src/HOL/Fun.thy
author berghofe
Thu Oct 10 14:21:20 2002 +0200 (2002-10-10)
changeset 13637 02aa63636ab8
parent 13585 db4005b40cc6
child 13910 f9a9ef16466f
permissions -rw-r--r--
- Added range_ex1_eq
- Removed obsolete theorems inj_o and inj_fun_lemma
clasohm@1475
     1
(*  Title:      HOL/Fun.thy
clasohm@923
     2
    ID:         $Id$
clasohm@1475
     3
    Author:     Tobias Nipkow, Cambridge University Computer Laboratory
clasohm@923
     4
    Copyright   1994  University of Cambridge
clasohm@923
     5
nipkow@2912
     6
Notions about functions.
clasohm@923
     7
*)
clasohm@923
     8
paulson@13585
     9
theory Fun = Typedef:
nipkow@2912
    10
wenzelm@12338
    11
instance set :: (type) order
paulson@13585
    12
  by (intro_classes,
paulson@13585
    13
      (assumption | rule subset_refl subset_trans subset_antisym psubset_eq)+)
paulson@13585
    14
paulson@13585
    15
constdefs
paulson@13585
    16
  fun_upd :: "('a => 'b) => 'a => 'b => ('a => 'b)"
paulson@13585
    17
   "fun_upd f a b == % x. if x=a then b else f x"
paulson@6171
    18
wenzelm@9141
    19
nonterminals
wenzelm@9141
    20
  updbinds updbind
oheimb@5305
    21
syntax
paulson@13585
    22
  "_updbind" :: "['a, 'a] => updbind"             ("(2_ :=/ _)")
paulson@13585
    23
  ""         :: "updbind => updbinds"             ("_")
paulson@13585
    24
  "_updbinds":: "[updbind, updbinds] => updbinds" ("_,/ _")
paulson@13585
    25
  "_Update"  :: "['a, updbinds] => 'a"            ("_/'((_)')" [1000,0] 900)
oheimb@5305
    26
oheimb@5305
    27
translations
oheimb@5305
    28
  "_Update f (_updbinds b bs)"  == "_Update (_Update f b) bs"
oheimb@5305
    29
  "f(x:=y)"                     == "fun_upd f x y"
nipkow@2912
    30
oheimb@9340
    31
(* Hint: to define the sum of two functions (or maps), use sum_case.
oheimb@9340
    32
         A nice infix syntax could be defined (in Datatype.thy or below) by
oheimb@9340
    33
consts
oheimb@9340
    34
  fun_sum :: "('a => 'c) => ('b => 'c) => (('a+'b) => 'c)" (infixr "'(+')"80)
oheimb@9340
    35
translations
paulson@13585
    36
 "fun_sum" == sum_case
oheimb@9340
    37
*)
wenzelm@12258
    38
paulson@6171
    39
constdefs
paulson@13585
    40
  id :: "'a => 'a"
paulson@6171
    41
    "id == %x. x"
paulson@6171
    42
paulson@13585
    43
  comp :: "['b => 'c, 'a => 'b, 'a] => 'c"   (infixl "o" 55)
paulson@6171
    44
    "f o g == %x. f(g(x))"
oheimb@11123
    45
paulson@13585
    46
text{*compatibility*}
paulson@13585
    47
lemmas o_def = comp_def
nipkow@2912
    48
wenzelm@12114
    49
syntax (xsymbols)
paulson@13585
    50
  comp :: "['b => 'c, 'a => 'b, 'a] => 'c"        (infixl "\<circ>" 55)
paulson@13585
    51
wenzelm@9352
    52
paulson@13585
    53
constdefs
paulson@13585
    54
  inj_on :: "['a => 'b, 'a set] => bool"         (*injective*)
paulson@13585
    55
    "inj_on f A == ! x:A. ! y:A. f(x)=f(y) --> x=y"
paulson@6171
    56
paulson@13585
    57
text{*A common special case: functions injective over the entire domain type.*}
paulson@13585
    58
syntax inj   :: "('a => 'b) => bool"
paulson@6171
    59
translations
paulson@6171
    60
  "inj f" == "inj_on f UNIV"
paulson@5852
    61
paulson@7374
