src/HOL/Multivariate_Analysis/Complex_Analysis_Basics.thy
author hoelzl
Thu Apr 03 17:56:08 2014 +0200 (2014-04-03)
changeset 56381 0556204bc230
parent 56371 fb9ae0727548
child 56409 36489d77c484
permissions -rw-r--r--
merged DERIV_intros, has_derivative_intros into derivative_intros
lp15@56215
     1
(*  Author: John Harrison, Marco Maggesi, Graziano Gentili, Gianni Ciolli, Valentina Bruno
lp15@56215
     2
    Ported from "hol_light/Multivariate/canal.ml" by L C Paulson (2014)
lp15@56215
     3
*)
lp15@56215
     4
lp15@56215
     5
header {* Complex Analysis Basics *}
lp15@56215
     6
lp15@56215
     7
theory Complex_Analysis_Basics
lp15@56215
     8
imports  "~~/src/HOL/Multivariate_Analysis/Cartesian_Euclidean_Space"
lp15@56215
     9
begin
lp15@56215
    10
hoelzl@56370
    11
subsection{*General lemmas*}
hoelzl@56370
    12
hoelzl@56370
    13
lemma has_derivative_mult_right:
hoelzl@56370
    14
  fixes c:: "'a :: real_normed_algebra"
hoelzl@56370
    15
  shows "((op * c) has_derivative (op * c)) F"
hoelzl@56370
    16
by (rule has_derivative_mult_right [OF has_derivative_id])
hoelzl@56370
    17
hoelzl@56381
    18
lemma has_derivative_of_real[derivative_intros, simp]: 
hoelzl@56370
    19
  "(f has_derivative f') F \<Longrightarrow> ((\<lambda>x. of_real (f x)) has_derivative (\<lambda>x. of_real (f' x))) F"
hoelzl@56370
    20
  using bounded_linear.has_derivative[OF bounded_linear_of_real] .
hoelzl@56370
    21
hoelzl@56370
    22
lemma has_vector_derivative_real_complex:
hoelzl@56370
    23
  "DERIV f (of_real a) :> f' \<Longrightarrow> ((\<lambda>x. f (of_real x)) has_vector_derivative f') (at a)"
hoelzl@56370
    24
  using has_derivative_compose[of of_real of_real a UNIV f "op * f'"]
hoelzl@56370
    25
  by (simp add: scaleR_conv_of_real ac_simps has_vector_derivative_def has_field_derivative_def)
lp15@56215
    26
lp15@56238
    27
lemma fact_cancel:
lp15@56238
    28
  fixes c :: "'a::real_field"
lp15@56238
    29
  shows "of_nat (Suc n) * c / of_nat (fact (Suc n)) = c / of_nat (fact n)"
hoelzl@56369
    30
  by (simp add: of_nat_mult del: of_nat_Suc times_nat.simps)
lp15@56215
    31
lemma linear_times:
hoelzl@56369
    32
  fixes c::"'a::real_algebra" shows "linear (\<lambda>x. c * x)"
lp15@56215
    33
  by (auto simp: linearI distrib_left)
lp15@56215
    34
lp15@56215
    35
lemma bilinear_times:
hoelzl@56369
    36
  fixes c::"'a::real_algebra" shows "bilinear (\<lambda>x y::'a. x*y)"
hoelzl@56369
    37
  by (auto simp: bilinear_def distrib_left distrib_right intro!: linearI)
lp15@56215
    38
lp15@56215
    39
lemma linear_cnj: "linear cnj"
hoelzl@56369
    40
  using bounded_linear.linear[OF bounded_linear_cnj] .
