdups)
haftmann@30742
   172
   apply (subgoal_tac "length (remdups xs) < Suc (length xs)")
haftmann@30742
   173
   apply simp
haftmann@30742
   174
   apply (subgoal_tac "length (remdups xs) \<le> length xs")
haftmann@30742
   175
   apply simp
haftmann@30742
   176
   apply (rule length_remdups_leq)
wenzelm@25379
   177
  done
nipkow@25287
   178
wenzelm@53238
   179
lemma perm_remdups_iff_eq_set: "remdups x <~~> remdups y \<longleftrightarrow> (set x = set y)"
wenzelm@25379
   180
  by (metis List.set_remdups perm_set_eq eq_set_perm_remdups)
nipkow@25287
   181
hoelzl@39075
   182
lemma permutation_Ex_bij:
hoelzl@39075
   183
  assumes "xs <~~> ys"
hoelzl@39075
   184
  shows "\<exists>f. bij_betw f {..<length xs} {..<length ys} \<and> (\<forall>i<length xs. xs ! i = ys ! (f i))"
hoelzl@39075
   185
using assms proof induct
wenzelm@53238
   186
  case Nil
wenzelm@53238
   187
  then show ?case unfolding bij_betw_def by simp
hoelzl@39075
   188
next
hoelzl@39075
   189
  case (swap y x l)
hoelzl@39075
   190
  show ?case
hoelzl@39075
   191
  proof (intro exI[of _ "Fun.swap 0 1 id"] conjI allI impI)
hoelzl@39075
   192
    show "bij_betw (Fun.swap 0 1 id) {..<length (y # x # l)} {..<length (x # y # l)}"
bulwahn@50037
   193
      by (auto simp: bij_betw_def)
wenzelm@53238
   194
    fix i
wenzelm@53238
   195
    assume "i < length(y#x#l)"
hoelzl@39075
   196
    show "(y # x # l) ! i = (x # y # l) ! (Fun.swap 0 1 id) i"
hoelzl@39075
   197
      by (cases i) (auto simp: Fun.swap_def gr0_conv_Suc)
hoelzl@39075
   198
  qed
hoelzl@39075
   199
next
hoelzl@39075
   200
  case (Cons xs ys z)
hoelzl@39075
   201
  then obtain f where bij: "bij_betw f {..<length xs} {..<length ys}" and
hoelzl@39075
   202
    perm: "\<forall>i<length xs. xs ! i = ys ! (f i)" by blast
wenzelm@53238
   203
  let ?f = "\<lambda>i. case i of Suc n \<Rightarrow> Suc (f n) | 0 \<Rightarrow> 0"
hoelzl@39075
   204
  show ?case
hoelzl@39075
   205
  proof (intro exI[of _ ?f] allI conjI impI)
hoelzl@39075
   206
    have *: "{..<length (z#xs)} = {0} \<union> Suc ` {..<length xs}"
hoelzl@39075
   207
            "{..<length (z#ys)} = {0} \<union> Suc ` {..<length ys}"
hoelzl@39078
   208
      by (simp_all add: lessThan_Suc_eq_insert_0)
wenzelm@53238
   209
    show "bij_betw ?f {..<length (z#xs)} {..<length (z#ys)}"
wenzelm@53238
   210
      unfolding *
hoelzl@39075
   211
    proof (rule bij_betw_combine)
hoelzl@39075
   212
      show "bij_betw ?f (Suc ` {..<length xs}) (Suc ` {..<length ys})"
hoelzl@39075
   213
        using bij unfolding bij_betw_def
hoelzl@39075
   214
        by (auto intro!: inj_onI imageI dest: inj_onD simp: image_compose[symmetric] comp_def)
hoelzl@39075
   215
    qed (auto simp: bij_betw_def)
wenzelm@53238
   216
    fix i
wenzelm@53238
   217
    assume "i < length (z#xs)"
hoelzl@39075
   218
    then show "(z # xs) ! i = (z # ys) ! (?f i)"
hoelzl@39075
   219
      using perm by (cases i) auto
hoelzl@39075
   220
  qed
hoelzl@39075
   221
next
hoelzl@39075
   222
  case (trans xs ys zs)
hoelzl@39075
   223
  then obtain f g where
hoelzl@39075
   224
    bij: "bij_betw f {..<length xs} {..<length ys}" "bij_betw g {..<length ys} {..<length zs}" and
hoelzl@39075
   225
    perm: "\<forall>i<length xs. xs ! i = ys ! (f i)" "\<forall>i<length ys. ys ! i = zs ! (g i)" by blast
hoelzl@39075
   226
  show ?case
wenzelm@53238
   227
  proof (intro exI[of _ "g \<circ> f"] conjI allI impI)
hoelzl@39075
   228
    show "bij_betw (g \<circ> f) {..<length xs} {..<length zs}"
hoelzl@39075
   229
      using bij by (rule bij_betw_trans)
hoelzl@39075
   230
    fix i assume "i < length xs"
hoelzl@39075
   231
    with bij have "f i < length ys" unfolding bij_betw_def by force
hoelzl@39075
   232
    with `i < length xs` show "xs ! i = zs ! (g \<circ> f) i"
wenzelm@53238
   233
      using trans(1,3)[THEN perm_length] perm by auto
hoelzl@39075
   234
  qed
hoelzl@39075
   235
qed
hoelzl@39075
   236
wenzelm@11054
   237
end