    62
constdefs
paulson@13585
    63
  surj :: "('a => 'b) => bool"                   (*surjective*)
paulson@7374
    64
    "surj f == ! y. ? x. y=f(x)"
wenzelm@12258
    65
paulson@13585
    66
  bij :: "('a => 'b) => bool"                    (*bijective*)
paulson@7374
    67
    "bij f == inj f & surj f"
wenzelm@12258
    68
paulson@7374
    69
paulson@13585
    70
paulson@13585
    71
text{*As a simplification rule, it replaces all function equalities by
paulson@13585
    72
  first-order equalities.*}
paulson@13585
    73
lemma expand_fun_eq: "(f = g) = (! x. f(x)=g(x))"
paulson@13585
    74
apply (rule iffI)
paulson@13585
    75
apply (simp (no_asm_simp))
paulson@13585
    76
apply (rule ext, simp (no_asm_simp))
paulson@13585
    77
done
paulson@13585
    78
paulson@13585
    79
lemma apply_inverse:
paulson@13585
    80
    "[| f(x)=u;  !!x. P(x) ==> g(f(x)) = x;  P(x) |] ==> x=g(u)"
paulson@13585
    81
by auto
paulson@13585
    82
paulson@13585
    83
paulson@13585
    84
text{*The Identity Function: @{term id}*}
paulson@13585
    85
lemma id_apply [simp]: "id x = x"
paulson@13585
    86
by (simp add: id_def)
paulson@13585
    87
paulson@13585
    88
paulson@13585
    89
subsection{*The Composition Operator: @{term "f \<circ> g"}*}
paulson@13585
    90
paulson@13585
    91
lemma o_apply [simp]: "(f o g) x = f (g x)"
paulson@13585
    92
by (simp add: comp_def)
paulson@13585
    93
paulson@13585
    94
lemma o_assoc: "f o (g o h) = f o g o h"
paulson@13585
    95
by (simp add: comp_def)
paulson@13585
    96
paulson@13585
    97
lemma id_o [simp]: "id o g = g"
paulson@13585
    98
by (simp add: comp_def)
paulson@13585
    99
paulson@13585
   100
lemma o_id [simp]: "f o id = f"
paulson@13585
   101
by (simp add: comp_def)
paulson@13585
   102
paulson@13585
   103
lemma image_compose: "(f o g) ` r = f`(g`r)"
paulson@13585
   104
by (simp add: comp_def, blast)
paulson@13585
   105
paulson@13585
   106
lemma image_eq_UN: "f`A = (UN x:A. {f x})"
paulson@13585
   107
by blast
paulson@13585
   108
paulson@13585
   109
lemma UN_o: "UNION A (g o f) = UNION (f`A) g"
paulson@13585
   110
by (unfold comp_def, blast)
paulson@13585
   111
paulson@13585
   112
paulson@13585
   113
subsection{*The Injectivity Predicate, @{term inj}*}
paulson@13585
   114
paulson@13585
   115
text{*NB: @{term inj} now just translates to @{term inj_on}*}
paulson@13585
   116
paulson@13585
   117
paulson@13585
   118
text{*For Proofs in @{text "Tools/datatype_rep_proofs"}*}
paulson@13585
   119
lemma datatype_injI:
paulson@13585
   120
    "(!! x. ALL y. f(x) = f(y) --> x=y) ==> inj(f)"
paulson@13585
   121
by (simp add: inj_on_def)
paulson@13585
   122
berghofe@13637
   123
theorem range_ex1_eq: "inj f \<Longrightarrow> b : range f = (EX! x. b = f x)"
berghofe@13637
   124
  by (unfold inj_on_def, blast)
berghofe@13637
   125
paulson@13585
   126
lemma injD: "[| inj(f); f(x) = f(y) |] ==> x=y"
paulson@13585
   127
by (simp add: inj_on_def)
paulson@13585
   128
paulson@13585
   129
(*Useful with the simplifier*)
paulson@13585
   130
lemma inj_eq: "inj(f) ==> (f(x) = f(y)) = (x=y)"
paulson@13585
   131
by (force simp add: inj_on_def)
paulson@13585
   132
paulson@13585
   133
