src/HOL/Tools/Datatype/datatype_rep_proofs.ML
author haftmann
Mon Oct 12 13:40:28 2009 +0200 (2009-10-12)
changeset 32907 0300f8dd63ea
parent 32904 9d27ebc82700
child 32957 675c0c7e6a37
permissions -rw-r--r--
dropped rule duplicates
berghofe@5177
     1
(*  Title:      HOL/Tools/datatype_rep_proofs.ML
wenzelm@11539
     2
    Author:     Stefan Berghofer, TU Muenchen
berghofe@5177
     3
berghofe@5177
     4
Definitional introduction of datatypes
berghofe@5177
     5
Proof of characteristic theorems:
berghofe@5177
     6
berghofe@5177
     7
 - injectivity of constructors
berghofe@7228
     8
 - distinctness of constructors
berghofe@5177
     9
 - induction theorem
berghofe@5177
    10
*)
berghofe@5177
    11
berghofe@5177
    12
signature DATATYPE_REP_PROOFS =
berghofe@5177
    13
sig
haftmann@31737
    14
  include DATATYPE_COMMON
haftmann@31737
    15
  val representation_proofs : config -> info Symtab.table ->
haftmann@31668
    16
    string list -> descr list -> (string * sort) list ->
wenzelm@30345
    17
      (binding * mixfix) list -> (binding * mixfix) list list -> attribute
haftmann@32907
    18
        -> theory -> (thm list list * thm list list * thm) * theory
berghofe@5177
    19
end;
berghofe@5177
    20
berghofe@5177
    21
structure DatatypeRepProofs : DATATYPE_REP_PROOFS =
berghofe@5177
    22
struct
berghofe@5177
    23
berghofe@5177
    24
open DatatypeAux;
berghofe@5177
    25
berghofe@5177
    26
val (_ $ (_ $ (_ $ (distinct_f $ _) $ _))) = hd (prems_of distinct_lemma);
berghofe@5177
    27
berghofe@21021
    28
val collect_simp = rewrite_rule [mk_meta_eq mem_Collect_eq];
berghofe@21021
    29
wenzelm@11435
    30
wenzelm@11435
    31
(** theory context references **)
berghofe@5177
    32
haftmann@31737
    33
fun exh_thm_of (dt_info : info Symtab.table) tname =
haftmann@32712
    34
  #exhaust (the (Symtab.lookup dt_info tname));
berghofe@5177
    35
berghofe@5177
    36
(******************************************************************************)
berghofe@5177
    37
haftmann@31737
    38
fun representation_proofs (config : config) (dt_info : info Symtab.table)
wenzelm@8436
    39
      new_type_names descr sorts types_syntax constr_syntax case_names_induct thy =
berghofe@5177
    40
  let
wenzelm@19540
    41
    val Datatype_thy = ThyInfo.the_theory "Datatype" thy;
wenzelm@20820
    42
    val node_name = "Datatype.node";
wenzelm@20820
    43
    val In0_name = "Datatype.In0";
wenzelm@20820
    44
    val In1_name = "Datatype.In1";
wenzelm@20820
    45
    val Scons_name = "Datatype.Scons";
wenzelm@20820
    46
    val Leaf_name = "Datatype.Leaf";
wenzelm@20820
    47
    val Numb_name = "Datatype.Numb";
wenzelm@20820
    48
    val Lim_name = "Datatype.Lim";
berghofe@13641
    49
    val Suml_name = "Datatype.Suml";
berghofe@13641
    50
    val Sumr_name = "Datatype.Sumr";
berghofe@7015
    51
berghofe@13641
    52
    val [In0_inject, In1_inject, Scons_inject, Leaf_inject,
berghofe@13641
    53
         In0_eq, In1_eq, In0_not_In1, In1_not_In0,
wenzelm@26343
    54
         Lim_inject, Suml_inject, Sumr_inject] = map (PureThy.get_thm Datatype_thy)
wenzelm@26343
    55
          ["In0_inject", "In1_inject", "Scons_inject", "Leaf_inject",
wenzelm@26343
    56
           "In0_eq", "In1_eq", "In0_not_In1", "In1_not_In0",
wenzelm@26343
    57
           "Lim_inject", "Suml_inject", "Sumr_inject"];
berghofe@5177
    58
wenzelm@28362
    59
    val descr' = flat descr;
berghofe@5177
    60
berghofe@5661
    61
    val big_name = space_implode "_" new_type_names;
haftmann@32124
    62
    val thy1 = Sign.add_path big_name thy;
berghofe@5661
    63
    val big_rec_name = big_name ^ "_rep_set";
berghofe@21021
    64
    val rep_set_names' =
berghofe@5177
    65
      (if length descr' = 1 then [big_rec_name] else
berghofe@5177
    66
        (map ((curry (op ^) (big_rec_name ^ "_")) o string_of_int)
berghofe@5177
    67
          (1 upto (length descr'))));
haftmann@28965
    68
    val rep_set_names = map (Sign.full_bname thy1) rep_set_names';
berghofe@5177
    69
berghofe@5661
    70
    val tyvars = map (fn (_, (_, Ts, _)) => map dest_DtTFree Ts) (hd descr);
berghofe@5661
    71
    val leafTs' = get_nonrec_types descr' sorts;
berghofe@7015
    72
    val branchTs = get_branching_types descr' sorts;
berghofe@7015
    73
    val branchT = if null branchTs then HOLogic.unitT
wenzelm@32765
    74
      else Balanced_Tree.make (fn (T, U) => Type ("+", [T, U])) branchTs;
berghofe@13641
    75
    val arities = get_arities descr' \ 0;
wenzelm@30190
    76
    val unneeded_vars = hd tyvars \\ List.foldr OldTerm.add_typ_tfree_names [] (leafTs' @ branchTs);
haftmann@17521
    77
    val leafTs = leafTs' @ (map (fn n => TFree (n, (the o AList.lookup (op =) sorts) n)) unneeded_vars);
berghofe@5177
    78
    val recTs = get_rec_types descr' sorts;
skalberg@15570
    79
    val newTs = Library.take (length (hd descr), recTs);
skalberg@15570
    80
    val oldTs = Library.drop (length (hd descr), recTs);
berghofe@5177
    81