lp15@56215
    41
lp15@56215
    42
lemma tendsto_mult_left:
lp15@56215
    43
  fixes c::"'a::real_normed_algebra" 
lp15@56215
    44
  shows "(f ---> l) F \<Longrightarrow> ((\<lambda>x. c * (f x)) ---> c * l) F"
lp15@56215
    45
by (rule tendsto_mult [OF tendsto_const])
lp15@56215
    46
lp15@56215
    47
lemma tendsto_mult_right:
lp15@56215
    48
  fixes c::"'a::real_normed_algebra" 
lp15@56215
    49
  shows "(f ---> l) F \<Longrightarrow> ((\<lambda>x. (f x) * c) ---> l * c) F"
lp15@56215
    50
by (rule tendsto_mult [OF _ tendsto_const])
lp15@56215
    51
lp15@56215
    52
lemma tendsto_Re_upper:
lp15@56215
    53
  assumes "~ (trivial_limit F)" 
lp15@56215
    54
          "(f ---> l) F" 
lp15@56215
    55
          "eventually (\<lambda>x. Re(f x) \<le> b) F"
lp15@56215
    56
    shows  "Re(l) \<le> b"
lp15@56215
    57
  by (metis assms tendsto_le [OF _ tendsto_const]  tendsto_Re)
lp15@56215
    58
lp15@56215
    59
lemma tendsto_Re_lower:
lp15@56215
    60
  assumes "~ (trivial_limit F)" 
lp15@56215
    61
          "(f ---> l) F" 
lp15@56215
    62
          "eventually (\<lambda>x. b \<le> Re(f x)) F"
lp15@56215
    63
    shows  "b \<le> Re(l)"
lp15@56215
    64
  by (metis assms tendsto_le [OF _ _ tendsto_const]  tendsto_Re)
lp15@56215
    65
lp15@56215
    66
lemma tendsto_Im_upper:
lp15@56215
    67
  assumes "~ (trivial_limit F)" 
lp15@56215
    68
          "(f ---> l) F" 
lp15@56215
    69
          "eventually (\<lambda>x. Im(f x) \<le> b) F"
lp15@56215
    70
    shows  "Im(l) \<le> b"
lp15@56215
    71
  by (metis assms tendsto_le [OF _ tendsto_const]  tendsto_Im)
lp15@56215
    72
lp15@56215
    73
lemma tendsto_Im_lower:
lp15@56215
    74
  assumes "~ (trivial_limit F)" 
lp15@56215
    75
          "(f ---> l) F" 
lp15@56215
    76
          "eventually (\<lambda>x. b \<le> Im(f x)) F"
lp15@56215
    77
    shows  "b \<le> Im(l)"
lp15@56215
    78
  by (metis assms tendsto_le [OF _ _ tendsto_const]  tendsto_Im)
lp15@56215
    79
hoelzl@56370
    80
lemma lambda_zero: "(\<lambda>h::'a::mult_zero. 0) = op * 0"
hoelzl@56370
    81
  by auto
hoelzl@56370
    82
hoelzl@56370
    83
lemma lambda_one: "(\<lambda>x::'a::monoid_mult. x) = op * 1"
hoelzl@56370
    84
  by auto
hoelzl@56370
    85
hoelzl@56370
    86
lemma has_real_derivative:
hoelzl@56370
    87
  fixes f :: "real \<Rightarrow> real" 
hoelzl@56370
    88
  assumes "(f has_derivative f') F"
hoelzl@56370
    89
  obtains c where "(f has_real_derivative c) F"
hoelzl@56370
    90
proof -
hoelzl@56370
    91
  obtain c where "f' = (\<lambda>x. x * c)"
hoelzl@56370
    92
    by (metis assms has_derivative_bounded_linear real_bounded_linear)
hoelzl@56370
    93
  then show ?thesis
hoelzl@56370
    94
    by (metis assms that has_field_derivative_def mult_commute_abs)
hoelzl@56370
    95
qed
hoelzl@56370
    96
hoelzl@56370
    97
lemma has_real_derivative_iff:
hoelzl@56370
    98
  fixes f :: "real \<Rightarrow> real" 
hoelzl@56370
    99
  shows "(\<exists>c. (f has_real_derivative c) F) = (\<exists>D. (f has_derivative D) F)"
hoelzl@56370
   100
  by (metis has_field_derivative_def has_real_derivative)
lp15@56215
   101
lp15@56215
   102
lemma continuous_mult_left:
lp15@56215
   103
  fixes c::"'a::real_normed_algebra" 
lp15@56215
   104
  shows "continuous F f \<Longrightarrow> continuous F (\<lambda>x. c * f x)"
lp15@56215
   105
by (rule continuous_mult [OF continuous_const])
lp15@56215
   106
lp15@56215
   107
lemma continuous_mult_right:
lp15@56215
   108
  fixes c::"'a::real_normed_algebra" 
lp15@56215
   109
  shows "continuous F f \<Longrightarrow> continuous F (\<lambda>x. f x * c)"
lp15@56215
   110
by (rule continuous_mult [OF _ continuous_const])
lp15@56215
   111
lp15@56215
   112
lemma continuous_on_mult_left:
lp15@56215
   113
  fixes c::"'a::real_normed_algebra" 
lp15@56215
   114
  shows "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. c * f x)"
lp15@56215
   115
by (rule continuous_on_mult [OF continuous_on_const])
lp15@56215
   116
lp15@56215
   117
lemma continuous_on_mult_right:
lp15@56215
   118
  fixes c::"'a::real_normed_algebra" 
lp15@56215
   119
  shows "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. f x * c)"
lp15@56215
   120
by (rule continuous_on_mult [OF _ continuous_on_const])
lp15@56215
   121
hoelzl@56371
   122
lemma uniformly_continuous_on_cmul_right [continuous_intros]:
lp15@56215
   123
  fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_algebra"
hoelzl@56332
   124
  shows "uniformly_continuous_on s f \<Longrightarrow> uniformly_continuous_on s (\<lambda>x. f x * c)"
hoelzl@56369
   125
  using bounded_linear.uniformly_continuous_on[OF bounded_linear_mult_left] . 