paulson@13585
   134
subsection{*The Predicate @{term inj_on}: Injectivity On A Restricted Domain*}
paulson@13585
   135
paulson@13585
   136
lemma inj_onI:
paulson@13585
   137
    "(!! x y. [|  x:A;  y:A;  f(x) = f(y) |] ==> x=y) ==> inj_on f A"
paulson@13585
   138
by (simp add: inj_on_def)
paulson@13585
   139
paulson@13585
   140
lemma inj_on_inverseI: "(!!x. x:A ==> g(f(x)) = x) ==> inj_on f A"
paulson@13585
   141
by (auto dest:  arg_cong [of concl: g] simp add: inj_on_def)
paulson@13585
   142
paulson@13585
   143
lemma inj_onD: "[| inj_on f A;  f(x)=f(y);  x:A;  y:A |] ==> x=y"
paulson@13585
   144
by (unfold inj_on_def, blast)
paulson@13585
   145
paulson@13585
   146
lemma inj_on_iff: "[| inj_on f A;  x:A;  y:A |] ==> (f(x)=f(y)) = (x=y)"
paulson@13585
   147
by (blast dest!: inj_onD)
paulson@13585
   148
paulson@13585
   149
lemma comp_inj_on:
paulson@13585
   150
     "[| inj_on f A;  inj_on g (f`A) |] ==> inj_on (g o f) A"
paulson@13585
   151
by (simp add: comp_def inj_on_def)
paulson@13585
   152
paulson@13585
   153
lemma inj_on_contraD: "[| inj_on f A;  ~x=y;  x:A;  y:A |] ==> ~ f(x)=f(y)"
paulson@13585
   154
by (unfold inj_on_def, blast)
wenzelm@12258
   155
paulson@13585
   156
lemma inj_singleton: "inj (%s. {s})"
paulson@13585
   157
by (simp add: inj_on_def)
paulson@13585
   158
paulson@13585
   159
lemma subset_inj_on: "[| A<=B; inj_on f B |] ==> inj_on f A"
paulson@13585
   160
by (unfold inj_on_def, blast)
paulson@13585
   161
paulson@13585
   162
paulson@13585
   163
subsection{*The Predicate @{term surj}: Surjectivity*}
paulson@13585
   164
paulson@13585
   165
lemma surjI: "(!! x. g(f x) = x) ==> surj g"
paulson@13585
   166
apply (simp add: surj_def)
paulson@13585
   167
apply (blast intro: sym)
paulson@13585
   168
done
paulson@13585
   169
paulson@13585
   170
lemma surj_range: "surj f ==> range f = UNIV"
paulson@13585
   171
by (auto simp add: surj_def)
paulson@13585
   172
paulson@13585
   173
lemma surjD: "surj f ==> EX x. y = f x"
paulson@13585
   174
by (simp add: surj_def)
paulson@13585
   175
paulson@13585
   176
lemma surjE: "surj f ==> (!!x. y = f x ==> C) ==> C"
paulson@13585
   177
by (simp add: surj_def, blast)
paulson@13585
   178
paulson@13585
   179
lemma comp_surj: "[| surj f;  surj g |] ==> surj (g o f)"
paulson@13585
   180
apply (simp add: comp_def surj_def, clarify)
paulson@13585
   181
apply (drule_tac x = y in spec, clarify)
paulson@13585
   182
apply (drule_tac x = x in spec, blast)
paulson@13585
   183
done
paulson@13585
   184
paulson@13585
   185
paulson@13585
   186
paulson@13585
   187
subsection{*The Predicate @{term bij}: Bijectivity*}
paulson@13585
   188
paulson@13585
   189
lemma bijI: "[| inj f; surj f |] ==> bij f"
paulson@13585
   190
by (simp add: bij_def)
paulson@13585
   191
paulson@13585
   192
lemma bij_is_inj: "bij f ==> inj f"
paulson@13585
   193
by (simp add: bij_def)
paulson@13585
   194
paulson@13585
   195
lemma bij_is_surj: "bij f ==> surj f"
paulson@13585
   196
by (simp add: bij_def)
paulson@13585
   197
paulson@13585
   198
paulson@13585
   199
subsection{*Facts About the Identity Function*}
paulson@5852
   200
paulson@13585
   201
