author  nipkow 
Fri, 05 Aug 2016 10:05:50 +0200  
changeset 63598  025d6e52d86f 
parent 63413  9fe2d9dc095e 
child 63665  15f48ce7ec23 
permissions  rwrr 
57250  1 
(* Author: Tobias Nipkow *) 
2 

60500  3 
section \<open>Binary Tree\<close> 
57250  4 

5 
theory Tree 

6 
imports Main 

7 
begin 

8 

58424  9 
datatype 'a tree = 
62160  10 
is_Leaf: Leaf ("\<langle>\<rangle>")  
11 
Node (left: "'a tree") (val: 'a) (right: "'a tree") ("(1\<langle>_,/ _,/ _\<rangle>)") 

57449
f81da03b9ebd
Library/Tree: use datatype_new, bst is an inductive predicate
hoelzl
parents:
57250
diff
changeset

12 
where 
f81da03b9ebd
Library/Tree: use datatype_new, bst is an inductive predicate
hoelzl
parents:
57250
diff
changeset

13 
"left Leaf = Leaf" 
f81da03b9ebd
Library/Tree: use datatype_new, bst is an inductive predicate
hoelzl
parents:
57250
diff
changeset

14 
 "right Leaf = Leaf" 
57569
e20a999f7161
register tree with datatype_compat ot support QuickCheck
hoelzl
parents:
57530
diff
changeset

15 
datatype_compat tree 
57250  16 

60500  17 
text\<open>Can be seen as counting the number of leaves rather than nodes:\<close> 
58438  18 

19 
definition size1 :: "'a tree \<Rightarrow> nat" where 

20 
"size1 t = size t + 1" 

21 

22 
lemma size1_simps[simp]: 

23 
"size1 \<langle>\<rangle> = 1" 

24 
"size1 \<langle>l, x, r\<rangle> = size1 l + size1 r" 

25 
by (simp_all add: size1_def) 

26 

62650  27 
lemma size1_ge0[simp]: "0 < size1 t" 
28 
by (simp add: size1_def) 

29 

60507  30 
lemma size_0_iff_Leaf: "size t = 0 \<longleftrightarrow> t = Leaf" 
60505  31 
by(cases t) auto 
32 

58424  33 
lemma neq_Leaf_iff: "(t \<noteq> \<langle>\<rangle>) = (\<exists>l a r. t = \<langle>l, a, r\<rangle>)" 
34 
by (cases t) auto 

57530  35 

57687  36 
lemma finite_set_tree[simp]: "finite(set_tree t)" 
37 
by(induction t) auto 

38 

59776  39 
lemma size_map_tree[simp]: "size (map_tree f t) = size t" 
40 
by (induction t) auto 

41 

42 
lemma size1_map_tree[simp]: "size1 (map_tree f t) = size1 t" 

43 
by (simp add: size1_def) 

44 

45 

60808
fd26519b1a6a
depth > height; removed del_rightmost (too specifi)
nipkow
parents:
60507
diff
changeset

46 
subsection "The Height" 
fd26519b1a6a
depth > height; removed del_rightmost (too specifi)
nipkow
parents:
60507
diff
changeset

47 

fd26519b1a6a
depth > height; removed del_rightmost (too specifi)
nipkow
parents:
60507
diff
changeset

48 
class height = fixes height :: "'a \<Rightarrow> nat" 
fd26519b1a6a
depth > height; removed del_rightmost (too specifi)
nipkow
parents:
60507
diff
changeset

49 

fd26519b1a6a
depth > height; removed del_rightmost (too specifi)
nipkow
parents:
60507
diff
changeset

50 
instantiation tree :: (type)height 
fd26519b1a6a
depth > height; removed del_rightmost (too specifi)
nipkow
parents:
60507
diff
changeset

51 
begin 
59776  52 

60808
fd26519b1a6a
depth > height; removed del_rightmost (too specifi)
nipkow
parents:
60507
diff
changeset

53 
fun height_tree :: "'a tree => nat" where 
fd26519b1a6a
depth > height; removed del_rightmost (too specifi)
nipkow
parents:
60507
diff
changeset

