src/Pure/Proof/extraction.ML
author haftmann
Mon Feb 06 11:01:28 2006 +0100 (2006-02-06)
changeset 18928 042608ffa2ec
parent 18921 f47c46d7d654
child 18956 c050ae1f8f52
permissions -rw-r--r--
subsituted gen_duplicates / has_duplicates for duplicates whenever appropriate
berghofe@13402
     1
(*  Title:      Pure/Proof/extraction.ML
berghofe@13402
     2
    ID:         $Id$
berghofe@13402
     3
    Author:     Stefan Berghofer, TU Muenchen
berghofe@13402
     4
berghofe@13402
     5
Extraction of programs from proofs.
berghofe@13402
     6
*)
berghofe@13402
     7
berghofe@13402
     8
signature EXTRACTION =
berghofe@13402
     9
sig
wenzelm@16458
    10
  val set_preprocessor : (theory -> Proofterm.proof -> Proofterm.proof) -> theory -> theory
berghofe@13402
    11
  val add_realizes_eqns_i : ((term * term) list * (term * term)) list -> theory -> theory
berghofe@13402
    12
  val add_realizes_eqns : string list -> theory -> theory
berghofe@13402
    13
  val add_typeof_eqns_i : ((term * term) list * (term * term)) list -> theory -> theory
berghofe@13402
    14
  val add_typeof_eqns : string list -> theory -> theory
berghofe@13402
    15
  val add_realizers_i : (string * (string list * term * Proofterm.proof)) list
berghofe@13402
    16
    -> theory -> theory
berghofe@13402
    17
  val add_realizers : (thm * (string list * string * string)) list
berghofe@13402
    18
    -> theory -> theory
berghofe@13402
    19
  val add_expand_thms : thm list -> theory -> theory
berghofe@13732
    20
  val add_types : (xstring * ((term -> term option) list *
berghofe@13732
    21
    (term -> typ -> term -> typ -> term) option)) list -> theory -> theory
berghofe@13732
    22
  val extract : (thm * string list) list -> theory -> theory
berghofe@13402
    23
  val nullT : typ
berghofe@13402
    24
  val nullt : term
berghofe@13714
    25
  val mk_typ : typ -> term
berghofe@13714
    26
  val etype_of : theory -> string list -> typ list -> term -> typ
berghofe@13714
    27
  val realizes_of: theory -> string list -> term -> term -> term
berghofe@13402
    28
end;
berghofe@13402
    29
berghofe@13402
    30
structure Extraction : EXTRACTION =
berghofe@13402
    31
struct
berghofe@13402
    32
berghofe@13402
    33
open Proofterm;
berghofe@13402
    34
berghofe@13402
    35
(**** tools ****)
berghofe@13402
    36
berghofe@13402
    37
fun add_syntax thy =
berghofe@13402
    38
  thy
berghofe@13402
    39
  |> Theory.copy
berghofe@13402
    40
  |> Theory.root_path
berghofe@13402
    41
  |> Theory.add_types [("Type", 0, NoSyn), ("Null", 0, NoSyn)]
berghofe@13402
    42
  |> Theory.add_consts
wenzelm@14854
    43
      [("typeof", "'b::{} => Type", NoSyn),
wenzelm@14854
    44
       ("Type", "'a::{} itself => Type", NoSyn),
berghofe@13402
    45
       ("Null", "Null", NoSyn),
wenzelm@14854
    46
       ("realizes", "'a::{} => 'b::{} => 'b", NoSyn)];
berghofe@13402
    47
berghofe@13402
    48
val nullT = Type ("Null", []);
berghofe@13402
    49
val nullt = Const ("Null", nullT);
berghofe@13402
    50
berghofe@13402
    51
fun mk_typ T =
berghofe@13402
    52
  Const ("Type", itselfT T --> Type ("Type", [])) $ Logic.mk_type T;
berghofe@13402
    53
berghofe@13402
    54
fun typeof_proc defaultS vs (Const ("typeof", _) $ u) =
skalberg@15531
    55
      SOME (mk_typ (case strip_comb u of
berghofe@13402
    56
          (Var ((a, i), _), _) =>
berghofe@13402
    57
            if a mem vs then TFree ("'" ^ a ^ ":" ^ string_of_int i, defaultS)
berghofe@13402
    58
            else nullT
berghofe@13402
    59
        | (Free (a, _), _) =>
berghofe@13402
    60
            if a mem vs then TFree ("'" ^ a, defaultS) else nullT
berghofe@13402
    61
        | _ => nullT))
skalberg@15531
    62
  | typeof_proc _ _ _ = NONE;
berghofe@13402
    63
skalberg@15531
    64
fun rlz_proc (Const ("realizes", Type (_, [Type ("Null", []), _])) $ r $ t) = SOME t
berghofe@13732
    65
  | rlz_proc (Const ("realizes", Type (_, [T, _])) $ r $ t) =
berghofe@13732
    66
      (case strip_comb t of
skalberg@15531
    67
         (Var (ixn, U), ts) => SOME (list_comb (Var (ixn, T --> U), r :: ts))
skalberg@15531
    68
       | (Free (s, U), ts) => SOME (list_comb (Free (s, T --> U), r :: ts))
skalberg@15531
    69
       | _ => NONE)
skalberg@15531
    70
  | rlz_proc _ = NONE;
berghofe@13402
    71
berghofe@13402
    72
val unpack_ixn = apfst implode o apsnd (fst o read_int o tl) o
berghofe@13402
    73
  take_prefix (not o equal ":") o explode;
berghofe@13402
    74
berghofe@13402
    75
type rules =
berghofe@13402
    76
  {next: int, rs: ((term * term) list * (term * term)) list,
berghofe@13402
    77
   net: (int * ((term * term) list * (term * term))) Net.net};
berghofe@13402
    78
berghofe@13402
    79
val empty_rules : rules = {next = 0, rs = [], net = Net.empty};
berghofe@13402
    80
berghofe@13402
    81
fun add_rule (r as (_, (lhs, _)), {next, rs, net} : rules) =
wenzelm@16800
    82
  {next = next - 1, rs = r :: rs, net = Net.insert_term (K false)
wenzelm@16800
    83
     (Pattern.eta_contract lhs, (next, r)) net};
berghofe@13402
    84
berghofe@13417
    85
fun merge_rules
berghofe@13417
    86
  ({next, rs = rs1, net} : rules) ({next = next2, rs = rs2, ...} : rules) =
skalberg@15574
    87
  foldr add_rule {next = next, rs = rs1, net = net} (rs2 \\ rs1);
berghofe@13402
    88
wenzelm@16458
    89
fun condrew thy rules procs =
berghofe@13402
    90
  let
berghofe@13402
    91
    fun rew tm =
wenzelm@17203
    92
      Pattern.rewrite_term thy [] (condrew' :: procs) tm
berghofe@15399
    93
    and condrew' tm =
berghofe@13402
    94
      let
berghofe@15399
    95
        val cache = ref ([] : (term * term) list);
haftmann@17232
    96
        fun lookup f x = (case AList.lookup (op =) (!cache) x of
skalberg@15531
    97
            NONE =>
berghofe@15399
    98
              let val y = f x
berghofe@15399
    99
              in (cache := (x, y) :: !cache; y) end
skalberg@15531
   100
          | SOME y => y);
berghofe@15399
   101
      in
berghofe@15399
   102
        get_first (fn (_, (prems, (tm1, tm2))) =>
berghofe@15399
   103
        let
skalberg@15570
   104