text{*We seem to need both the @{term id} forms and the @{term "\<lambda>x. x"}
paulson@13585
   202
forms. The latter can arise by rewriting, while @{term id} may be used
paulson@13585
   203
explicitly.*}
paulson@13585
   204
paulson@13585
   205
lemma image_ident [simp]: "(%x. x) ` Y = Y"
paulson@13585
   206
by blast
paulson@13585
   207
paulson@13585
   208
lemma image_id [simp]: "id ` Y = Y"
paulson@13585
   209
by (simp add: id_def)
paulson@13585
   210
paulson@13585
   211
lemma vimage_ident [simp]: "(%x. x) -` Y = Y"
paulson@13585
   212
by blast
paulson@13585
   213
paulson@13585
   214
lemma vimage_id [simp]: "id -` A = A"
paulson@13585
   215
by (simp add: id_def)
paulson@13585
   216
paulson@13585
   217
lemma vimage_image_eq: "f -` (f ` A) = {y. EX x:A. f x = f y}"
paulson@13585
   218
by (blast intro: sym)
paulson@13585
   219
paulson@13585
   220
lemma image_vimage_subset: "f ` (f -` A) <= A"
paulson@13585
   221
by blast
paulson@13585
   222
paulson@13585
   223
lemma image_vimage_eq [simp]: "f ` (f -` A) = A Int range f"
paulson@13585
   224
by blast
paulson@13585
   225
paulson@13585
   226
lemma surj_image_vimage_eq: "surj f ==> f ` (f -` A) = A"
paulson@13585
   227
by (simp add: surj_range)
paulson@13585
   228
paulson@13585
   229
lemma inj_vimage_image_eq: "inj f ==> f -` (f ` A) = A"
paulson@13585
   230
by (simp add: inj_on_def, blast)
paulson@13585
   231
paulson@13585
   232
lemma vimage_subsetD: "surj f ==> f -` B <= A ==> B <= f ` A"
paulson@13585
   233
apply (unfold surj_def)
paulson@13585
   234
apply (blast intro: sym)
paulson@13585
   235
done
paulson@13585
   236
paulson@13585
   237
lemma vimage_subsetI: "inj f ==> B <= f ` A ==> f -` B <= A"
paulson@13585
   238
by (unfold inj_on_def, blast)
paulson@13585
   239
paulson@13585
   240
lemma vimage_subset_eq: "bij f ==> (f -` B <= A) = (B <= f ` A)"
paulson@13585
   241
apply (unfold bij_def)
paulson@13585
   242
apply (blast del: subsetI intro: vimage_subsetI vimage_subsetD)
paulson@13585
   243
done
paulson@13585
   244
paulson@13585
   245
lemma image_Int_subset: "f`(A Int B) <= f`A Int f`B"
paulson@13585
   246
by blast
paulson@13585
   247
paulson@13585
   248
lemma image_diff_subset: "f`A - f`B <= f`(A - B)"
paulson@13585
   249
by blast
paulson@5852
   250
paulson@13585
   251
lemma inj_on_image_Int:
paulson@13585
   252
   "[| inj_on f C;  A<=C;  B<=C |] ==> f`(A Int B) = f`A Int f`B"
paulson@13585
   253
apply (simp add: inj_on_def, blast)
paulson@13585
   254
done
paulson@13585
   255
paulson@13585
   256
lemma inj_on_image_set_diff:
paulson@13585
   257
   "[| inj_on f C;  A<=C;  B<=C |] ==> f`(A-B) = f`A - f`B"
paulson@13585
   258
apply (simp add: inj_on_def, blast)
paulson@13585
   259
done
paulson@13585
   260
paulson@13585
   261
lemma image_Int: "inj f ==> f`(A Int B) = f`A Int f`B"
paulson@13585
   262
by (simp add: inj_on_def, blast)
paulson@13585
   263
paulson@13585
   264
lemma image_set_diff: "inj f ==> f`(A-B) = f`A - f`B"
paulson@13585
   265
by (simp add: inj_on_def, blast)
paulson@13585
   266
paulson@13585
   267
lemma inj_image_mem_iff: "inj f ==> (f a : f`A) = (a : A)"
paulson@13585
   268
by (blast dest: injD)
paulson@13585
   269
paulson@13585
   270