    val sumT = if null leafTs then HOLogic.unitT
wenzelm@32765
    82
      else Balanced_Tree.make (fn (T, U) => Type ("+", [T, U])) leafTs;
berghofe@7015
    83
    val Univ_elT = HOLogic.mk_setT (Type (node_name, [sumT, branchT]));
berghofe@5177
    84
    val UnivT = HOLogic.mk_setT Univ_elT;
berghofe@21021
    85
    val UnivT' = Univ_elT --> HOLogic.boolT;
berghofe@21021
    86
    val Collect = Const ("Collect", UnivT' --> UnivT);
berghofe@5177
    87
berghofe@5177
    88
    val In0 = Const (In0_name, Univ_elT --> Univ_elT);
berghofe@5177
    89
    val In1 = Const (In1_name, Univ_elT --> Univ_elT);
berghofe@5177
    90
    val Leaf = Const (Leaf_name, sumT --> Univ_elT);
berghofe@7015
    91
    val Lim = Const (Lim_name, (branchT --> Univ_elT) --> Univ_elT);
berghofe@5177
    92
berghofe@5177
    93
    (* make injections needed for embedding types in leaves *)
berghofe@5177
    94
berghofe@5177
    95
    fun mk_inj T' x =
berghofe@5177
    96
      let
berghofe@5177
    97
        fun mk_inj' T n i =
berghofe@5177
    98
          if n = 1 then x else
berghofe@5177
    99
          let val n2 = n div 2;
berghofe@5177
   100
              val Type (_, [T1, T2]) = T
berghofe@5177
   101
          in
berghofe@5177
   102
            if i <= n2 then
paulson@15391
   103
              Const ("Sum_Type.Inl", T1 --> T) $ (mk_inj' T1 n2 i)
berghofe@5177
   104
            else
paulson@15391
   105
              Const ("Sum_Type.Inr", T2 --> T) $ (mk_inj' T2 (n - n2) (i - n2))
berghofe@5177
   106
          end
haftmann@31986
   107
      in mk_inj' sumT (length leafTs) (1 + find_index (fn T'' => T'' = T') leafTs)
berghofe@5177
   108
      end;
berghofe@5177
   109
berghofe@5177
   110
    (* make injections for constructors *)
berghofe@5177
   111
wenzelm@32765
   112
    fun mk_univ_inj ts = Balanced_Tree.access
wenzelm@23419
   113
      {left = fn t => In0 $ t,
wenzelm@23419
   114
        right = fn t => In1 $ t,
wenzelm@23419
   115
        init =
haftmann@28524
   116
          if ts = [] then Const (@{const_name undefined}, Univ_elT)
wenzelm@23419
   117
          else foldr1 (HOLogic.mk_binop Scons_name) ts};
berghofe@5177
   118
berghofe@7015
   119
    (* function spaces *)
berghofe@7015
   120
berghofe@7015
   121
    fun mk_fun_inj T' x =
berghofe@7015
   122
      let
berghofe@7015
   123
        fun mk_inj T n i =
berghofe@7015
   124
          if n = 1 then x else
berghofe@7015
   125
          let
berghofe@7015
   126
            val n2 = n div 2;
berghofe@7015
   127
            val Type (_, [T1, T2]) = T;
berghofe@13641
   128
            fun mkT U = (U --> Univ_elT) --> T --> Univ_elT
berghofe@7015
   129
          in
berghofe@13641
   130
            if i <= n2 then Const (Suml_name, mkT T1) $ mk_inj T1 n2 i
berghofe@13641
   131
            else Const (Sumr_name, mkT T2) $ mk_inj T2 (n - n2) (i - n2)
berghofe@7015
   132
          end
haftmann@31986
   133
      in mk_inj branchT (length branchTs) (1 + find_index (fn T'' => T'' = T') branchTs)
berghofe@7015
   134
      end;
berghofe@7015
   135
wenzelm@30190
   136
    val mk_lim = List.foldr (fn (T, t) => Lim $ mk_fun_inj T (Abs ("x", T, t)));
berghofe@13641
   137
berghofe@5177
   138
    (************** generate introduction rules for representing set **********)
berghofe@5177
   139
haftmann@31668
   140
    val _ = message config "Constructing representing sets ...";
berghofe@5177
   141
berghofe@5177
   142
    (* make introduction rule for a single constructor *)
berghofe@5177
   143
berghofe@5177
   144
    fun make_intr s n (i, (_, cargs)) =
berghofe@5177
   145
      let
berghofe@13641
   146
        fun mk_prem (dt, (j, prems, ts)) = (case strip_dtyp dt of
berghofe@13641
   147
            (dts, DtRec k) =>
berghofe@13641
   148
              let
berghofe@13641
   149
                val Ts = map (typ_of_dtyp descr' sorts) dts;
berghofe@13641
   150
                val free_t =
berghofe@13641
   151
                  app_bnds (mk_Free "x" (Ts ---> Univ_elT) j) (length Ts)
berghofe@13641
   152
              in (j + 1, list_all (map (pair "x") Ts,
berghofe@21021
   153
                  HOLogic.mk_Trueprop
haftmann@31949
   154
                    (Free (nth rep_set_names' k, UnivT') $ free_t)) :: prems,
skalberg@15574
   155
                mk_lim free_t Ts :: ts)
berghofe@5177
   156
              end
berghofe@13641
   157
          | _ =>
berghofe@5177
   158
              let val T = typ_of_dtyp descr' sorts dt
berghofe@5177
   159
              in (j + 1, prems, (Leaf $ mk_inj T (mk_Free "x" T j))::ts)
berghofe@13641
   160
              end);
berghofe@5177
   161
wenzelm@30190
   162
        val (_, prems, ts) = List.foldr mk_prem (1, [], []) cargs;
berghofe@21021
   163
        val concl = HOLogic.mk_Trueprop
berghofe@21021
   164
          (Free (s, UnivT') $ mk_univ_inj ts n i)
berghofe@13641
   165
      in Logic.list_implies (prems, concl)
berghofe@5177
   166
      end;
berghofe@5177
   167
wenzelm@28362
   168
    val intr_ts = maps (fn ((_, (_, _, constrs)), rep_set_name) =>