          fun ren t = getOpt (Term.rename_abs tm1 tm t, t);
berghofe@15399
   105
          val inc = Logic.incr_indexes ([], maxidx_of_term tm + 1);
wenzelm@18184
   106
          val env as (Tenv, tenv) = Pattern.match thy (inc tm1, tm) (Vartab.empty, Vartab.empty);
berghofe@15798
   107
          val prems' = map (pairself (Envir.subst_vars env o inc o ren)) prems;
berghofe@15399
   108
          val env' = Envir.Envir
skalberg@15570
   109
            {maxidx = Library.foldl Int.max
berghofe@15399
   110
              (~1, map (Int.max o pairself maxidx_of_term) prems'),
berghofe@15798
   111
             iTs = Tenv, asol = tenv};
wenzelm@18184
   112
          val env'' = fold (Pattern.unify thy o pairself (lookup rew)) prems' env';
skalberg@15531
   113
        in SOME (Envir.norm_term env'' (inc (ren tm2)))
skalberg@15531
   114
        end handle Pattern.MATCH => NONE | Pattern.Unif => NONE)
wenzelm@16486
   115
          (sort (int_ord o pairself fst)
berghofe@15399
   116
            (Net.match_term rules (Pattern.eta_contract tm)))
berghofe@15399
   117
      end;
berghofe@13402
   118
berghofe@13402
   119
  in rew end;
berghofe@13402
   120
skalberg@15531
   121
val chtype = change_type o SOME;
berghofe@13402
   122
wenzelm@16195
   123
fun extr_name s vs = NameSpace.append "extr" (space_implode "_" (s :: vs));
wenzelm@16195
   124
fun corr_name s vs = extr_name s vs ^ "_correctness";
berghofe@13402
   125
wenzelm@16195
   126
fun msg d s = priority (Symbol.spaces d ^ s);
berghofe@13402
   127
wenzelm@16865
   128
fun vars_of t = rev (fold_aterms (fn v as Var _ => insert (op =) v | _ => I) t []);
wenzelm@16983
   129
fun vfs_of t = vars_of t @ sort Term.term_ord (term_frees t);
berghofe@13402
   130
berghofe@13402
   131
fun forall_intr (t, prop) =
berghofe@13402
   132
  let val (a, T) = (case t of Var ((a, _), T) => (a, T) | Free p => p)
berghofe@13402
   133
  in all T $ Abs (a, T, abstract_over (t, prop)) end;
berghofe@13402
   134
berghofe@13402
   135
fun forall_intr_prf (t, prf) =
berghofe@13402
   136
  let val (a, T) = (case t of Var ((a, _), T) => (a, T) | Free p => p)
skalberg@15531
   137
  in Abst (a, SOME T, prf_abstract_over t prf) end;
berghofe@13402
   138
skalberg@15574
   139
val mkabs = foldr (fn (v, t) => Abs ("x", fastype_of v, abstract_over (v, t)));
berghofe@13402
   140
berghofe@13732
   141
fun strip_abs 0 t = t
berghofe@13732
   142
  | strip_abs n (Abs (_, _, t)) = strip_abs (n-1) t
berghofe@13732
   143
  | strip_abs _ _ = error "strip_abs: not an abstraction";
berghofe@13732
   144
berghofe@13402
   145
fun prf_subst_TVars tye =
berghofe@13402
   146
  map_proof_terms (subst_TVars tye) (typ_subst_TVars tye);
berghofe@13402
   147
skalberg@15574
   148
fun relevant_vars types prop = foldr (fn
berghofe@13402
   149
      (Var ((a, i), T), vs) => (case strip_type T of
berghofe@13402
   150
        (_, Type (s, _)) => if s mem types then a :: vs else vs
berghofe@13402
   151
      | _ => vs)
skalberg@15574
   152
    | (_, vs) => vs) [] (vars_of prop);
berghofe@13402
   153
berghofe@13732
   154
fun tname_of (Type (s, _)) = s
berghofe@13732
   155
  | tname_of _ = "";
berghofe@13732
   156
berghofe@13732
   157
fun get_var_type t =
berghofe@13732
   158
  let
wenzelm@16865
   159
    val vs = Term.add_vars t [];
wenzelm@16865
   160
    val fs = Term.add_frees t [];
berghofe@13732
   161
  in fn 
haftmann@17232
   162
      Var (ixn, _) => (case AList.lookup (op =) vs ixn of
skalberg@15531
   163
          NONE => error "get_var_type: no such variable in term"
skalberg@15531
   164
        | SOME T => Var (ixn, T))
haftmann@17232
   165
    | Free (s, _) => (case AList.lookup (op =) fs s of
skalberg@15531
   166
          NONE => error "get_var_type: no such variable in term"
skalberg@15531
   167
        | SOME T => Free (s, T))
berghofe@13732
   168
    | _ => error "get_var_type: not a variable"
berghofe@13732
   169
  end;
berghofe@13732
   170
berghofe@13402
   171
berghofe@13402
   172
(**** theory data ****)
berghofe@13402
   173
berghofe@13402
   174
(* data kind 'Pure/extraction' *)
berghofe@13402
   175
wenzelm@16458
   176
structure ExtractionData = TheoryDataFun
wenzelm@16458
   177
(struct
berghofe@13402
   178
  val name = "Pure/extraction";
berghofe@13402
   179
  type T =
berghofe@13402
   180
    {realizes_eqns : rules,
berghofe@13402
   181
     typeof_eqns : rules,
berghofe@13732
   182
     types : (string * ((term -> term option) list *
berghofe@13732
   183
       (term -> typ -> term -> typ -> term) option)) list,
berghofe@13402
   184
     realizers : (string list * (term * proof)) list Symtab.table,
berghofe@13402
   185
     defs : thm list,
berghofe@13402
   186
     expand : (string * term) list,
wenzelm@16458
   187
     prep : (theory -> proof -> proof) option}
berghofe@13402
   188
berghofe@13402
   189
  val empty =
berghofe@13402
   190
    {realizes_eqns = empty_rules,
berghofe@13402
   191
     typeof_eqns = empty_rules,
berghofe@13402
   192
     types = [],
berghofe@13402
   193
     realizers = Symtab.empty,
berghofe@13402
   194
     defs = [],
berghofe@13402
   195
     expand = [],
skalberg@15531
   196
     prep = NONE};
berghofe@13402
   197
  val copy = I;
wenzelm@16458
   198
  val extend = I;
berghofe@13402
   199
wenzelm@16458
   200
  fun merge _
berghofe@13402
   201
    (({realizes_eqns = realizes_eqns1, typeof_eqns = typeof_eqns1, types = types1,
berghofe@13402
   202
       realizers = realizers1, defs = defs1, expand = expand1, prep = prep1},
berghofe@13402
   203
      {realizes_eqns = realizes_eqns2, typeof_eqns = typeof_eqns2, types = types2,
berghofe@13402
   204
       realizers = realizers2, defs = defs2, expand = expand2, prep = prep2}) : T * T) =
berghofe@13402
   205
    {realizes_eqns = merge_rules realizes_eqns1 realizes_eqns2,
berghofe@13402
   206
     typeof_eqns = merge_rules typeof_eqns1 typeof_eqns2,
berghofe@13732
   207
     types = merge_alists types1 types2,
berghofe@13402
   208
     realizers = Symtab.merge_multi' (eq_set o pairself #1)
berghofe@13402
   209
       (realizers1, realizers2),
berghofe@13402
   210
     defs = gen_merge_lists eq_thm defs1 defs2,
berghofe@13402