lemma inj_image_subset_iff: "inj f ==> (f`A <= f`B) = (A<=B)"
paulson@13585
   271
by (simp add: inj_on_def, blast)
paulson@13585
   272
paulson@13585
   273
lemma inj_image_eq_iff: "inj f ==> (f`A = f`B) = (A = B)"
paulson@13585
   274
by (blast dest: injD)
paulson@13585
   275
paulson@13585
   276
lemma image_UN: "(f ` (UNION A B)) = (UN x:A.(f ` (B x)))"
paulson@13585
   277
by blast
paulson@13585
   278
paulson@13585
   279
(*injectivity's required.  Left-to-right inclusion holds even if A is empty*)
paulson@13585
   280
lemma image_INT:
paulson@13585
   281
   "[| inj_on f C;  ALL x:A. B x <= C;  j:A |]
paulson@13585
   282
    ==> f ` (INTER A B) = (INT x:A. f ` B x)"
paulson@13585
   283
apply (simp add: inj_on_def, blast)
paulson@13585
   284
done
paulson@13585
   285
paulson@13585
   286
(*Compare with image_INT: no use of inj_on, and if f is surjective then
paulson@13585
   287
  it doesn't matter whether A is empty*)
paulson@13585
   288
lemma bij_image_INT: "bij f ==> f ` (INTER A B) = (INT x:A. f ` B x)"
paulson@13585
   289
apply (simp add: bij_def)
paulson@13585
   290
apply (simp add: inj_on_def surj_def, blast)
paulson@13585
   291
done
paulson@13585
   292
paulson@13585
   293
lemma surj_Compl_image_subset: "surj f ==> -(f`A) <= f`(-A)"
paulson@13585
   294
by (auto simp add: surj_def)
paulson@13585
   295
paulson@13585
   296
lemma inj_image_Compl_subset: "inj f ==> f`(-A) <= -(f`A)"
paulson@13585
   297
by (auto simp add: inj_on_def)
paulson@5852
   298
paulson@13585
   299
lemma bij_image_Compl_eq: "bij f ==> f`(-A) = -(f`A)"
paulson@13585
   300
apply (simp add: bij_def)
paulson@13585
   301
apply (rule equalityI)
paulson@13585
   302
apply (simp_all (no_asm_simp) add: inj_image_Compl_subset surj_Compl_image_subset)
paulson@13585
   303
done
paulson@13585
   304
paulson@13585
   305
paulson@13585
   306
subsection{*Function Updating*}
paulson@13585
   307
paulson@13585
   308
lemma fun_upd_idem_iff: "(f(x:=y) = f) = (f x = y)"
paulson@13585
   309
apply (simp add: fun_upd_def, safe)
paulson@13585
   310
apply (erule subst)
paulson@13585
   311
apply (rule_tac [2] ext, auto)
paulson@13585
   312
done
paulson@13585
   313
paulson@13585
   314
(* f x = y ==> f(x:=y) = f *)
paulson@13585
   315
lemmas fun_upd_idem = fun_upd_idem_iff [THEN iffD2, standard]
paulson@13585
   316
paulson@13585
   317
(* f(x := f x) = f *)
paulson@13585
   318
declare refl [THEN fun_upd_idem, iff]
paulson@13585
   319
paulson@13585
   320
lemma fun_upd_apply [simp]: "(f(x:=y))z = (if z=x then y else f z)"
paulson@13585
   321
apply (simp (no_asm) add: fun_upd_def)
paulson@13585
   322
done
paulson@13585
   323
paulson@13585
   324
(* fun_upd_apply supersedes these two,   but they are useful
paulson@13585
   325
   if fun_upd_apply is intentionally removed from the simpset *)
paulson@13585
   326
lemma fun_upd_same: "(f(x:=y)) x = y"
paulson@13585
   327
by simp
paulson@13585
   328
paulson@13585
   329
lemma fun_upd_other: "z~=x ==> (f(x:=y)) z = f z"
paulson@13585
   330
by simp
paulson@13585
   331
paulson@13585
   332
lemma fun_upd_upd [simp]: "f(x:=y,x:=z) = f(x:=z)"
paulson@13585
   333
by (simp add: expand_fun_eq)
paulson@13585
   334