lp15@56215
   126
hoelzl@56371
   127
lemma uniformly_continuous_on_cmul_left[continuous_intros]:
lp15@56215
   128
  fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_algebra"
lp15@56215
   129
  assumes "uniformly_continuous_on s f"
lp15@56215
   130
    shows "uniformly_continuous_on s (\<lambda>x. c * f x)"
lp15@56215
   131
by (metis assms bounded_linear.uniformly_continuous_on bounded_linear_mult_right)
lp15@56215
   132
lp15@56215
   133
lemma continuous_within_norm_id [continuous_intros]: "continuous (at x within S) norm"
lp15@56215
   134
  by (rule continuous_norm [OF continuous_ident])
lp15@56215
   135
lp15@56215
   136
lemma continuous_on_norm_id [continuous_intros]: "continuous_on S norm"
hoelzl@56369
   137
  by (intro continuous_on_id continuous_on_norm)
lp15@56215
   138
lp15@56215
   139
subsection{*DERIV stuff*}
lp15@56215
   140
lp15@56215
   141
lemma DERIV_zero_connected_constant:
lp15@56215
   142
  fixes f :: "'a::{real_normed_field,euclidean_space} \<Rightarrow> 'a"
lp15@56215
   143
  assumes "connected s"
lp15@56215
   144
      and "open s"
lp15@56215
   145
      and "finite k"
lp15@56215
   146
      and "continuous_on s f"
lp15@56215
   147
      and "\<forall>x\<in>(s - k). DERIV f x :> 0"
lp15@56215
   148
    obtains c where "\<And>x. x \<in> s \<Longrightarrow> f(x) = c"
lp15@56215
   149
using has_derivative_zero_connected_constant [OF assms(1-4)] assms
hoelzl@56369
   150
by (metis DERIV_const has_derivative_const Diff_iff at_within_open frechet_derivative_at has_field_derivative_def)
lp15@56215
   151
lp15@56215
   152
lemma DERIV_zero_constant:
hoelzl@56370
   153
  fixes f :: "'a::{real_normed_field, real_inner} \<Rightarrow> 'a"
lp15@56215
   154
  shows    "\<lbrakk>convex s;
lp15@56215
   155
             \<And>x. x\<in>s \<Longrightarrow> (f has_field_derivative 0) (at x within s)\<rbrakk> 
lp15@56215
   156
             \<Longrightarrow> \<exists>c. \<forall>x \<in> s. f(x) = c"
hoelzl@56370
   157
  by (auto simp: has_field_derivative_def lambda_zero intro: has_derivative_zero_constant)
lp15@56215
   158
lp15@56215
   159
lemma DERIV_zero_unique:
hoelzl@56370
   160
  fixes f :: "'a::{real_normed_field, real_inner} \<Rightarrow> 'a"
lp15@56215
   161
  assumes "convex s"
lp15@56215
   162
      and d0: "\<And>x. x\<in>s \<Longrightarrow> (f has_field_derivative 0) (at x within s)"
lp15@56215
   163
      and "a \<in> s"
lp15@56215
   164
      and "x \<in> s"
lp15@56215
   165
    shows "f x = f a"
hoelzl@56370
   166
  by (rule has_derivative_zero_unique [OF assms(1) _ assms(4,3)])
hoelzl@56332
   167
     (metis d0 has_field_derivative_imp_has_derivative lambda_zero)
lp15@56215
   168
lp15@56215
   169
lemma DERIV_zero_connected_unique:
hoelzl@56370
   170
  fixes f :: "'a::{real_normed_field, real_inner} \<Rightarrow> 'a"
lp15@56215
   171
  assumes "connected s"
lp15@56215
   172
      and "open s"
lp15@56215
   173
      and d0: "\<And>x. x\<in>s \<Longrightarrow> DERIV f x :> 0"
lp15@56215
   174
      and "a \<in> s"
lp15@56215
   175
      and "x \<in> s"
lp15@56215
   176
    shows "f x = f a" 
hoelzl@56370
   177
    by (rule has_derivative_zero_unique_connected [OF assms(2,1) _ assms(5,4)])
hoelzl@56370
   178
       (metis has_field_derivative_def lambda_zero d0)
lp15@56215
   179
lp15@56215
   180
lemma DERIV_transform_within:
lp15@56215
   181