   211
     expand = merge_lists expand1 expand2,
skalberg@15531
   212
     prep = (case prep1 of NONE => prep2 | _ => prep1)};
berghofe@13402
   213
wenzelm@16458
   214
  fun print _ _ = ();
wenzelm@16458
   215
end);
berghofe@13402
   216
wenzelm@18708
   217
val _ = Context.add_setup ExtractionData.init;
berghofe@13402
   218
berghofe@13402
   219
fun read_condeq thy =
wenzelm@16458
   220
  let val thy' = add_syntax thy
berghofe@13402
   221
  in fn s =>
wenzelm@16458
   222
    let val t = Logic.varify (term_of (read_cterm thy' (s, propT)))
berghofe@13402
   223
    in (map Logic.dest_equals (Logic.strip_imp_prems t),
berghofe@13402
   224
      Logic.dest_equals (Logic.strip_imp_concl t))
berghofe@13402
   225
    end handle TERM _ => error ("Not a (conditional) meta equality:\n" ^ s)
berghofe@13402
   226
  end;
berghofe@13402
   227
berghofe@13402
   228
(** preprocessor **)
berghofe@13402
   229
berghofe@13402
   230
fun set_preprocessor prep thy =
berghofe@13402
   231
  let val {realizes_eqns, typeof_eqns, types, realizers,
berghofe@13402
   232
    defs, expand, ...} = ExtractionData.get thy
berghofe@13402
   233
  in
berghofe@13402
   234
    ExtractionData.put
berghofe@13402
   235
      {realizes_eqns = realizes_eqns, typeof_eqns = typeof_eqns, types = types,
skalberg@15531
   236
       realizers = realizers, defs = defs, expand = expand, prep = SOME prep} thy
berghofe@13402
   237
  end;
berghofe@13402
   238
berghofe@13402
   239
(** equations characterizing realizability **)
berghofe@13402
   240
berghofe@13402
   241
fun gen_add_realizes_eqns prep_eq eqns thy =
berghofe@13402
   242
  let val {realizes_eqns, typeof_eqns, types, realizers,
berghofe@13402
   243
    defs, expand, prep} = ExtractionData.get thy;
berghofe@13402
   244
  in
berghofe@13402
   245
    ExtractionData.put
skalberg@15574
   246
      {realizes_eqns = foldr add_rule realizes_eqns (map (prep_eq thy) eqns),
berghofe@13402
   247
       typeof_eqns = typeof_eqns, types = types, realizers = realizers,
berghofe@13402
   248
       defs = defs, expand = expand, prep = prep} thy
berghofe@13402
   249
  end
berghofe@13402
   250
berghofe@13402
   251
val add_realizes_eqns_i = gen_add_realizes_eqns (K I);
berghofe@13402
   252
val add_realizes_eqns = gen_add_realizes_eqns read_condeq;
berghofe@13402
   253
berghofe@13402
   254
(** equations characterizing type of extracted program **)
berghofe@13402
   255
berghofe@13402
   256
fun gen_add_typeof_eqns prep_eq eqns thy =
berghofe@13402
   257
  let
berghofe@13402
   258
    val {realizes_eqns, typeof_eqns, types, realizers,
berghofe@13402
   259
      defs, expand, prep} = ExtractionData.get thy;
berghofe@13732
   260
    val eqns' = map (prep_eq thy) eqns
berghofe@13402
   261
  in
berghofe@13402
   262
    ExtractionData.put
berghofe@13402
   263
      {realizes_eqns = realizes_eqns, realizers = realizers,
skalberg@15574
   264
       typeof_eqns = foldr add_rule typeof_eqns eqns',
berghofe@13732
   265
       types = types, defs = defs, expand = expand, prep = prep} thy
berghofe@13402
   266
  end
berghofe@13402
   267
berghofe@13402
   268
val add_typeof_eqns_i = gen_add_typeof_eqns (K I);
berghofe@13402
   269
val add_typeof_eqns = gen_add_typeof_eqns read_condeq;
berghofe@13402
   270
berghofe@13402
   271
fun thaw (T as TFree (a, S)) =
wenzelm@16195
   272
      if exists_string (equal ":") a then TVar (unpack_ixn a, S) else T
berghofe@13402
   273
  | thaw (Type (a, Ts)) = Type (a, map thaw Ts)
berghofe@13402
   274
  | thaw T = T;
berghofe@13402
   275
berghofe@13402
   276
fun freeze (TVar ((a, i), S)) = TFree (a ^ ":" ^ string_of_int i, S)
berghofe@13402
   277
  | freeze (Type (a, Ts)) = Type (a, map freeze Ts)
berghofe@13402
   278
  | freeze T = T;
berghofe@13402
   279
berghofe@13402
   280
fun freeze_thaw f x =
berghofe@13402
   281
  map_term_types thaw (f (map_term_types freeze x));
berghofe@13402
   282
wenzelm@16458
   283
fun etype_of thy vs Ts t =
berghofe@13402
   284
  let
wenzelm@16458
   285
    val {typeof_eqns, ...} = ExtractionData.get thy;
berghofe@13402
   286
    fun err () = error ("Unable to determine type of extracted program for\n" ^
wenzelm@16458
   287
      Sign.string_of_term thy t)
wenzelm@16458
   288
  in case strip_abs_body (freeze_thaw (condrew thy (#net typeof_eqns)
wenzelm@16458
   289
    [typeof_proc (Sign.defaultS thy) vs]) (list_abs (map (pair "x") (rev Ts),
berghofe@13402
   290
      Const ("typeof", fastype_of1 (Ts, t) --> Type ("Type", [])) $ t))) of
berghofe@13402
   291
      Const ("Type", _) $ u => (Logic.dest_type u handle TERM _ => err ())
berghofe@13402
   292
    | _ => err ()
berghofe@13402
   293
  end;
berghofe@13402
   294
berghofe@13402
   295
(** realizers for axioms / theorems, together with correctness proofs **)
berghofe@13402
   296
berghofe@13402
   297
fun gen_add_realizers prep_rlz rs thy =
berghofe@13402
   298
  let val {realizes_eqns, typeof_eqns, types, realizers,
berghofe@13402
   299
    defs, expand, prep} = ExtractionData.get thy
berghofe@13402
   300
  in
berghofe@13402
   301
    ExtractionData.put
berghofe@13402
   302
      {realizes_eqns = realizes_eqns, typeof_eqns = typeof_eqns, types = types,
wenzelm@17412
   303
       realizers = fold (Symtab.update_multi o prep_rlz thy) rs realizers,
berghofe@13402
   304
       defs = defs, expand = expand, prep = prep} thy
berghofe@13402
   305
  end
berghofe@13402
   306
berghofe@13402
   307
fun prep_realizer thy =
berghofe@13402
   308
  let
berghofe@13732
   309
    val {realizes_eqns, typeof_eqns, defs, types, ...} =
berghofe@13402
   310
      ExtractionData.get thy;
skalberg@15570
   311
    val procs = List.concat (map (fst o snd) types);
berghofe@13732
   312
    val rtypes = map fst types;
wenzelm@16800
   313
    val eqns = Net.merge (K false) (#net realizes_eqns, #net typeof_eqns);
berghofe@13402
   314
    val thy' = add_syntax thy;
berghofe@13402
   315
    val rd = ProofSyntax.read_proof thy' false
berghofe@13402
   316
  in fn (thm, (vs, s1, s2)) =>
berghofe@13402
   317
    let
berghofe@13402
   318
      val name = Thm.name_of_thm thm;
berghofe@13402
   319