54 
"height Leaf = 0"  
fd26519b1a6a
depth > height; removed del_rightmost (too specifi)
nipkow
parents:
60507
diff
changeset

55 
"height (Node t1 a t2) = max (height t1) (height t2) + 1" 
59776  56 

60808
fd26519b1a6a
depth > height; removed del_rightmost (too specifi)
nipkow
parents:
60507
diff
changeset

57 
instance .. 
fd26519b1a6a
depth > height; removed del_rightmost (too specifi)
nipkow
parents:
60507
diff
changeset

58 

fd26519b1a6a
depth > height; removed del_rightmost (too specifi)
nipkow
parents:
60507
diff
changeset

59 
end 
fd26519b1a6a
depth > height; removed del_rightmost (too specifi)
nipkow
parents:
60507
diff
changeset

60 

fd26519b1a6a
depth > height; removed del_rightmost (too specifi)
nipkow
parents:
60507
diff
changeset

61 
lemma height_map_tree[simp]: "height (map_tree f t) = height t" 
59776  62 
by (induction t) auto 
63 

62202  64 
lemma size1_height: "size t + 1 \<le> 2 ^ height (t::'a tree)" 
65 
proof(induction t) 

66 
case (Node l a r) 

67 
show ?case 

68 
proof (cases "height l \<le> height r") 

69 
case True 

70 
have "size(Node l a r) + 1 = (size l + 1) + (size r + 1)" by simp 

71 
also have "size l + 1 \<le> 2 ^ height l" by(rule Node.IH(1)) 

72 
also have "size r + 1 \<le> 2 ^ height r" by(rule Node.IH(2)) 

73 
also have "(2::nat) ^ height l \<le> 2 ^ height r" using True by simp 

74 
finally show ?thesis using True by (auto simp: max_def mult_2) 

75 
next 

76 
case False 

77 
have "size(Node l a r) + 1 = (size l + 1) + (size r + 1)" by simp 

78 
also have "size l + 1 \<le> 2 ^ height l" by(rule Node.IH(1)) 

79 
also have "size r + 1 \<le> 2 ^ height r" by(rule Node.IH(2)) 

80 
also have "(2::nat) ^ height r \<le> 2 ^ height l" using False by simp 

81 
finally show ?thesis using False by (auto simp: max_def mult_2) 

82 
qed 

83 
qed simp 

84 

57687  85 

63598  86 
fun min_height :: "'a tree \<Rightarrow> nat" where 
87 
"min_height Leaf = 0"  

88 
"min_height (Node l _ r) = min (min_height l) (min_height r) + 1" 

89 

90 
lemma min_hight_le_height: "min_height t \<le> height t" 

91 
by(induction t) auto 

92 

93 
lemma min_height_map_tree[simp]: "min_height (map_tree f t) = min_height t" 

94 
by (induction t) auto 

95 

96 
lemma min_height_le_size1: "2 ^ min_height t \<le> size t + 1" 

97 
proof(induction t) 

98 
case (Node l a r) 

99 
have "(2::nat) ^ min_height (Node l a r) \<le> 2 ^ min_height l + 2 ^ min_height r" 

100 
by (simp add: min_def) 

101 
also have "\<dots> \<le> size(Node l a r) + 1" using Node.IH by simp 

102 
finally show ?case . 

103 
qed simp 

104 

105 

63036  106 
subsection "Balanced" 
107 

108 
fun balanced :: "'a tree \<Rightarrow> bool" where 

109 
"balanced Leaf = True"  

110 
"balanced (Node l x r) = (balanced l \<and> balanced r \<and> height l = height r)" 

111 

63598  112 
lemma balanced_iff_min_height: "balanced t \<longleftrightarrow> (min_height t = height t)" 
113 
apply(induction t) 

114 
apply simp 

115 
apply (simp add: min_def max_def) 

116 
by (metis le_antisym le_trans min_hight_le_height) 

117 

63036  118 
lemma balanced_size1: "balanced t \<Longrightarrow> size1 t = 2 ^ height t" 
119 
by (induction t) auto 

120 

121 
lemma balanced_size: "balanced t \<Longrightarrow> size t = 2 ^ height t  1" 