  assumes "(f has_field_derivative f') (at a within s)"
lp15@56215
   182
      and "0 < d" "a \<in> s"
lp15@56215
   183
      and "\<And>x. x\<in>s \<Longrightarrow> dist x a < d \<Longrightarrow> f x = g x"
lp15@56215
   184
    shows "(g has_field_derivative f') (at a within s)"
lp15@56215
   185
  using assms unfolding has_field_derivative_def
hoelzl@56332
   186
  by (blast intro: has_derivative_transform_within)
lp15@56215
   187
lp15@56215
   188
lemma DERIV_transform_within_open:
lp15@56215
   189
  assumes "DERIV f a :> f'"
lp15@56215
   190
      and "open s" "a \<in> s"
lp15@56215
   191
      and "\<And>x. x\<in>s \<Longrightarrow> f x = g x"
lp15@56215
   192
    shows "DERIV g a :> f'"
lp15@56215
   193
  using assms unfolding has_field_derivative_def
lp15@56215
   194
by (metis has_derivative_transform_within_open)
lp15@56215
   195
lp15@56215
   196
lemma DERIV_transform_at:
lp15@56215
   197
  assumes "DERIV f a :> f'"
lp15@56215
   198
      and "0 < d"
lp15@56215
   199
      and "\<And>x. dist x a < d \<Longrightarrow> f x = g x"
lp15@56215
   200
    shows "DERIV g a :> f'"
lp15@56215
   201
  by (blast intro: assms DERIV_transform_within)
lp15@56215
   202
hoelzl@56370
   203
subsection {*Some limit theorems about real part of real series etc.*}
hoelzl@56370
   204
hoelzl@56370
   205
(*MOVE? But not to Finite_Cartesian_Product*)
hoelzl@56370
   206
lemma sums_vec_nth :
hoelzl@56370
   207
  assumes "f sums a"
hoelzl@56370
   208
  shows "(\<lambda>x. f x $ i) sums a $ i"
hoelzl@56370
   209
using assms unfolding sums_def
hoelzl@56370
   210
by (auto dest: tendsto_vec_nth [where i=i])
hoelzl@56370
   211
hoelzl@56370
   212
lemma summable_vec_nth :
hoelzl@56370
   213
  assumes "summable f"
hoelzl@56370
   214
  shows "summable (\<lambda>x. f x $ i)"
hoelzl@56370
   215
using assms unfolding summable_def
hoelzl@56370
   216
by (blast intro: sums_vec_nth)
hoelzl@56370
   217
hoelzl@56370
   218
subsection {*Complex number lemmas *}
hoelzl@56370
   219
hoelzl@56370
   220
lemma
hoelzl@56370
   221
  shows open_halfspace_Re_lt: "open {z. Re(z) < b}"
hoelzl@56370
   222
    and open_halfspace_Re_gt: "open {z. Re(z) > b}"
hoelzl@56370
   223
    and closed_halfspace_Re_ge: "closed {z. Re(z) \<ge> b}"
hoelzl@56370
   224
    and closed_halfspace_Re_le: "closed {z. Re(z) \<le> b}"
hoelzl@56370
   225
    and closed_halfspace_Re_eq: "closed {z. Re(z) = b}"
hoelzl@56370
   226
    and open_halfspace_Im_lt: "open {z. Im(z) < b}"
hoelzl@56370
   227
    and open_halfspace_Im_gt: "open {z. Im(z) > b}"
hoelzl@56370
   228
    and closed_halfspace_Im_ge: "closed {z. Im(z) \<ge> b}"
hoelzl@56370
   229
    and closed_halfspace_Im_le: "closed {z. Im(z) \<le> b}"
hoelzl@56370
   230
    and closed_halfspace_Im_eq: "closed {z. Im(z) = b}"
hoelzl@56370
   231
  by (intro open_Collect_less closed_Collect_le closed_Collect_eq isCont_Re
hoelzl@56370
   232
            isCont_Im isCont_ident isCont_const)+
hoelzl@56370
   233
hoelzl@56370
   234
lemma closed_complex_Reals: "closed (Reals :: complex set)"
hoelzl@56370
   235
proof -
hoelzl@56370
   236
  have "(Reals :: complex set) = {z. Im z = 0}"
hoelzl@56370
   237
    by (auto simp: complex_is_Real_iff)
hoelzl@56370
   238
  then show ?thesis
hoelzl@56370
   239
    by (metis closed_halfspace_Im_eq)
hoelzl@56370
   240
qed
hoelzl@56370
   241
hoelzl@56370
   242