      val _ = assert (name <> "") "add_realizers: unnamed theorem";
wenzelm@17203
   320
      val prop = Pattern.rewrite_term thy'
berghofe@13402
   321
        (map (Logic.dest_equals o prop_of) defs) [] (prop_of thm);
berghofe@13402
   322
      val vars = vars_of prop;
berghofe@13732
   323
      val vars' = filter_out (fn v =>
berghofe@13732
   324
        tname_of (body_type (fastype_of v)) mem rtypes) vars;
wenzelm@16458
   325
      val T = etype_of thy' vs [] prop;
berghofe@13402
   326
      val (T', thw) = Type.freeze_thaw_type
berghofe@13732
   327
        (if T = nullT then nullT else map fastype_of vars' ---> T);
wenzelm@16458
   328
      val t = map_term_types thw (term_of (read_cterm thy' (s1, T')));
wenzelm@16458
   329
      val r' = freeze_thaw (condrew thy' eqns
wenzelm@16458
   330
        (procs @ [typeof_proc (Sign.defaultS thy') vs, rlz_proc]))
berghofe@13402
   331
          (Const ("realizes", T --> propT --> propT) $
berghofe@13732
   332
            (if T = nullT then t else list_comb (t, vars')) $ prop);
skalberg@15574
   333
      val r = foldr forall_intr r' (map (get_var_type r') vars);
wenzelm@16458
   334
      val prf = Reconstruct.reconstruct_proof thy' r (rd s2);
berghofe@13402
   335
    in (name, (vs, (t, prf))) end
berghofe@13402
   336
  end;
berghofe@13402
   337
berghofe@13402
   338
val add_realizers_i = gen_add_realizers
berghofe@13402
   339
  (fn _ => fn (name, (vs, t, prf)) => (name, (vs, (t, prf))));
berghofe@13402
   340
val add_realizers = gen_add_realizers prep_realizer;
berghofe@13402
   341
berghofe@13714
   342
fun realizes_of thy vs t prop =
berghofe@13714
   343
  let
berghofe@13714
   344
    val thy' = add_syntax thy;
berghofe@13732
   345
    val {realizes_eqns, typeof_eqns, defs, types, ...} =
berghofe@13714
   346
      ExtractionData.get thy';
skalberg@15570
   347
    val procs = List.concat (map (fst o snd) types);
wenzelm@16800
   348
    val eqns = Net.merge (K false) (#net realizes_eqns, #net typeof_eqns);
wenzelm@17203
   349
    val prop' = Pattern.rewrite_term thy'
berghofe@13714
   350
      (map (Logic.dest_equals o prop_of) defs) [] prop;
wenzelm@16458
   351
  in freeze_thaw (condrew thy' eqns
wenzelm@16458
   352
    (procs @ [typeof_proc (Sign.defaultS thy') vs, rlz_proc]))
berghofe@13714
   353
      (Const ("realizes", fastype_of t --> propT --> propT) $ t $ prop')
berghofe@13714
   354
  end;
berghofe@13714
   355
berghofe@13402
   356
(** expanding theorems / definitions **)
berghofe@13402
   357
wenzelm@18728
   358
fun add_expand_thm thm thy =
berghofe@13402
   359
  let
berghofe@13402
   360
    val {realizes_eqns, typeof_eqns, types, realizers,
berghofe@13402
   361
      defs, expand, prep} = ExtractionData.get thy;
berghofe@13402
   362
berghofe@13402
   363
    val name = Thm.name_of_thm thm;
berghofe@13402
   364
    val _ = assert (name <> "") "add_expand_thms: unnamed theorem";
berghofe@13402
   365
berghofe@13402
   366
    val is_def =
berghofe@13402
   367
      (case strip_comb (fst (Logic.dest_equals (prop_of thm))) of
haftmann@18928
   368
         (Const _, ts) => forall is_Var ts andalso not (has_duplicates (op =) ts)
wenzelm@16349
   369
           andalso can (Thm.get_axiom_i thy) name
berghofe@13402
   370
       | _ => false) handle TERM _ => false;
berghofe@13402
   371
  in
berghofe@13402
   372
    (ExtractionData.put (if is_def then
berghofe@13402
   373
        {realizes_eqns = realizes_eqns,
berghofe@13402
   374
         typeof_eqns = add_rule (([],
berghofe@13402
   375
           Logic.dest_equals (prop_of (Drule.abs_def thm))), typeof_eqns),
berghofe@13402
   376
         types = types,
wenzelm@18921
   377
         realizers = realizers, defs = insert eq_thm thm defs,
berghofe@13402
   378
         expand = expand, prep = prep}
berghofe@13402
   379
      else
berghofe@13402
   380
        {realizes_eqns = realizes_eqns, typeof_eqns = typeof_eqns, types = types,
berghofe@13402
   381
         realizers = realizers, defs = defs,
wenzelm@18728
   382
         expand = (name, prop_of thm) ins expand, prep = prep}) thy)
berghofe@13402
   383
  end;
berghofe@13402
   384
wenzelm@18728
   385
val add_expand_thms = fold add_expand_thm;
wenzelm@18728
   386
wenzelm@18728
   387
val extraction_expand =
wenzelm@18728
   388
  Attrib.no_args (Thm.declaration_attribute (Context.map_theory o add_expand_thm));
berghofe@13402
   389
wenzelm@15801
   390
berghofe@13732
   391
(** types with computational content **)
berghofe@13732
   392
berghofe@13732
   393
fun add_types tys thy =
berghofe@13732
   394
  let val {realizes_eqns, typeof_eqns, types, realizers,
berghofe@13732
   395
    defs, expand, prep} = ExtractionData.get thy;
berghofe@13732
   396
  in
berghofe@13732
   397
    ExtractionData.put
berghofe@13732
   398
      {realizes_eqns = realizes_eqns, typeof_eqns = typeof_eqns,
wenzelm@16458
   399
       types = map (apfst (Sign.intern_type thy)) tys @ types,
berghofe@13732
   400
       realizers = realizers, defs = defs, expand = expand, prep = prep} thy
berghofe@13732
   401
  end;
berghofe@13732
   402
berghofe@13402
   403
wenzelm@15801
   404
(** Pure setup **)
wenzelm@15801
   405
wenzelm@15801
   406
val _ = Context.add_setup
wenzelm@18708
   407
  (add_types [("prop", ([], NONE))] #>
wenzelm@15801
   408
wenzelm@15801
   409
   add_typeof_eqns
wenzelm@15801
   410
     ["(typeof (PROP P)) == (Type (TYPE(Null))) ==>  \
wenzelm@15801
   411
    \  (typeof (PROP Q)) == (Type (TYPE('Q))) ==>  \
wenzelm@15801
   412
    \    (typeof (PROP P ==> PROP Q)) == (Type (TYPE('Q)))",
wenzelm@15801
   413
wenzelm@15801
   414
      "(typeof (PROP Q)) == (Type (TYPE(Null))) ==>  \
wenzelm@15801
   415
    \    (typeof (PROP P ==> PROP Q)) == (Type (TYPE(Null)))",
wenzelm@15801
   416
wenzelm@15801
   417
      "(typeof (PROP P)) == (Type (TYPE('P))) ==>  \
wenzelm@15801
   418
    \  (typeof (PROP Q)) == (Type (TYPE('Q))) ==>  \
wenzelm@15801
   419
    \    (typeof (PROP P ==> PROP Q)) == (Type (TYPE('P => 'Q)))",
wenzelm@15801
   420
wenzelm@15801
   421
      "(%x. typeof (PROP P (x))) == (%x. Type (TYPE(Null))) ==>  \
wenzelm@15801
   422
    \    (typeof (!!x. PROP P (x))) == (Type (TYPE(Null)))",