berghofe@5177
   169
      map (make_intr rep_set_name (length constrs))
wenzelm@28362
   170
        ((1 upto (length constrs)) ~~ constrs)) (descr' ~~ rep_set_names');
berghofe@5177
   171
wenzelm@21365
   172
    val ({raw_induct = rep_induct, intrs = rep_intrs, ...}, thy2) =
haftmann@31723
   173
        Inductive.add_inductive_global (serial_string ())
haftmann@31668
   174
          {quiet_mode = #quiet config, verbose = false, kind = Thm.internalK,
haftmann@28965
   175
           alt_name = Binding.name big_rec_name, coind = false, no_elim = true, no_ind = false,
wenzelm@29389
   176
           skip_mono = true, fork_mono = false}
haftmann@28965
   177
          (map (fn s => ((Binding.name s, UnivT'), NoSyn)) rep_set_names') []
haftmann@28965
   178
          (map (fn x => (Attrib.empty_binding, x)) intr_ts) [] thy1;
berghofe@5177
   179
berghofe@5177
   180
    (********************************* typedef ********************************)
berghofe@5177
   181
berghofe@21021
   182
    val (typedefs, thy3) = thy2 |>
haftmann@32124
   183
      Sign.parent_path |>
berghofe@21021
   184
      fold_map (fn ((((name, mx), tvs), c), name') =>
haftmann@31723
   185
          Typedef.add_typedef false (SOME (Binding.name name')) (name, tvs, mx)
berghofe@21021
   186
            (Collect $ Const (c, UnivT')) NONE
berghofe@21021
   187
            (rtac exI 1 THEN rtac CollectI 1 THEN
berghofe@21021
   188
              QUIET_BREADTH_FIRST (has_fewer_prems 1)
wenzelm@26475
   189
              (resolve_tac rep_intrs 1)))
berghofe@21021
   190
                (types_syntax ~~ tyvars ~~
berghofe@21021
   191
                  (Library.take (length newTs, rep_set_names)) ~~ new_type_names) ||>
haftmann@32124
   192
      Sign.add_path big_name;
berghofe@5177
   193
berghofe@5177
   194
    (*********************** definition of constructors ***********************)
berghofe@5177
   195
berghofe@5177
   196
    val big_rep_name = (space_implode "_" new_type_names) ^ "_Rep_";
berghofe@5177
   197
    val rep_names = map (curry op ^ "Rep_") new_type_names;
berghofe@5177
   198
    val rep_names' = map (fn i => big_rep_name ^ (string_of_int i))
wenzelm@28362
   199
      (1 upto (length (flat (tl descr))));
wenzelm@22578
   200
    val all_rep_names = map (Sign.intern_const thy3) rep_names @
haftmann@28965
   201
      map (Sign.full_bname thy3) rep_names';
berghofe@5177
   202
berghofe@5177
   203
    (* isomorphism declarations *)
berghofe@5177
   204
wenzelm@30345
   205
    val iso_decls = map (fn (T, s) => (Binding.name s, T --> Univ_elT, NoSyn))
berghofe@5177
   206
      (oldTs ~~ rep_names');
berghofe@5177
   207
berghofe@5177
   208
    (* constructor definitions *)
berghofe@5177
   209
berghofe@5177
   210
    fun make_constr_def tname T n ((thy, defs, eqns, i), ((cname, cargs), (cname', mx))) =
berghofe@5177
   211
      let
berghofe@5177
   212
        fun constr_arg (dt, (j, l_args, r_args)) =
berghofe@5177
   213
          let val T = typ_of_dtyp descr' sorts dt;
berghofe@5177
   214
              val free_t = mk_Free "x" T j
berghofe@13641
   215
          in (case (strip_dtyp dt, strip_type T) of
skalberg@15574
   216
              ((_, DtRec m), (Us, U)) => (j + 1, free_t :: l_args, mk_lim
haftmann@31949
   217
                (Const (nth all_rep_names m, U --> Univ_elT) $
skalberg@15574
   218
                   app_bnds free_t (length Us)) Us :: r_args)
berghofe@5177
   219
            | _ => (j + 1, free_t::l_args, (Leaf $ mk_inj T free_t)::r_args))
berghofe@5177
   220
          end;
berghofe@5177
   221
wenzelm@30190
   222
        val (_, l_args, r_args) = List.foldr constr_arg (1, [], []) cargs;
berghofe@5177
   223
        val constrT = (map (typ_of_dtyp descr' sorts) cargs) ---> T;
wenzelm@22578
   224
        val abs_name = Sign.intern_const thy ("Abs_" ^ tname);
wenzelm@22578
   225
        val rep_name = Sign.intern_const thy ("Rep_" ^ tname);
berghofe@5177
   226
        val lhs = list_comb (Const (cname, constrT), l_args);
berghofe@5177
   227
        val rhs = mk_univ_inj r_args n i;
wenzelm@27330
   228
        val def = Logic.mk_equals (lhs, Const (abs_name, Univ_elT --> T) $ rhs);
wenzelm@30364
   229
        val def_name = Long_Name.base_name cname ^ "_def";
berghofe@5177
   230
        val eqn = HOLogic.mk_Trueprop (HOLogic.mk_eq
berghofe@5177
   231
          (Const (rep_name, T --> Univ_elT) $ lhs, rhs));
haftmann@18377
   232
        val ([def_thm], thy') =
haftmann@18377
   233
          thy
wenzelm@24712
   234
          |> Sign.add_consts_i [(cname', constrT, mx)]
haftmann@29579
   235
          |> (PureThy.add_defs false o map Thm.no_attributes) [(Binding.name def_name, def)];
berghofe@5177
   236
wenzelm@8436
   237
      in (thy', defs @ [def_thm], eqns @ [eqn], i + 1) end;
berghofe@5177
   238
berghofe@5177
   239
    (* constructor definitions for datatype *)
berghofe@5177
   240
berghofe@5177
   241
    fun dt_constr_defs ((thy, defs, eqns, rep_congs, dist_lemmas),