paulson@13585
   335
lemma fun_upd_twist: "a ~= c ==> (m(a:=b))(c:=d) = (m(c:=d))(a:=b)"
paulson@13585
   336
by (rule ext, auto)
paulson@13585
   337
paulson@13585
   338
text{*The ML section includes some compatibility bindings and a simproc
paulson@13585
   339
for function updates, in addition to the usual ML-bindings of theorems.*}
paulson@13585
   340
ML
paulson@13585
   341
{*
paulson@13585
   342
val id_def = thm "id_def";
paulson@13585
   343
val inj_on_def = thm "inj_on_def";
paulson@13585
   344
val surj_def = thm "surj_def";
paulson@13585
   345
val bij_def = thm "bij_def";
paulson@13585
   346
val fun_upd_def = thm "fun_upd_def";
paulson@11451
   347
paulson@13585
   348
val o_def = thm "comp_def";
paulson@13585
   349
val injI = thm "inj_onI";
paulson@13585
   350
val inj_inverseI = thm "inj_on_inverseI";
paulson@13585
   351
val set_cs = claset() delrules [equalityI];
paulson@13585
   352
paulson@13585
   353
val print_translation = [("Pi", dependent_tr' ("@Pi", "op funcset"))];
paulson@13585
   354
paulson@13585
   355
(* simplifies terms of the form f(...,x:=y,...,x:=z,...) to f(...,x:=z,...) *)
paulson@13585
   356
local
paulson@13585
   357
  fun gen_fun_upd None T _ _ = None
paulson@13585
   358
    | gen_fun_upd (Some f) T x y = Some (Const ("Fun.fun_upd",T) $ f $ x $ y)
paulson@13585
   359
  fun dest_fun_T1 (Type (_, T :: Ts)) = T
paulson@13585
   360
  fun find_double (t as Const ("Fun.fun_upd",T) $ f $ x $ y) =
paulson@13585
   361
    let
paulson@13585
   362
      fun find (Const ("Fun.fun_upd",T) $ g $ v $ w) =
paulson@13585
   363
            if v aconv x then Some g else gen_fun_upd (find g) T v w
paulson@13585
   364
        | find t = None
paulson@13585
   365
    in (dest_fun_T1 T, gen_fun_upd (find f) T x y) end
paulson@13585
   366
paulson@13585
   367
  val ss = simpset ()
paulson@13585
   368
  val fun_upd_prover = K (rtac eq_reflection 1 THEN rtac ext 1 THEN simp_tac ss 1)
paulson@13585
   369
in
paulson@13585
   370
  val fun_upd2_simproc =
paulson@13585
   371
    Simplifier.simproc (Theory.sign_of (the_context ()))
paulson@13585
   372
      "fun_upd2" ["f(v := w, x := y)"]
paulson@13585
   373
      (fn sg => fn _ => fn t =>
paulson@13585
   374
        case find_double t of (T, None) => None
paulson@13585
   375
        | (T, Some rhs) => Some (Tactic.prove sg [] [] (Term.equals T $ t $ rhs) fun_upd_prover))
paulson@13585
   376
end;
paulson@13585
   377
Addsimprocs[fun_upd2_simproc];
paulson@5852
   378
paulson@13585
   379
val expand_fun_eq = thm "expand_fun_eq";
paulson@13585
   380
val apply_inverse = thm "apply_inverse";
paulson@13585
   381
val id_apply = thm "id_apply";
paulson@13585
   382
val o_apply = thm "o_apply";
paulson@13585
   383
val o_assoc = thm "o_assoc";
paulson@13585
   384
val id_o = thm "id_o";
paulson@13585
   385
val o_id = thm "o_id";
paulson@13585
   386
val image_compose = thm "image_compose";
paulson@13585
   387
val image_eq_UN = thm "image_eq_UN";
paulson@13585
   388
val UN_o = thm "UN_o";
paulson@13585
   389
val datatype_injI = thm "datatype_injI";
paulson@13585
   390
val injD = thm "injD";
paulson@13585
   391
val inj_eq = thm "inj_eq";
paulson@13585
   392