wenzelm@15801
   423
wenzelm@15801
   424
      "(%x. typeof (PROP P (x))) == (%x. Type (TYPE('P))) ==>  \
wenzelm@15801
   425
    \    (typeof (!!x::'a. PROP P (x))) == (Type (TYPE('a => 'P)))",
wenzelm@15801
   426
wenzelm@15801
   427
      "(%x. typeof (f (x))) == (%x. Type (TYPE('f))) ==>  \
wenzelm@18708
   428
    \    (typeof (f)) == (Type (TYPE('f)))"] #>
wenzelm@15801
   429
wenzelm@15801
   430
   add_realizes_eqns
wenzelm@15801
   431
     ["(typeof (PROP P)) == (Type (TYPE(Null))) ==>  \
wenzelm@15801
   432
    \    (realizes (r) (PROP P ==> PROP Q)) ==  \
wenzelm@15801
   433
    \    (PROP realizes (Null) (PROP P) ==> PROP realizes (r) (PROP Q))",
wenzelm@15801
   434
wenzelm@15801
   435
      "(typeof (PROP P)) == (Type (TYPE('P))) ==>  \
wenzelm@15801
   436
    \  (typeof (PROP Q)) == (Type (TYPE(Null))) ==>  \
wenzelm@15801
   437
    \    (realizes (r) (PROP P ==> PROP Q)) ==  \
wenzelm@15801
   438
    \    (!!x::'P. PROP realizes (x) (PROP P) ==> PROP realizes (Null) (PROP Q))",
wenzelm@15801
   439
wenzelm@15801
   440
      "(realizes (r) (PROP P ==> PROP Q)) ==  \
wenzelm@15801
   441
    \  (!!x. PROP realizes (x) (PROP P) ==> PROP realizes (r (x)) (PROP Q))",
wenzelm@15801
   442
wenzelm@15801
   443
      "(%x. typeof (PROP P (x))) == (%x. Type (TYPE(Null))) ==>  \
wenzelm@15801
   444
    \    (realizes (r) (!!x. PROP P (x))) ==  \
wenzelm@15801
   445
    \    (!!x. PROP realizes (Null) (PROP P (x)))",
wenzelm@15801
   446
wenzelm@15801
   447
      "(realizes (r) (!!x. PROP P (x))) ==  \
wenzelm@18708
   448
    \  (!!x. PROP realizes (r (x)) (PROP P (x)))"] #>
wenzelm@15801
   449
wenzelm@15801
   450
   Attrib.add_attributes
wenzelm@18728
   451
     [("extraction_expand", extraction_expand,
wenzelm@18708
   452
       "specify theorems / definitions to be expanded during extraction")]);
wenzelm@15801
   453
wenzelm@15801
   454
berghofe@13402
   455
(**** extract program ****)
berghofe@13402
   456
berghofe@13402
   457
val dummyt = Const ("dummy", dummyT);
berghofe@13402
   458
berghofe@13402
   459
fun extract thms thy =
berghofe@13402
   460
  let
wenzelm@16458
   461
    val thy' = add_syntax thy;
berghofe@13402
   462
    val {realizes_eqns, typeof_eqns, types, realizers, defs, expand, prep} =
berghofe@13402
   463
      ExtractionData.get thy;
skalberg@15570
   464
    val procs = List.concat (map (fst o snd) types);
berghofe@13732
   465
    val rtypes = map fst types;
wenzelm@16458
   466
    val typroc = typeof_proc (Sign.defaultS thy');
wenzelm@16458
   467
    val prep = getOpt (prep, K I) thy' o ProofRewriteRules.elim_defs thy' false defs o
wenzelm@16458
   468
      Reconstruct.expand_proof thy' (("", NONE) :: map (apsnd SOME) expand);
wenzelm@16800
   469
    val rrews = Net.merge (K false) (#net realizes_eqns, #net typeof_eqns);
berghofe@13402
   470
berghofe@13402
   471
    fun find_inst prop Ts ts vs =
berghofe@13402
   472
      let
berghofe@13732
   473
        val rvs = relevant_vars rtypes prop;
berghofe@13402
   474
        val vars = vars_of prop;
berghofe@13402
   475
        val n = Int.min (length vars, length ts);
berghofe@13402
   476
berghofe@13402
   477
        fun add_args ((Var ((a, i), _), t), (vs', tye)) =
berghofe@13402
   478
          if a mem rvs then
wenzelm@16458
   479
            let val T = etype_of thy' vs Ts t
berghofe@13402
   480
            in if T = nullT then (vs', tye)
berghofe@13402
   481
               else (a :: vs', (("'" ^ a, i), T) :: tye)
berghofe@13402
   482
            end
berghofe@13402
   483
          else (vs', tye)
berghofe@13402
   484
skalberg@15574
   485
      in foldr add_args ([], []) (Library.take (n, vars) ~~ Library.take (n, ts)) end;
berghofe@13402
   486
skalberg@15570
   487
    fun find vs = Option.map snd o find_first (curry eq_set vs o fst);
skalberg@15570
   488
    fun find' s = map snd o List.filter (equal s o fst)
berghofe@13402
   489
berghofe@13732
   490
    fun app_rlz_rews Ts vs t = strip_abs (length Ts) (freeze_thaw
wenzelm@16458
   491
      (condrew thy' rrews (procs @ [typroc vs, rlz_proc])) (list_abs
berghofe@13732
   492
        (map (pair "x") (rev Ts), t)));
berghofe@13732
   493
berghofe@13732
   494
    fun realizes_null vs prop = app_rlz_rews [] vs
berghofe@13732
   495
      (Const ("realizes", nullT --> propT --> propT) $ nullt $ prop);
berghofe@13402
   496
berghofe@13402
   497
    fun corr d defs vs ts Ts hs (PBound i) _ _ = (defs, PBound i)
berghofe@13402
   498
skalberg@15531
   499
      | corr d defs vs ts Ts hs (Abst (s, SOME T, prf)) (Abst (_, _, prf')) t =
berghofe@13402
   500
          let val (defs', corr_prf) = corr d defs vs [] (T :: Ts)
berghofe@13402
   501
            (dummyt :: hs) prf (incr_pboundvars 1 0 prf')
skalberg@15531
   502
            (case t of SOME (Abs (_, _, u)) => SOME u | _ => NONE)
skalberg@15531
   503
          in (defs', Abst (s, SOME T, corr_prf)) end
berghofe@13402
   504
skalberg@15531
   505
      | corr d defs vs ts Ts hs (AbsP (s, SOME prop, prf)) (AbsP (_, _, prf')) t =
berghofe@13402
   506
          let
wenzelm@16458
   507
            val T = etype_of thy' vs Ts prop;
berghofe@13402
   508
            val u = if T = nullT then 
skalberg@15531
   509
                (case t of SOME u => SOME (incr_boundvars 1 u) | NONE => NONE)
skalberg@15531
   510
              else (case t of SOME (Abs (_, _, u)) => SOME u | _ => NONE);
berghofe@13402
   511
            val (defs', corr_prf) = corr d defs vs [] (T :: Ts) (prop :: hs)
berghofe@13402
   512
              (incr_pboundvars 0 1 prf) (incr_pboundvars 0 1 prf') u;
berghofe@13402
   513
            val rlz = Const ("realizes", T --> propT --> propT)
berghofe@13402
   514
          in (defs',
berghofe@13732
   515
            if T = nullT then AbsP ("R",
skalberg@15531
   516
              SOME (app_rlz_rews Ts vs (rlz $ nullt $ prop)),
berghofe@13732
   517
                prf_subst_bounds [nullt] corr_prf)
skalberg@15531
   518
            else Abst (s, SOME T, AbsP ("R",
skalberg@15531
   519
              SOME (app_rlz_rews (T :: Ts) vs
berghofe@13732
   520
                (rlz $ Bound 0 $ incr_boundvars 1 prop)), corr_prf)))