lemma real_lim:
hoelzl@56370
   243
  fixes l::complex
hoelzl@56370
   244
  assumes "(f ---> l) F" and "~(trivial_limit F)" and "eventually P F" and "\<And>a. P a \<Longrightarrow> f a \<in> \<real>"
hoelzl@56370
   245
  shows  "l \<in> \<real>"
hoelzl@56370
   246
proof (rule Lim_in_closed_set[OF closed_complex_Reals _ assms(2,1)])
hoelzl@56370
   247
  show "eventually (\<lambda>x. f x \<in> \<real>) F"
hoelzl@56370
   248
    using assms(3, 4) by (auto intro: eventually_mono)
hoelzl@56370
   249
qed
hoelzl@56370
   250
hoelzl@56370
   251
lemma real_lim_sequentially:
hoelzl@56370
   252
  fixes l::complex
hoelzl@56370
   253
  shows "(f ---> l) sequentially \<Longrightarrow> (\<exists>N. \<forall>n\<ge>N. f n \<in> \<real>) \<Longrightarrow> l \<in> \<real>"
hoelzl@56370
   254
by (rule real_lim [where F=sequentially]) (auto simp: eventually_sequentially)
hoelzl@56370
   255
hoelzl@56370
   256
lemma real_series: 
hoelzl@56370
   257
  fixes l::complex
hoelzl@56370
   258
  shows "f sums l \<Longrightarrow> (\<And>n. f n \<in> \<real>) \<Longrightarrow> l \<in> \<real>"
hoelzl@56370
   259
unfolding sums_def
hoelzl@56370
   260
by (metis real_lim_sequentially setsum_in_Reals)
hoelzl@56370
   261
hoelzl@56370
   262
lemma Lim_null_comparison_Re:
hoelzl@56370
   263
   "eventually (\<lambda>x. norm(f x) \<le> Re(g x)) F \<Longrightarrow>  (g ---> 0) F \<Longrightarrow> (f ---> 0) F"
hoelzl@56370
   264
  by (metis Lim_null_comparison complex_Re_zero tendsto_Re)
lp15@56215
   265
lp15@56215
   266
subsection{*Holomorphic functions*}
lp15@56215
   267
lp15@56215
   268
definition complex_differentiable :: "[complex \<Rightarrow> complex, complex filter] \<Rightarrow> bool"
lp15@56215
   269
           (infixr "(complex'_differentiable)" 50)  
lp15@56215
   270
  where "f complex_differentiable F \<equiv> \<exists>f'. (f has_field_derivative f') F"
lp15@56215
   271
hoelzl@56370
   272
lemma complex_differentiable_imp_continuous_at:
hoelzl@56370
   273
    "f complex_differentiable (at x within s) \<Longrightarrow> continuous (at x within s) f"
lp15@56215
   274
  by (metis DERIV_continuous complex_differentiable_def)
lp15@56215
   275
lp15@56215
   276
lemma complex_differentiable_within_subset:
lp15@56215
   277
    "\<lbrakk>f complex_differentiable (at x within s); t \<subseteq> s\<rbrakk>
lp15@56215
   278
     \<Longrightarrow> f complex_differentiable (at x within t)"
hoelzl@56370
   279
  by (metis DERIV_subset complex_differentiable_def)
lp15@56215
   280
lp15@56215
   281
lemma complex_differentiable_at_within:
lp15@56215
   282
    "\<lbrakk>f complex_differentiable (at x)\<rbrakk>
lp15@56215
   283
     \<Longrightarrow> f complex_differentiable (at x within s)"
lp15@56215
   284
  unfolding complex_differentiable_def
lp15@56215
   285
  by (metis DERIV_subset top_greatest)
lp15@56215
   286
hoelzl@56370
   287
lemma complex_differentiable_linear: "(op * c) complex_differentiable F"
lp15@56215
   288
proof -
hoelzl@56370
   289
  show ?thesis
hoelzl@56370
   290
    unfolding complex_differentiable_def has_field_derivative_def mult_commute_abs
lp15@56215
   291
    by (force intro: has_derivative_mult_right)
lp15@56215
   292
qed
lp15@56215
   293
hoelzl@56370
   294
lemma complex_differentiable_const: "(\<lambda>z. c) complex_differentiable F"
lp15@56215
   295
  unfolding complex_differentiable_def has_field_derivative_def