val inj_onI = thm "inj_onI";
paulson@13585
   393
val inj_on_inverseI = thm "inj_on_inverseI";
paulson@13585
   394
val inj_onD = thm "inj_onD";
paulson@13585
   395
val inj_on_iff = thm "inj_on_iff";
paulson@13585
   396
val comp_inj_on = thm "comp_inj_on";
paulson@13585
   397
val inj_on_contraD = thm "inj_on_contraD";
paulson@13585
   398
val inj_singleton = thm "inj_singleton";
paulson@13585
   399
val subset_inj_on = thm "subset_inj_on";
paulson@13585
   400
val surjI = thm "surjI";
paulson@13585
   401
val surj_range = thm "surj_range";
paulson@13585
   402
val surjD = thm "surjD";
paulson@13585
   403
val surjE = thm "surjE";
paulson@13585
   404
val comp_surj = thm "comp_surj";
paulson@13585
   405
val bijI = thm "bijI";
paulson@13585
   406
val bij_is_inj = thm "bij_is_inj";
paulson@13585
   407
val bij_is_surj = thm "bij_is_surj";
paulson@13585
   408
val image_ident = thm "image_ident";
paulson@13585
   409
val image_id = thm "image_id";
paulson@13585
   410
val vimage_ident = thm "vimage_ident";
paulson@13585
   411
val vimage_id = thm "vimage_id";
paulson@13585
   412
val vimage_image_eq = thm "vimage_image_eq";
paulson@13585
   413
val image_vimage_subset = thm "image_vimage_subset";
paulson@13585
   414
val image_vimage_eq = thm "image_vimage_eq";
paulson@13585
   415
val surj_image_vimage_eq = thm "surj_image_vimage_eq";
paulson@13585
   416
val inj_vimage_image_eq = thm "inj_vimage_image_eq";
paulson@13585
   417
val vimage_subsetD = thm "vimage_subsetD";
paulson@13585
   418
val vimage_subsetI = thm "vimage_subsetI";
paulson@13585
   419
val vimage_subset_eq = thm "vimage_subset_eq";
paulson@13585
   420
val image_Int_subset = thm "image_Int_subset";
paulson@13585
   421
val image_diff_subset = thm "image_diff_subset";
paulson@13585
   422
val inj_on_image_Int = thm "inj_on_image_Int";
paulson@13585
   423
val inj_on_image_set_diff = thm "inj_on_image_set_diff";
paulson@13585
   424
val image_Int = thm "image_Int";
paulson@13585
   425
val image_set_diff = thm "image_set_diff";
paulson@13585
   426
val inj_image_mem_iff = thm "inj_image_mem_iff";
paulson@13585
   427
val inj_image_subset_iff = thm "inj_image_subset_iff";
paulson@13585
   428
val inj_image_eq_iff = thm "inj_image_eq_iff";
paulson@13585
   429
val image_UN = thm "image_UN";
paulson@13585
   430
val image_INT = thm "image_INT";
paulson@13585
   431
val bij_image_INT = thm "bij_image_INT";
paulson@13585
   432
val surj_Compl_image_subset = thm "surj_Compl_image_subset";
paulson@13585
   433
val inj_image_Compl_subset = thm "inj_image_Compl_subset";
paulson@13585
   434
val bij_image_Compl_eq = thm "bij_image_Compl_eq";
paulson@13585
   435
val fun_upd_idem_iff = thm "fun_upd_idem_iff";
paulson@13585
   436
val fun_upd_idem = thm "fun_upd_idem";
paulson@13585
   437
val fun_upd_apply = thm "fun_upd_apply";
paulson@13585
   438
val fun_upd_same = thm "fun_upd_same";
paulson@13585
   439
val fun_upd_other = thm "fun_upd_other";
paulson@13585
   440
val fun_upd_upd = thm "fun_upd_upd";
paulson@13585
   441
val fun_upd_twist = thm "fun_upd_twist";
berghofe@13637
   442
val range_ex1_eq = thm "range_ex1_eq";
paulson@13585
   443
*}
paulson@5852
   444
nipkow@2912
   445
end