berghofe@13402
   521
          end
berghofe@13402
   522
skalberg@15531
   523
      | corr d defs vs ts Ts hs (prf % SOME t) (prf' % _) t' =
berghofe@13732
   524
          let
berghofe@13732
   525
            val (Us, T) = strip_type (fastype_of1 (Ts, t));
berghofe@13732
   526
            val (defs', corr_prf) = corr d defs vs (t :: ts) Ts hs prf prf'
berghofe@13732
   527
              (if tname_of T mem rtypes then t'
skalberg@15531
   528
               else (case t' of SOME (u $ _) => SOME u | _ => NONE));
berghofe@13732
   529
            val u = if not (tname_of T mem rtypes) then t else
berghofe@13732
   530
              let
wenzelm@16458
   531
                val eT = etype_of thy' vs Ts t;
berghofe@13732
   532
                val (r, Us') = if eT = nullT then (nullt, Us) else
berghofe@13732
   533
                  (Bound (length Us), eT :: Us);
berghofe@13732
   534
                val u = list_comb (incr_boundvars (length Us') t,
berghofe@13732
   535
                  map Bound (length Us - 1 downto 0));
haftmann@17271
   536
                val u' = (case AList.lookup (op =) types (tname_of T) of
skalberg@15531
   537
                    SOME ((_, SOME f)) => f r eT u T
berghofe@13732
   538
                  | _ => Const ("realizes", eT --> T --> T) $ r $ u)
berghofe@13732
   539
              in app_rlz_rews Ts vs (list_abs (map (pair "x") Us', u')) end
skalberg@15531
   540
          in (defs', corr_prf % SOME u) end
berghofe@13402
   541
berghofe@13402
   542
      | corr d defs vs ts Ts hs (prf1 %% prf2) (prf1' %% prf2') t =
berghofe@13402
   543
          let
berghofe@13402
   544
            val prop = Reconstruct.prop_of' hs prf2';
wenzelm@16458
   545
            val T = etype_of thy' vs Ts prop;
skalberg@15531
   546
            val (defs1, f, u) = if T = nullT then (defs, t, NONE) else
berghofe@13402
   547
              (case t of
skalberg@15531
   548
                 SOME (f $ u) => (defs, SOME f, SOME u)
berghofe@13402
   549
               | _ =>
berghofe@13402
   550
                 let val (defs1, u) = extr d defs vs [] Ts hs prf2'
skalberg@15531
   551
                 in (defs1, NONE, SOME u) end)
berghofe@13402
   552
            val (defs2, corr_prf1) = corr d defs1 vs [] Ts hs prf1 prf1' f;
berghofe@13402
   553
            val (defs3, corr_prf2) = corr d defs2 vs [] Ts hs prf2 prf2' u;
berghofe@13402
   554
          in
berghofe@13402
   555
            if T = nullT then (defs3, corr_prf1 %% corr_prf2) else
berghofe@13402
   556
              (defs3, corr_prf1 % u %% corr_prf2)
berghofe@13402
   557
          end
berghofe@13402
   558
skalberg@15531
   559
      | corr d defs vs ts Ts hs (prf0 as PThm ((name, _), prf, prop, SOME Ts')) _ _ =
berghofe@13402
   560
          let
berghofe@13402
   561
            val (vs', tye) = find_inst prop Ts ts vs;
berghofe@13402
   562
            val tye' = (map fst (term_tvars prop) ~~ Ts') @ tye;
wenzelm@16458
   563
            val T = etype_of thy' vs' [] prop;
berghofe@13402
   564
            val defs' = if T = nullT then defs
berghofe@13402
   565
              else fst (extr d defs vs ts Ts hs prf0)
berghofe@13402
   566
          in
berghofe@13609
   567
            if T = nullT andalso realizes_null vs' prop aconv prop then (defs, prf0)
wenzelm@17412
   568
            else case Symtab.lookup realizers name of
skalberg@15531
   569
              NONE => (case find vs' (find' name defs') of
skalberg@15531
   570
                NONE =>
berghofe@13402
   571
                  let
berghofe@13402
   572
                    val _ = assert (T = nullT) "corr: internal error";
berghofe@13402
   573
                    val _ = msg d ("Building correctness proof for " ^ quote name ^
berghofe@13402
   574
                      (if null vs' then ""
berghofe@13402
   575
                       else " (relevant variables: " ^ commas_quote vs' ^ ")"));
wenzelm@16458
   576
                    val prf' = prep (Reconstruct.reconstruct_proof thy' prop prf);
berghofe@13402
   577
                    val (defs'', corr_prf) =
skalberg@15531
   578
                      corr (d + 1) defs' vs' [] [] [] prf' prf' NONE;
berghofe@13732
   579
                    val corr_prop = Reconstruct.prop_of corr_prf;
skalberg@15574
   580
                    val corr_prf' = foldr forall_intr_prf
skalberg@15574
   581
                      (proof_combt
berghofe@13793
   582
                         (PThm ((corr_name name vs', []), corr_prf, corr_prop,
skalberg@15531
   583
                             SOME (map TVar (term_tvars corr_prop))), vfs_of corr_prop))
skalberg@15574
   584
		      (map (get_var_type corr_prop) (vfs_of prop))
berghofe@13402
   585
                  in
berghofe@13732
   586
                    ((name, (vs', ((nullt, nullt), (corr_prf, corr_prf')))) :: defs'',
berghofe@13402
   587
                     prf_subst_TVars tye' corr_prf')
berghofe@13402
   588
                  end
skalberg@15531
   589
              | SOME (_, (_, prf')) => (defs', prf_subst_TVars tye' prf'))
skalberg@15531
   590
            | SOME rs => (case find vs' rs of
skalberg@15531
   591
                SOME (_, prf') => (defs', prf_subst_TVars tye' prf')
skalberg@15531
   592
              | NONE => error ("corr: no realizer for instance of theorem " ^
wenzelm@16458
   593
                  quote name ^ ":\n" ^ Sign.string_of_term thy' (Envir.beta_norm
berghofe@13402
   594
                    (Reconstruct.prop_of (proof_combt (prf0, ts))))))
berghofe@13402
   595
          end
berghofe@13402
   596
skalberg@15531
   597
      | corr d defs vs ts Ts hs (prf0 as PAxm (s, prop, SOME Ts')) _ _ =
berghofe@13402
   598
          let
berghofe@13402
   599
            val (vs', tye) = find_inst prop Ts ts vs;
berghofe@13402
   600
            val tye' = (map fst (term_tvars prop) ~~ Ts') @ tye
berghofe@13402
   601
          in
wenzelm@16458
   602
            if etype_of thy' vs' [] prop = nullT andalso
berghofe@13609
   603
              realizes_null vs' prop aconv prop then (defs, prf0)
wenzelm@17412
   604
            else case find vs' (Symtab.lookup_multi realizers s) of
skalberg@15531
   605