berghofe@5177
   242
        ((((_, (_, _, constrs)), tname), T), constr_syntax)) =
berghofe@5177
   243
      let
berghofe@5177
   244
        val _ $ (_ $ (cong_f $ _) $ _) = concl_of arg_cong;
wenzelm@22578
   245
        val rep_const = cterm_of thy
wenzelm@22578
   246
          (Const (Sign.intern_const thy ("Rep_" ^ tname), T --> Univ_elT));
wenzelm@22578
   247
        val cong' = standard (cterm_instantiate [(cterm_of thy cong_f, rep_const)] arg_cong);
wenzelm@22578
   248
        val dist = standard (cterm_instantiate [(cterm_of thy distinct_f, rep_const)] distinct_lemma);
skalberg@15570
   249
        val (thy', defs', eqns', _) = Library.foldl ((make_constr_def tname T) (length constrs))
haftmann@32124
   250
          ((Sign.add_path tname thy, defs, [], 1), constrs ~~ constr_syntax)
berghofe@5177
   251
      in
haftmann@32124
   252
        (Sign.parent_path thy', defs', eqns @ [eqns'],
berghofe@5177
   253
          rep_congs @ [cong'], dist_lemmas @ [dist])
berghofe@5177
   254
      end;
berghofe@5177
   255
skalberg@15570
   256
    val (thy4, constr_defs, constr_rep_eqns, rep_congs, dist_lemmas) = Library.foldl dt_constr_defs
haftmann@32124
   257
      ((thy3 |> Sign.add_consts_i iso_decls |> Sign.parent_path, [], [], [], []),
berghofe@5177
   258
        hd descr ~~ new_type_names ~~ newTs ~~ constr_syntax);
berghofe@5177
   259
berghofe@5177
   260
    (*********** isomorphisms for new types (introduced by typedef) ***********)
berghofe@5177
   261
haftmann@31668
   262
    val _ = message config "Proving isomorphism properties ...";
berghofe@5177
   263
berghofe@21021
   264
    val newT_iso_axms = map (fn (_, td) =>
berghofe@21021
   265
      (collect_simp (#Abs_inverse td), #Rep_inverse td,
berghofe@21021
   266
       collect_simp (#Rep td))) typedefs;
berghofe@5177
   267
berghofe@21021
   268
    val newT_iso_inj_thms = map (fn (_, td) =>
berghofe@21021
   269
      (collect_simp (#Abs_inject td) RS iffD1, #Rep_inject td RS iffD1)) typedefs;
berghofe@5177
   270
berghofe@5177
   271
    (********* isomorphisms between existing types and "unfolded" types *******)
berghofe@5177
   272
berghofe@5177
   273
    (*---------------------------------------------------------------------*)
berghofe@5177
   274
    (* isomorphisms are defined using primrec-combinators:                 *)
berghofe@5177
   275
    (* generate appropriate functions for instantiating primrec-combinator *)
berghofe@5177
   276
    (*                                                                     *)
berghofe@13641
   277
    (*   e.g.  dt_Rep_i = list_rec ... (%h t y. In1 (Scons (Leaf h) y))    *)
berghofe@5177
   278
    (*                                                                     *)
berghofe@5177
   279
    (* also generate characteristic equations for isomorphisms             *)
berghofe@5177
   280
    (*                                                                     *)
berghofe@13641
   281
    (*   e.g.  dt_Rep_i (cons h t) = In1 (Scons (dt_Rep_j h) (dt_Rep_i t)) *)
berghofe@5177
   282
    (*---------------------------------------------------------------------*)
berghofe@5177
   283
berghofe@5177
   284
    fun make_iso_def k ks n ((fs, eqns, i), (cname, cargs)) =
berghofe@5177
   285
      let
berghofe@5177
   286
        val argTs = map (typ_of_dtyp descr' sorts) cargs;
haftmann@31949
   287
        val T = nth recTs k;
haftmann@31949
   288
        val rep_name = nth all_rep_names k;
berghofe@5177
   289
        val rep_const = Const (rep_name, T --> Univ_elT);
berghofe@5177
   290
        val constr = Const (cname, argTs ---> T);
berghofe@5177
   291
berghofe@7015
   292
        fun process_arg ks' ((i2, i2', ts, Ts), dt) =
berghofe@13641
   293
          let
berghofe@13641
   294
            val T' = typ_of_dtyp descr' sorts dt;
berghofe@13641
   295
            val (Us, U) = strip_type T'
berghofe@13641
   296
          in (case strip_dtyp dt of
berghofe@13641
   297
              (_, DtRec j) => if j mem ks' then
skalberg@15574
   298
                  (i2 + 1, i2' + 1, ts @ [mk_lim (app_bnds
skalberg@15574
   299
                     (mk_Free "y" (Us ---> Univ_elT) i2') (length Us)) Us],
berghofe@13641
   300
                   Ts @ [Us ---> Univ_elT])
berghofe@5177
   301
                else
skalberg@15574
   302
                  (i2 + 1, i2', ts @ [mk_lim
haftmann@31949
   303
                     (Const (nth all_rep_names j, U --> Univ_elT) $
skalberg@15574
   304
                        app_bnds (mk_Free "x" T' i2) (length Us)) Us], Ts)
berghofe@7015
   305
            | _ => (i2 + 1, i2', ts @ [Leaf $ mk_inj T' (mk_Free "x" T' i2)], Ts))
berghofe@5177
   306
          end;
berghofe@5177
   307
skalberg@15570
   308
        val (i2, i2', ts, Ts) = Library.foldl (process_arg ks) ((1, 1, [], []), cargs);
berghofe@5177
   309
        val xs = map (uncurry (mk_Free "x")) (argTs ~~ (1 upto (i2 - 1)));
berghofe@7015
   310
        val ys = map (uncurry (mk_Free "y")) (Ts ~~ (1 upto (i2' - 1)));
berghofe@5177
   311