122 
using balanced_size1[simplified size1_def] by fastforce 

123 

124 

63413  125 
subsection \<open>Path length\<close> 
126 

127 
text \<open>The internal path length of a tree:\<close> 

128 

129 
fun path_len :: "'a tree \<Rightarrow> nat" where 

130 
"path_len Leaf = 0 "  

131 
"path_len (Node l _ r) = path_len l + size l + path_len r + size r" 

132 

133 
lemma path_len_if_bal: "balanced t 

134 
\<Longrightarrow> path_len t = (let n = height t in 2 + n*2^n  2^(n+1))" 

135 
proof(induction t) 

136 
case (Node l x r) 

137 
have *: "2^(n+1) \<le> 2 + n*2^n" for n :: nat 

138 
by(induction n) auto 

139 
have **: "(0::nat) < 2^n" for n :: nat by simp 

140 
let ?h = "height r" 

141 
show ?case using Node *[of ?h] **[of ?h] by (simp add: balanced_size Let_def) 

142 
qed simp 

143 

144 

57687  145 
subsection "The set of subtrees" 
146 

57250  147 
fun subtrees :: "'a tree \<Rightarrow> 'a tree set" where 
60808
fd26519b1a6a
depth > height; removed del_rightmost (too specifi)
nipkow
parents:
60507
diff
changeset

148 
"subtrees \<langle>\<rangle> = {\<langle>\<rangle>}"  
fd26519b1a6a
depth > height; removed del_rightmost (too specifi)
nipkow
parents:
60507
diff
changeset

149 
"subtrees (\<langle>l, a, r\<rangle>) = insert \<langle>l, a, r\<rangle> (subtrees l \<union> subtrees r)" 
57250  150 

58424  151 
lemma set_treeE: "a \<in> set_tree t \<Longrightarrow> \<exists>l r. \<langle>l, a, r\<rangle> \<in> subtrees t" 
152 
by (induction t)(auto) 

57449
f81da03b9ebd
Library/Tree: use datatype_new, bst is an inductive predicate
hoelzl
parents:
57250
diff
changeset

153 

57450  154 
lemma Node_notin_subtrees_if[simp]: "a \<notin> set_tree t \<Longrightarrow> Node l a r \<notin> subtrees t" 
58424  155 
by (induction t) auto 
57449
f81da03b9ebd
Library/Tree: use datatype_new, bst is an inductive predicate
hoelzl
parents:
57250
diff
changeset

156 

58424  157 
lemma in_set_tree_if: "\<langle>l, a, r\<rangle> \<in> subtrees t \<Longrightarrow> a \<in> set_tree t" 
158 
by (metis Node_notin_subtrees_if) 

57449
f81da03b9ebd
Library/Tree: use datatype_new, bst is an inductive predicate
hoelzl
parents:
57250
diff
changeset

159 

57687  160 

59776  161 
subsection "List of entries" 
162 

163 
fun preorder :: "'a tree \<Rightarrow> 'a list" where 

164 
"preorder \<langle>\<rangle> = []"  

165 
"preorder \<langle>l, x, r\<rangle> = x # preorder l @ preorder r" 

57687  166 

57250  167 
fun inorder :: "'a tree \<Rightarrow> 'a list" where 
58424  168 
"inorder \<langle>\<rangle> = []"  
169 
"inorder \<langle>l, x, r\<rangle> = inorder l @ [x] @ inorder r" 

57250  170 

57449
f81da03b9ebd
Library/Tree: use datatype_new, bst is an inductive predicate
hoelzl
parents:
57250
diff
changeset

171 
lemma set_inorder[simp]: "set (inorder t) = set_tree t" 
58424  172 
by (induction t) auto 
57250  173 

59776  174 
lemma set_preorder[simp]: "set (preorder t) = set_tree t" 
175 
by (induction t) auto 

176 

177 
lemma length_preorder[simp]: "length (preorder t) = size t" 

178 
by (induction t) auto 

179 

180 
lemma length_inorder[simp]: "length (inorder t) = size t" 

181 
by (induction t) auto 

182 

183 
lemma preorder_map: "preorder (map_tree f t) = map f (preorder t)" 