              SOME (_, prf) => (defs, prf_subst_TVars tye' prf)
skalberg@15531
   606
            | NONE => error ("corr: no realizer for instance of axiom " ^
wenzelm@16458
   607
                quote s ^ ":\n" ^ Sign.string_of_term thy' (Envir.beta_norm
berghofe@13402
   608
                  (Reconstruct.prop_of (proof_combt (prf0, ts)))))
berghofe@13402
   609
          end
berghofe@13402
   610
berghofe@13402
   611
      | corr d defs vs ts Ts hs _ _ _ = error "corr: bad proof"
berghofe@13402
   612
berghofe@13402
   613
    and extr d defs vs ts Ts hs (PBound i) = (defs, Bound i)
berghofe@13402
   614
skalberg@15531
   615
      | extr d defs vs ts Ts hs (Abst (s, SOME T, prf)) =
berghofe@13402
   616
          let val (defs', t) = extr d defs vs []
berghofe@13402
   617
            (T :: Ts) (dummyt :: hs) (incr_pboundvars 1 0 prf)
berghofe@13402
   618
          in (defs', Abs (s, T, t)) end
berghofe@13402
   619
skalberg@15531
   620
      | extr d defs vs ts Ts hs (AbsP (s, SOME t, prf)) =
berghofe@13402
   621
          let
wenzelm@16458
   622
            val T = etype_of thy' vs Ts t;
berghofe@13402
   623
            val (defs', t) = extr d defs vs [] (T :: Ts) (t :: hs)
berghofe@13402
   624
              (incr_pboundvars 0 1 prf)
berghofe@13402
   625
          in (defs',
berghofe@13402
   626
            if T = nullT then subst_bound (nullt, t) else Abs (s, T, t))
berghofe@13402
   627
          end
berghofe@13402
   628
skalberg@15531
   629
      | extr d defs vs ts Ts hs (prf % SOME t) =
berghofe@13402
   630
          let val (defs', u) = extr d defs vs (t :: ts) Ts hs prf
berghofe@13732
   631
          in (defs',
berghofe@13732
   632
            if tname_of (body_type (fastype_of1 (Ts, t))) mem rtypes then u
berghofe@13732
   633
            else u $ t)
berghofe@13732
   634
          end
berghofe@13402
   635
berghofe@13402
   636
      | extr d defs vs ts Ts hs (prf1 %% prf2) =
berghofe@13402
   637
          let
berghofe@13402
   638
            val (defs', f) = extr d defs vs [] Ts hs prf1;
berghofe@13402
   639
            val prop = Reconstruct.prop_of' hs prf2;
wenzelm@16458
   640
            val T = etype_of thy' vs Ts prop
berghofe@13402
   641
          in
berghofe@13402
   642
            if T = nullT then (defs', f) else
berghofe@13402
   643
              let val (defs'', t) = extr d defs' vs [] Ts hs prf2
berghofe@13402
   644
              in (defs'', f $ t) end
berghofe@13402
   645
          end
berghofe@13402
   646
skalberg@15531
   647
      | extr d defs vs ts Ts hs (prf0 as PThm ((s, _), prf, prop, SOME Ts')) =
berghofe@13402
   648
          let
berghofe@13402
   649
            val (vs', tye) = find_inst prop Ts ts vs;
berghofe@13402
   650
            val tye' = (map fst (term_tvars prop) ~~ Ts') @ tye
berghofe@13402
   651
          in
wenzelm@17412
   652
            case Symtab.lookup realizers s of
skalberg@15531
   653
              NONE => (case find vs' (find' s defs) of
skalberg@15531
   654
                NONE =>
berghofe@13402
   655
                  let
berghofe@13402
   656
                    val _ = msg d ("Extracting " ^ quote s ^
berghofe@13402
   657
                      (if null vs' then ""
berghofe@13402
   658
                       else " (relevant variables: " ^ commas_quote vs' ^ ")"));
wenzelm@16458
   659
                    val prf' = prep (Reconstruct.reconstruct_proof thy' prop prf);
berghofe@13402
   660
                    val (defs', t) = extr (d + 1) defs vs' [] [] [] prf';
berghofe@13402
   661
                    val (defs'', corr_prf) =
skalberg@15531
   662
                      corr (d + 1) defs' vs' [] [] [] prf' prf' (SOME t);
berghofe@13402
   663
berghofe@13402
   664
                    val nt = Envir.beta_norm t;
berghofe@13732
   665
                    val args = filter_out (fn v => tname_of (body_type
berghofe@13732
   666
                      (fastype_of v)) mem rtypes) (vfs_of prop);
skalberg@15570
   667
                    val args' = List.filter (fn v => Logic.occs (v, nt)) args;
skalberg@15574
   668
                    val t' = mkabs nt args';
berghofe@13402
   669
                    val T = fastype_of t';
berghofe@13732
   670
                    val cname = extr_name s vs';
berghofe@13402
   671
                    val c = Const (cname, T);
skalberg@15574
   672
                    val u = mkabs (list_comb (c, args')) args;
berghofe@13402
   673
                    val eqn = Logic.mk_equals (c, t');
berghofe@13402
   674
                    val rlz =
berghofe@13402
   675
                      Const ("realizes", fastype_of nt --> propT --> propT);
berghofe@13732
   676
                    val lhs = app_rlz_rews [] vs' (rlz $ nt $ prop);
berghofe@13732
   677
                    val rhs = app_rlz_rews [] vs' (rlz $ list_comb (c, args') $ prop);
berghofe@13732
   678
                    val f = app_rlz_rews [] vs'
berghofe@13732
   679
                      (Abs ("x", T, rlz $ list_comb (Bound 0, args') $ prop));
berghofe@13402
   680
berghofe@13732
   681
                    val corr_prf' =
berghofe@13732
   682
                      chtype [] equal_elim_axm %> lhs %> rhs %%
berghofe@13732
   683
                       (chtype [propT] symmetric_axm %> rhs %> lhs %%
berghofe@13732
   684
                         (chtype [propT, T] combination_axm %> f %> f %> c %> t' %%
berghofe@13732
   685
                           (chtype [T --> propT] reflexive_axm %> f) %%
berghofe@13732
   686
                           PAxm (cname ^ "_def", eqn,
skalberg@15531
   687
                             SOME (map TVar (term_tvars eqn))))) %% corr_prf;
berghofe@13732
   688
                    val corr_prop = Reconstruct.prop_of corr_prf';
skalberg@15574
   689
                    val corr_prf'' = foldr forall_intr_prf
skalberg@15574
   690
                      (proof_combt
berghofe@13732
   691
                        (PThm ((corr_name s vs', []), corr_prf', corr_prop,
skalberg@15574
   692
                          SOME (map TVar (term_tvars corr_prop))),  vfs_of corr_prop))
skalberg@15574
   693
		      (map (get_var_type corr_prop) (vfs_of prop));
berghofe@13402
   694