        val f = list_abs_free (map dest_Free (xs @ ys), mk_univ_inj ts n i);
berghofe@5177
   312
skalberg@15570
   313
        val (_, _, ts', _) = Library.foldl (process_arg []) ((1, 1, [], []), cargs);
berghofe@5177
   314
        val eqn = HOLogic.mk_Trueprop (HOLogic.mk_eq
berghofe@5177
   315
          (rep_const $ list_comb (constr, xs), mk_univ_inj ts' n i))
berghofe@5177
   316
berghofe@5177
   317
      in (fs @ [f], eqns @ [eqn], i + 1) end;
berghofe@5177
   318
berghofe@5177
   319
    (* define isomorphisms for all mutually recursive datatypes in list ds *)
berghofe@5177
   320
berghofe@5177
   321
    fun make_iso_defs (ds, (thy, char_thms)) =
berghofe@5177
   322
      let
berghofe@5177
   323
        val ks = map fst ds;
berghofe@5177
   324
        val (_, (tname, _, _)) = hd ds;
wenzelm@17412
   325
        val {rec_rewrites, rec_names, ...} = the (Symtab.lookup dt_info tname);
berghofe@5177
   326
berghofe@5177
   327
        fun process_dt ((fs, eqns, isos), (k, (tname, _, constrs))) =
berghofe@5177
   328
          let
skalberg@15570
   329
            val (fs', eqns', _) = Library.foldl (make_iso_def k ks (length constrs))
berghofe@5177
   330
              ((fs, eqns, 1), constrs);
haftmann@31949
   331
            val iso = (nth recTs k, nth all_rep_names k)
berghofe@5177
   332
          in (fs', eqns', isos @ [iso]) end;
berghofe@5177
   333
        
skalberg@15570
   334
        val (fs, eqns, isos) = Library.foldl process_dt (([], [], []), ds);
berghofe@5177
   335
        val fTs = map fastype_of fs;
wenzelm@30364
   336
        val defs = map (fn (rec_name, (T, iso_name)) => (Binding.name (Long_Name.base_name iso_name ^ "_def"),
wenzelm@27330
   337
          Logic.mk_equals (Const (iso_name, T --> Univ_elT),
wenzelm@27330
   338
            list_comb (Const (rec_name, fTs @ [T] ---> Univ_elT), fs)))) (rec_names ~~ isos);
wenzelm@28362
   339
        val (def_thms, thy') =
wenzelm@28362
   340
          apsnd Theory.checkpoint ((PureThy.add_defs false o map Thm.no_attributes) defs thy);
berghofe@5177
   341
berghofe@5177
   342
        (* prove characteristic equations *)
berghofe@5177
   343
oheimb@5553
   344
        val rewrites = def_thms @ (map mk_meta_eq rec_rewrites);
berghofe@26531
   345
        val char_thms' = map (fn eqn => SkipProof.prove_global thy' [] [] eqn
wenzelm@20046
   346
          (fn _ => EVERY [rewrite_goals_tac rewrites, rtac refl 1])) eqns;
berghofe@5177
   347
berghofe@5177
   348
      in (thy', char_thms' @ char_thms) end;
berghofe@5177
   349
wenzelm@30190
   350
    val (thy5, iso_char_thms) = apfst Theory.checkpoint (List.foldr make_iso_defs
haftmann@32124
   351
      (Sign.add_path big_name thy4, []) (tl descr));
berghofe@5177
   352
berghofe@5177
   353
    (* prove isomorphism properties *)
berghofe@5177
   354
wenzelm@28362
   355
    fun mk_funs_inv thy thm =
berghofe@7015
   356
      let
wenzelm@26626
   357
        val prop = Thm.prop_of thm;
berghofe@21021
   358
        val _ $ (_ $ ((S as Const (_, Type (_, [U, _]))) $ _ )) $
wenzelm@16287
   359
          (_ $ (_ $ (r $ (a $ _)) $ _)) = Type.freeze prop;
wenzelm@29270
   360
        val used = OldTerm.add_term_tfree_names (a, []);
berghofe@13641
   361
berghofe@13641
   362
        fun mk_thm i =
berghofe@13641
   363
          let
berghofe@13641
   364
            val Ts = map (TFree o rpair HOLogic.typeS)
wenzelm@20071
   365
              (Name.variant_list used (replicate i "'t"));
berghofe@13641
   366
            val f = Free ("f", Ts ---> U)
berghofe@26531
   367
          in SkipProof.prove_global thy [] [] (Logic.mk_implies
berghofe@13641
   368
            (HOLogic.mk_Trueprop (HOLogic.list_all
berghofe@21021
   369
               (map (pair "x") Ts, S $ app_bnds f i)),
berghofe@13641
   370
             HOLogic.mk_Trueprop (HOLogic.mk_eq (list_abs (map (pair "x") Ts,
wenzelm@17985
   371
               r $ (a $ app_bnds f i)), f))))
berghofe@26806
   372
            (fn _ => EVERY [REPEAT_DETERM_N i (rtac ext 1),
berghofe@26806
   373
               REPEAT (etac allE 1), rtac thm 1, atac 1])
berghofe@13641
   374
          end
berghofe@13641
   375
      in map (fn r => r RS subst) (thm :: map mk_thm arities) end;
berghofe@7015
   376
berghofe@5177
   377
    (* prove  inj dt_Rep_i  and  dt_Rep_i x : dt_rep_set_i *)
berghofe@5177
   378
berghofe@26806
   379
    val fun_congs = map (fn T => make_elim (Drule.instantiate'
berghofe@26806
   380
      [SOME (ctyp_of thy5 T)] [] fun_cong)) branchTs;
berghofe@26806
   381
berghofe@5177
   382
    fun prove_iso_thms (ds, (inj_thms, elem_thms)) =
berghofe@5177
   383
      let
berghofe@5177
   384
        val (_, (tname, _, _)) = hd ds;
haftmann@32727
   385
        val induct = (#induct o the o Symtab.lookup dt_info) tname;
berghofe@5177
   386
berghofe@5177
   387
        fun mk_ind_concl (i, _) =
berghofe@5177
   388
          let
haftmann@31949
   389
            val T = nth recTs i;
haftmann@31949
   390
            val Rep_t = Const (nth all_rep_names i, T --> Univ_elT);