184 
by (induction t) auto 

185 

186 
lemma inorder_map: "inorder (map_tree f t) = map f (inorder t)" 

187 
by (induction t) auto 

188 

57687  189 

60500  190 
subsection \<open>Binary Search Tree predicate\<close> 
57250  191 

57450  192 
fun (in linorder) bst :: "'a tree \<Rightarrow> bool" where 
58424  193 
"bst \<langle>\<rangle> \<longleftrightarrow> True"  
194 
"bst \<langle>l, a, r\<rangle> \<longleftrightarrow> bst l \<and> bst r \<and> (\<forall>x\<in>set_tree l. x < a) \<and> (\<forall>x\<in>set_tree r. a < x)" 

57250  195 

60500  196 
text\<open>In case there are duplicates:\<close> 
59561  197 

198 
fun (in linorder) bst_eq :: "'a tree \<Rightarrow> bool" where 

199 
"bst_eq \<langle>\<rangle> \<longleftrightarrow> True"  

200 
"bst_eq \<langle>l,a,r\<rangle> \<longleftrightarrow> 

201 
bst_eq l \<and> bst_eq r \<and> (\<forall>x\<in>set_tree l. x \<le> a) \<and> (\<forall>x\<in>set_tree r. a \<le> x)" 

202 

59928  203 
lemma (in linorder) bst_eq_if_bst: "bst t \<Longrightarrow> bst_eq t" 
204 
by (induction t) (auto) 

205 

59561  206 
lemma (in linorder) bst_eq_imp_sorted: "bst_eq t \<Longrightarrow> sorted (inorder t)" 
207 
apply (induction t) 

208 
apply(simp) 

209 
by (fastforce simp: sorted_append sorted_Cons intro: less_imp_le less_trans) 

210 

59928  211 
lemma (in linorder) distinct_preorder_if_bst: "bst t \<Longrightarrow> distinct (preorder t)" 
212 
apply (induction t) 

213 
apply simp 

214 
apply(fastforce elim: order.asym) 

215 
done 

216 

217 
lemma (in linorder) distinct_inorder_if_bst: "bst t \<Longrightarrow> distinct (inorder t)" 

218 
apply (induction t) 

219 
apply simp 

220 
apply(fastforce elim: order.asym) 

221 
done 

222 

59776  223 

60505  224 
subsection "The heap predicate" 
225 

226 
fun heap :: "'a::linorder tree \<Rightarrow> bool" where 

227 
"heap Leaf = True"  

228 
"heap (Node l m r) = 

229 
(heap l \<and> heap r \<and> (\<forall>x \<in> set_tree l \<union> set_tree r. m \<le> x))" 

230 

231 

61585  232 
subsection "Function \<open>mirror\<close>" 
59561  233 

234 
fun mirror :: "'a tree \<Rightarrow> 'a tree" where 

235 
"mirror \<langle>\<rangle> = Leaf"  

236 
"mirror \<langle>l,x,r\<rangle> = \<langle>mirror r, x, mirror l\<rangle>" 

237 

238 
lemma mirror_Leaf[simp]: "mirror t = \<langle>\<rangle> \<longleftrightarrow> t = \<langle>\<rangle>" 

239 
by (induction t) simp_all 

240 

241 
lemma size_mirror[simp]: "size(mirror t) = size t" 

242 
by (induction t) simp_all 

243 

244 
lemma size1_mirror[simp]: "size1(mirror t) = size1 t" 

245 
by (simp add: size1_def) 

246 

60808
fd26519b1a6a
depth > height; removed del_rightmost (too specifi)
nipkow
parents:
60507
diff
changeset

247 
lemma height_mirror[simp]: "height(mirror t) = height t" 
59776  248 
by (induction t) simp_all 
249 

250 
lemma inorder_mirror: "inorder(mirror t) = rev(inorder t)" 

251 
by (induction t) simp_all 

252 

253 
lemma map_mirror: "map_tree f (mirror t) = mirror (map_tree f t)" 

254 
by (induction t) simp_all 

255 

59561  256 
lemma mirror_mirror[simp]: "mirror(mirror t) = t" 
257 
by (induction t) simp_all 

258 

57250  259 
end 