                  in
berghofe@13732
   695
                    ((s, (vs', ((t', u), (corr_prf', corr_prf'')))) :: defs'',
berghofe@13402
   696
                     subst_TVars tye' u)
berghofe@13402
   697
                  end
skalberg@15531
   698
              | SOME ((_, u), _) => (defs, subst_TVars tye' u))
skalberg@15531
   699
            | SOME rs => (case find vs' rs of
skalberg@15531
   700
                SOME (t, _) => (defs, subst_TVars tye' t)
skalberg@15531
   701
              | NONE => error ("extr: no realizer for instance of theorem " ^
wenzelm@16458
   702
                  quote s ^ ":\n" ^ Sign.string_of_term thy' (Envir.beta_norm
berghofe@13402
   703
                    (Reconstruct.prop_of (proof_combt (prf0, ts))))))
berghofe@13402
   704
          end
berghofe@13402
   705
skalberg@15531
   706
      | extr d defs vs ts Ts hs (prf0 as PAxm (s, prop, SOME Ts')) =
berghofe@13402
   707
          let
berghofe@13402
   708
            val (vs', tye) = find_inst prop Ts ts vs;
berghofe@13402
   709
            val tye' = (map fst (term_tvars prop) ~~ Ts') @ tye
berghofe@13402
   710
          in
wenzelm@17412
   711
            case find vs' (Symtab.lookup_multi realizers s) of
skalberg@15531
   712
              SOME (t, _) => (defs, subst_TVars tye' t)
skalberg@15531
   713
            | NONE => error ("extr: no realizer for instance of axiom " ^
wenzelm@16458
   714
                quote s ^ ":\n" ^ Sign.string_of_term thy' (Envir.beta_norm
berghofe@13402
   715
                  (Reconstruct.prop_of (proof_combt (prf0, ts)))))
berghofe@13402
   716
          end
berghofe@13402
   717
berghofe@13402
   718
      | extr d defs vs ts Ts hs _ = error "extr: bad proof";
berghofe@13402
   719
berghofe@13732
   720
    fun prep_thm (thm, vs) =
berghofe@13402
   721
      let
berghofe@13402
   722
        val {prop, der = (_, prf), sign, ...} = rep_thm thm;
berghofe@13402
   723
        val name = Thm.name_of_thm thm;
berghofe@13402
   724
        val _ = assert (name <> "") "extraction: unnamed theorem";
wenzelm@16458
   725
        val _ = assert (etype_of thy' vs [] prop <> nullT) ("theorem " ^
berghofe@13402
   726
          quote name ^ " has no computational content")
berghofe@13732
   727
      in (Reconstruct.reconstruct_proof sign prop prf, vs) end;
berghofe@13402
   728
skalberg@15570
   729
    val defs = Library.foldl (fn (defs, (prf, vs)) =>
berghofe@13732
   730
      fst (extr 0 defs vs [] [] [] prf)) ([], map prep_thm thms);
berghofe@13402
   731
wenzelm@16149
   732
    fun add_def (s, (vs, ((t, u), (prf, _)))) thy =
wenzelm@16458
   733
      (case Sign.const_type thy (extr_name s vs) of
skalberg@15531
   734
         NONE =>
berghofe@13732
   735
           let
berghofe@13732
   736
             val corr_prop = Reconstruct.prop_of prf;
wenzelm@16287
   737
             val ft = Type.freeze t;
wenzelm@16287
   738
             val fu = Type.freeze u;
berghofe@13732
   739
             val thy' = if t = nullt then thy else thy |>
berghofe@13732
   740
               Theory.add_consts_i [(extr_name s vs, fastype_of ft, NoSyn)] |>
haftmann@18358
   741
               snd o PureThy.add_defs_i false [((extr_name s vs ^ "_def",
berghofe@13732
   742
                 Logic.mk_equals (head_of (strip_abs_body fu), ft)), [])];
berghofe@13732
   743
           in
haftmann@18358
   744
             snd (PureThy.store_thm ((corr_name s vs,
berghofe@13732
   745
               Thm.varifyT (funpow (length (term_vars corr_prop))
berghofe@13732
   746
                 (forall_elim_var 0) (forall_intr_frees
berghofe@13732
   747
                   (ProofChecker.thm_of_proof thy'
berghofe@13732
   748
                     (fst (Proofterm.freeze_thaw_prf prf)))))), []) thy')
berghofe@13732
   749
           end
skalberg@15531
   750
       | SOME _ => thy);
berghofe@13402
   751
wenzelm@16149
   752
  in
wenzelm@16149
   753
    thy
wenzelm@16149
   754
    |> Theory.absolute_path
wenzelm@16149
   755
    |> fold_rev add_def defs
wenzelm@16149
   756
    |> Theory.restore_naming thy
berghofe@13402
   757
  end;
berghofe@13402
   758
berghofe@13402
   759
berghofe@13402
   760
(**** interface ****)
berghofe@13402
   761
wenzelm@17057
   762
structure P = OuterParse and K = OuterKeyword;
berghofe@13402
   763
berghofe@13732
   764
val parse_vars = Scan.optional (P.$$$ "(" |-- P.list1 P.name --| P.$$$ ")") [];
berghofe@13732
   765
berghofe@13402
   766
val realizersP =
berghofe@13402
   767
  OuterSyntax.command "realizers"
berghofe@13402
   768
  "specify realizers for primitive axioms / theorems, together with correctness proof"
berghofe@13402
   769
  K.thy_decl
berghofe@13732
   770
    (Scan.repeat1 (P.xname -- parse_vars --| P.$$$ ":" -- P.string -- P.string) >>
berghofe@13402
   771
     (fn xs => Toplevel.theory (fn thy => add_realizers
berghofe@13402
   772
       (map (fn (((a, vs), s1), s2) =>
wenzelm@16486
   773
         (PureThy.get_thm thy (Name a), (vs, s1, s2))) xs) thy)));
berghofe@13402
   774
berghofe@13402
   775
val realizabilityP =
berghofe@13402
   776
  OuterSyntax.command "realizability"
berghofe@13402
   777
  "add equations characterizing realizability" K.thy_decl
berghofe@13402
   778
  (Scan.repeat1 P.string >> (Toplevel.theory o add_realizes_eqns));
berghofe@13402
   779
berghofe@13402
   780
val typeofP =
berghofe@13402
   781
  OuterSyntax.command "extract_type"
berghofe@13402
   782
  "add equations characterizing type of extracted program" K.thy_decl
berghofe@13402
   783
  (Scan.repeat1 P.string >> (Toplevel.theory o add_typeof_eqns));
berghofe@13402
   784
berghofe@13402
   785
val extractP =
berghofe@13402
   786
  OuterSyntax.command "extract" "extract terms from proofs" K.thy_decl
berghofe@13732
   787
    (Scan.repeat1 (P.xname -- parse_vars) >> (fn xs => Toplevel.theory
wenzelm@16486
   788
      (fn thy => extract (map (apfst (PureThy.get_thm thy o Name)) xs) thy)));
berghofe@13402
   789
wenzelm@15801
   790
val _ = OuterSyntax.add_parsers [realizersP, realizabilityP, typeofP, extractP];
berghofe@13402
   791
wenzelm@16458
   792
val etype_of = etype_of o add_syntax;
berghofe@13714
   793
berghofe@13402
   794
end;