haftmann@31949
   391
            val rep_set_name = nth rep_set_names i
berghofe@5177
   392
          in (HOLogic.all_const T $ Abs ("y", T, HOLogic.imp $
berghofe@5177
   393
                HOLogic.mk_eq (Rep_t $ mk_Free "x" T i, Rep_t $ Bound 0) $
berghofe@5177
   394
                  HOLogic.mk_eq (mk_Free "x" T i, Bound 0)),
berghofe@21021
   395
              Const (rep_set_name, UnivT') $ (Rep_t $ mk_Free "x" T i))
berghofe@5177
   396
          end;
berghofe@5177
   397
berghofe@5177
   398
        val (ind_concl1, ind_concl2) = ListPair.unzip (map mk_ind_concl ds);
berghofe@5177
   399
oheimb@5553
   400
        val rewrites = map mk_meta_eq iso_char_thms;
berghofe@21021
   401
        val inj_thms' = map snd newT_iso_inj_thms @
haftmann@26359
   402
          map (fn r => r RS @{thm injD}) inj_thms;
berghofe@5177
   403
berghofe@26531
   404
        val inj_thm = SkipProof.prove_global thy5 [] []
wenzelm@17985
   405
          (HOLogic.mk_Trueprop (mk_conj ind_concl1)) (fn _ => EVERY
haftmann@32712
   406
            [(indtac induct [] THEN_ALL_NEW ObjectLogic.atomize_prems_tac) 1,
berghofe@5177
   407
             REPEAT (EVERY
berghofe@5177
   408
               [rtac allI 1, rtac impI 1,
berghofe@5177
   409
                exh_tac (exh_thm_of dt_info) 1,
berghofe@5177
   410
                REPEAT (EVERY
berghofe@5177
   411
                  [hyp_subst_tac 1,
berghofe@5177
   412
                   rewrite_goals_tac rewrites,
berghofe@5177
   413
                   REPEAT (dresolve_tac [In0_inject, In1_inject] 1),
berghofe@5177
   414
                   (eresolve_tac [In0_not_In1 RS notE, In1_not_In0 RS notE] 1)
berghofe@5177
   415
                   ORELSE (EVERY
berghofe@13641
   416
                     [REPEAT (eresolve_tac (Scons_inject ::
berghofe@13641
   417
                        map make_elim [Leaf_inject, Inl_inject, Inr_inject]) 1),
berghofe@13641
   418
                      REPEAT (cong_tac 1), rtac refl 1,
berghofe@13641
   419
                      REPEAT (atac 1 ORELSE (EVERY
berghofe@13641
   420
                        [REPEAT (rtac ext 1),
berghofe@13641
   421
                         REPEAT (eresolve_tac (mp :: allE ::
berghofe@13641
   422
                           map make_elim (Suml_inject :: Sumr_inject ::
berghofe@26806
   423
                             Lim_inject :: inj_thms') @ fun_congs) 1),
wenzelm@20046
   424
                         atac 1]))])])])]);
berghofe@5177
   425
haftmann@26359
   426
        val inj_thms'' = map (fn r => r RS @{thm datatype_injI})
paulson@6171
   427
                             (split_conj_thm inj_thm);
berghofe@5177
   428
paulson@6171
   429
        val elem_thm = 
berghofe@26531
   430
            SkipProof.prove_global thy5 [] [] (HOLogic.mk_Trueprop (mk_conj ind_concl2))
wenzelm@20046
   431
              (fn _ =>
haftmann@32712
   432
               EVERY [(indtac induct [] THEN_ALL_NEW ObjectLogic.atomize_prems_tac) 1,
wenzelm@20046
   433
                rewrite_goals_tac rewrites,
wenzelm@20046
   434
                REPEAT ((resolve_tac rep_intrs THEN_ALL_NEW
wenzelm@20046
   435
                  ((REPEAT o etac allE) THEN' ares_tac elem_thms)) 1)]);
berghofe@5177
   436
berghofe@11471
   437
      in (inj_thms'' @ inj_thms, elem_thms @ (split_conj_thm elem_thm))
berghofe@11471
   438
      end;
berghofe@11471
   439
wenzelm@30190
   440
    val (iso_inj_thms_unfolded, iso_elem_thms) = List.foldr prove_iso_thms
skalberg@15574
   441
      ([], map #3 newT_iso_axms) (tl descr);
berghofe@21021
   442
    val iso_inj_thms = map snd newT_iso_inj_thms @
haftmann@26359
   443
      map (fn r => r RS @{thm injD}) iso_inj_thms_unfolded;
berghofe@11471
   444
berghofe@21021
   445
    (* prove  dt_rep_set_i x --> x : range dt_Rep_i *)
berghofe@11471
   446
berghofe@11471
   447
    fun mk_iso_t (((set_name, iso_name), i), T) =
berghofe@11471
   448
      let val isoT = T --> Univ_elT
berghofe@11471
   449
      in HOLogic.imp $ 
berghofe@21021
   450
        (Const (set_name, UnivT') $ mk_Free "x" Univ_elT i) $
haftmann@31643
   451
          (if i < length newTs then HOLogic.true_const
berghofe@11471
   452
           else HOLogic.mk_mem (mk_Free "x" Univ_elT i,
haftmann@31643
   453
             Const (@{const_name image}, isoT --> HOLogic.mk_setT T --> UnivT) $
haftmann@30304
   454
               Const (iso_name, isoT) $ Const (@{const_name UNIV}, HOLogic.mk_setT T)))
berghofe@5177
   455
      end;
berghofe@5177
   456
berghofe@11471
   457
    val iso_t = HOLogic.mk_Trueprop (mk_conj (map mk_iso_t
berghofe@11471
   458
      (rep_set_names ~~ all_rep_names ~~ (0 upto (length descr' - 1)) ~~ recTs)));
berghofe@11471
   459
berghofe@11471
   460
    (* all the theorems are proved by one single simultaneous induction *)
berghofe@11471
   461
haftmann@26359
   462
    val range_eqs = map (fn r => mk_meta_eq (r RS @{thm range_ex1_eq}))
berghofe@13641
   463
      iso_inj_thms_unfolded;
berghofe@13641
   464
berghofe@11471
   465
    val iso_thms = if length descr = 1 then [] else
skalberg@15570
   466
      Library.drop (length newTs, split_conj_thm
berghofe@26531
   467
        (SkipProof.prove_global thy5 [] [] iso_t (fn _ => EVERY
berghofe@25678
   468
           [(indtac rep_induct [] THEN_ALL_NEW ObjectLogic.atomize_prems_tac) 1,
berghofe@11471
   469
            REPEAT (rtac TrueI 1),
berghofe@13641
   470
            rewrite_goals_tac (mk_meta_eq choice_eq ::
haftmann@26359
   471
              symmetric (mk_meta_eq @{thm expand_fun_eq}) :: range_eqs),
berghofe@13641
   472
            rewrite_goals_tac (map symmetric range_eqs),
berghofe@11471
   473
            REPEAT (EVERY
berghofe@13641
   474
              [REPEAT (eresolve_tac ([rangeE, ex1_implies_ex RS exE] @
wenzelm@28362
   475
                 maps (mk_funs_inv thy5 o #1) newT_iso_axms) 1),
berghofe@11471
   476
               TRY (hyp_subst_tac 1),
berghofe@11471
   477
               rtac (sym RS range_eqI) 1,
wenzelm@20046
   478
               resolve_tac iso_char_thms 1])])));
wenzelm@11435
   479
wenzelm@11435
   480
    val Abs_inverse_thms' =
wenzelm@11435
   481
      map #1 newT_iso_axms @
haftmann@31949
   482
      map2 (fn r_inj => fn r => @{thm f_inv_f} OF [r_inj, r RS mp])
haftmann@18330
   483
        iso_inj_thms_unfolded iso_thms;
wenzelm@11435
   484
wenzelm@28362
   485
    val Abs_inverse_thms = maps (mk_funs_inv thy5) Abs_inverse_thms';
berghofe@5177
   486
berghofe@5177
   487
    (******************* freeness theorems for constructors *******************)
berghofe@5177
   488
haftmann@31668
   489
    val _ = message config "Proving freeness of constructors ...";
berghofe@5177
   490
berghofe@5177
   491
    (* prove theorem  Rep_i (Constr_j ...) = Inj_j ...  *)
berghofe@5177
   492
    
berghofe@5177
   493
    fun prove_constr_rep_thm eqn =
berghofe@5177
   494
      let
berghofe@21021
   495
        val inj_thms = map fst newT_iso_inj_thms;
haftmann@26359
   496
        val rewrites = @{thm o_def} :: constr_defs @ (map (mk_meta_eq o #2) newT_iso_axms)
berghofe@26531
   497
      in SkipProof.prove_global thy5 [] [] eqn (fn _ => EVERY
berghofe@5177
   498
        [resolve_tac inj_thms 1,
berghofe@5177
   499
         rewrite_goals_tac rewrites,
berghofe@21021
   500
         rtac refl 3,
berghofe@5177
   501
         resolve_tac rep_intrs 2,
wenzelm@20046
   502
         REPEAT (resolve_tac iso_elem_thms 1)])
berghofe@5177
   503
      end;
berghofe@5177
   504
berghofe@5177
   505
    (*--------------------------------------------------------------*)
berghofe@5177
   506
    (* constr_rep_thms and rep_congs are used to prove distinctness *)
berghofe@7015
   507
    (* of constructors.                                             *)
berghofe@5177
   508
    (*--------------------------------------------------------------*)
berghofe@5177
   509
berghofe@5177
   510
    val constr_rep_thms = map (map prove_constr_rep_thm) constr_rep_eqns;
berghofe@5177
   511
berghofe@5177
   512
    val dist_rewrites = map (fn (rep_thms, dist_lemma) =>
berghofe@5177
   513
      dist_lemma::(rep_thms @ [In0_eq, In1_eq, In0_not_In1, In1_not_In0]))
berghofe@5177
   514
        (constr_rep_thms ~~ dist_lemmas);
berghofe@5177
   515
haftmann@32900
   516
    fun prove_distinct_thms dist_rewrites' (k, ts) =
haftmann@32900
   517
      let
haftmann@32900
   518
        fun prove [] = []
haftmann@32900
   519
          | prove (t :: ts) =
haftmann@32900
   520
              let
haftmann@32900
   521
                val dist_thm = SkipProof.prove_global thy5 [] [] t (fn _ =>
haftmann@32900
   522
                  EVERY [simp_tac (HOL_ss addsimps dist_rewrites') 1])
haftmann@32900
   523
              in dist_thm :: standard (dist_thm RS not_sym) :: prove ts end;
haftmann@32900
   524
      in prove ts end;
berghofe@7015
   525
haftmann@32900
   526
    val distinct_thms = map2 (prove_distinct_thms)
haftmann@32900
   527
      dist_rewrites (DatatypeProp.make_distincts descr sorts);
berghofe@7015
   528
berghofe@5177
   529
    (* prove injectivity of constructors *)
berghofe@5177
   530
berghofe@5177
   531
    fun prove_constr_inj_thm rep_thms t =
berghofe@13641
   532
      let val inj_thms = Scons_inject :: (map make_elim
berghofe@21021
   533
        (iso_inj_thms @
berghofe@13641
   534
          [In0_inject, In1_inject, Leaf_inject, Inl_inject, Inr_inject,
berghofe@13641
   535
           Lim_inject, Suml_inject, Sumr_inject]))
berghofe@26531
   536
      in SkipProof.prove_global thy5 [] [] t (fn _ => EVERY
berghofe@5177
   537
        [rtac iffI 1,
berghofe@5177
   538
         REPEAT (etac conjE 2), hyp_subst_tac 2, rtac refl 2,
berghofe@5177
   539
         dresolve_tac rep_congs 1, dtac box_equals 1,
berghofe@13641
   540
         REPEAT (resolve_tac rep_thms 1),
berghofe@5177
   541
         REPEAT (eresolve_tac inj_thms 1),
berghofe@13641
   542
         REPEAT (ares_tac [conjI] 1 ORELSE (EVERY [REPEAT (rtac ext 1),
berghofe@13641
   543
           REPEAT (eresolve_tac (make_elim fun_cong :: inj_thms) 1),
wenzelm@20046
   544
           atac 1]))])
berghofe@5177
   545
      end;
berghofe@5177
   546
berghofe@5177
   547
    val constr_inject = map (fn (ts, thms) => map (prove_constr_inj_thm thms) ts)
berghofe@5177
   548
      ((DatatypeProp.make_injs descr sorts) ~~ constr_rep_thms);
berghofe@5177
   549
haftmann@18314
   550
    val ((constr_inject', distinct_thms'), thy6) =
haftmann@18314
   551
      thy5
haftmann@32124
   552
      |> Sign.parent_path
haftmann@18314
   553
      |> store_thmss "inject" new_type_names constr_inject
haftmann@18314
   554
      ||>> store_thmss "distinct" new_type_names distinct_thms;
berghofe@5177
   555
berghofe@5177
   556
    (*************************** induction theorem ****************************)
berghofe@5177
   557
haftmann@31668
   558
    val _ = message config "Proving induction rule for datatypes ...";
berghofe@5177
   559
berghofe@5177
   560
    val Rep_inverse_thms = (map (fn (_, iso, _) => iso RS subst) newT_iso_axms) @
haftmann@31949
   561
      (map (fn r => r RS @{thm inv_f_f} RS subst) iso_inj_thms_unfolded);
haftmann@31949
   562
    val Rep_inverse_thms' = map (fn r => r RS @{thm inv_f_f}) iso_inj_thms_unfolded;
berghofe@5177
   563
berghofe@5177
   564
    fun mk_indrule_lemma ((prems, concls), ((i, _), T)) =
berghofe@5177
   565
      let
haftmann@31949
   566
        val Rep_t = Const (nth all_rep_names i, T --> Univ_elT) $
berghofe@5177
   567
          mk_Free "x" T i;
berghofe@5177
   568
berghofe@5177
   569
        val Abs_t = if i < length newTs then
wenzelm@22578
   570
            Const (Sign.intern_const thy6
haftmann@31949
   571
              ("Abs_" ^ (nth new_type_names i)), Univ_elT --> T)
haftmann@31949
   572
          else Const (@{const_name Fun.inv}, [T --> Univ_elT, Univ_elT] ---> T) $
haftmann@31949
   573
            Const (nth all_rep_names i, T --> Univ_elT)
berghofe@5177
   574
berghofe@21021
   575
      in (prems @ [HOLogic.imp $
haftmann@31949
   576
            (Const (nth rep_set_names i, UnivT') $ Rep_t) $
berghofe@5177
   577
              (mk_Free "P" (T --> HOLogic.boolT) (i + 1) $ (Abs_t $ Rep_t))],
berghofe@5177
   578
          concls @ [mk_Free "P" (T --> HOLogic.boolT) (i + 1) $ mk_Free "x" T i])
berghofe@5177
   579
      end;
berghofe@5177
   580
berghofe@5177
   581
    val (indrule_lemma_prems, indrule_lemma_concls) =
skalberg@15570
   582
      Library.foldl mk_indrule_lemma (([], []), (descr' ~~ recTs));
berghofe@5177
   583
wenzelm@22578
   584
    val cert = cterm_of thy6;
berghofe@5177
   585
berghofe@26531
   586
    val indrule_lemma = SkipProof.prove_global thy6 [] []
berghofe@5177
   587
      (Logic.mk_implies
berghofe@5177
   588
        (HOLogic.mk_Trueprop (mk_conj indrule_lemma_prems),
wenzelm@17985
   589
         HOLogic.mk_Trueprop (mk_conj indrule_lemma_concls))) (fn _ => EVERY
wenzelm@17985
   590
           [REPEAT (etac conjE 1),
berghofe@5177
   591
            REPEAT (EVERY
berghofe@5177
   592
              [TRY (rtac conjI 1), resolve_tac Rep_inverse_thms 1,
wenzelm@20046
   593
               etac mp 1, resolve_tac iso_elem_thms 1])]);
berghofe@5177
   594
wenzelm@8305
   595
    val Ps = map head_of (HOLogic.dest_conj (HOLogic.dest_Trueprop (concl_of indrule_lemma)));
berghofe@5177
   596
    val frees = if length Ps = 1 then [Free ("P", snd (dest_Var (hd Ps)))] else
berghofe@5177
   597
      map (Free o apfst fst o dest_Var) Ps;
berghofe@5177
   598
    val indrule_lemma' = cterm_instantiate (map cert Ps ~~ map cert frees) indrule_lemma;
berghofe@5177
   599
wenzelm@17985
   600
    val dt_induct_prop = DatatypeProp.make_ind descr sorts;
berghofe@26531
   601
    val dt_induct = SkipProof.prove_global thy6 []
wenzelm@17985
   602
      (Logic.strip_imp_prems dt_induct_prop) (Logic.strip_imp_concl dt_induct_prop)
wenzelm@26711
   603
      (fn {prems, ...} => EVERY
berghofe@13641
   604
        [rtac indrule_lemma' 1,
berghofe@25678
   605
         (indtac rep_induct [] THEN_ALL_NEW ObjectLogic.atomize_prems_tac) 1,
berghofe@5177
   606
         EVERY (map (fn (prem, r) => (EVERY
berghofe@13641
   607
           [REPEAT (eresolve_tac Abs_inverse_thms 1),
berghofe@5177
   608
            simp_tac (HOL_basic_ss addsimps ((symmetric r)::Rep_inverse_thms')) 1,
berghofe@13641
   609
            DEPTH_SOLVE_1 (ares_tac [prem] 1 ORELSE etac allE 1)]))
wenzelm@20046
   610
                (prems ~~ (constr_defs @ (map mk_meta_eq iso_char_thms))))]);
berghofe@5177
   611
haftmann@18377
   612
    val ([dt_induct'], thy7) =
haftmann@18377
   613
      thy6
wenzelm@24712
   614
      |> Sign.add_path big_name
haftmann@29579
   615
      |> PureThy.add_thms [((Binding.name "induct", dt_induct), [case_names_induct])]
wenzelm@28362
   616
      ||> Sign.parent_path
wenzelm@28362
   617
      ||> Theory.checkpoint;
berghofe@5177
   618
haftmann@18314
   619
  in
haftmann@32907
   620
    ((constr_inject', distinct_thms', dt_induct'), thy7)
berghofe@5177
   621
  end;
berghofe@5177
   622
berghofe@5177
   623
end;