hoelzl@56369
   296
  by (rule exI [where x=0])
hoelzl@56369
   297
     (metis has_derivative_const lambda_zero) 
lp15@56215
   298
hoelzl@56370
   299
lemma complex_differentiable_ident: "(\<lambda>z. z) complex_differentiable F"
lp15@56215
   300
  unfolding complex_differentiable_def has_field_derivative_def
hoelzl@56369
   301
  by (rule exI [where x=1])
hoelzl@56369
   302
     (simp add: lambda_one [symmetric])
lp15@56215
   303
hoelzl@56370
   304
lemma complex_differentiable_id: "id complex_differentiable F"
hoelzl@56370
   305
  unfolding id_def by (rule complex_differentiable_ident)
hoelzl@56370
   306
lp15@56215
   307
lemma complex_differentiable_minus:
hoelzl@56370
   308
  "f complex_differentiable F \<Longrightarrow> (\<lambda>z. - (f z)) complex_differentiable F"
lp15@56215
   309
  using assms unfolding complex_differentiable_def
lp15@56215
   310
  by (metis field_differentiable_minus)
lp15@56215
   311
lp15@56215
   312
lemma complex_differentiable_add:
lp15@56215
   313
  assumes "f complex_differentiable F" "g complex_differentiable F"
lp15@56215
   314
    shows "(\<lambda>z. f z + g z) complex_differentiable F"
lp15@56215
   315
  using assms unfolding complex_differentiable_def
lp15@56215
   316
  by (metis field_differentiable_add)
lp15@56215
   317
hoelzl@56370
   318
lemma complex_differentiable_setsum:
hoelzl@56370
   319
  "(\<And>i. i \<in> I \<Longrightarrow> (f i) complex_differentiable F) \<Longrightarrow> (\<lambda>z. \<Sum>i\<in>I. f i z) complex_differentiable F"
hoelzl@56370
   320
  by (induct I rule: infinite_finite_induct)
hoelzl@56370
   321
     (auto intro: complex_differentiable_add complex_differentiable_const)
hoelzl@56370
   322
lp15@56215
   323
lemma complex_differentiable_diff:
lp15@56215
   324
  assumes "f complex_differentiable F" "g complex_differentiable F"
lp15@56215
   325
    shows "(\<lambda>z. f z - g z) complex_differentiable F"
lp15@56215
   326
  using assms unfolding complex_differentiable_def
lp15@56215
   327
  by (metis field_differentiable_diff)
lp15@56215
   328
lp15@56215
   329
lemma complex_differentiable_inverse:
lp15@56215
   330
  assumes "f complex_differentiable (at a within s)" "f a \<noteq> 0"
lp15@56215
   331
  shows "(\<lambda>z. inverse (f z)) complex_differentiable (at a within s)"
lp15@56215
   332
  using assms unfolding complex_differentiable_def
lp15@56215
   333
  by (metis DERIV_inverse_fun)
lp15@56215
   334
lp15@56215
   335
lemma complex_differentiable_mult:
lp15@56215
   336
  assumes "f complex_differentiable (at a within s)" 
lp15@56215
   337
          "g complex_differentiable (at a within s)"
lp15@56215
   338
    shows "(\<lambda>z. f z * g z) complex_differentiable (at a within s)"
lp15@56215
   339
  using assms unfolding complex_differentiable_def
lp15@56215
   340
  by (metis DERIV_mult [of f _ a s g])
lp15@56215
   341
  
lp15@56215
   342
lemma complex_differentiable_divide:
lp15@56215
   343
  assumes "f complex_differentiable (at a within s)" 
lp15@56215
   344
          "g complex_differentiable (at a within s)"
lp15@56215
   345
          "g a \<noteq> 0"
lp15@56215
   346
    shows "(\<lambda>z. f z / g z) complex_differentiable (at a within s)"
lp15@56215
   347
  using assms unfolding complex_differentiable_def
lp15@56215
   348
  by (metis DERIV_divide [of f _ a s g])
lp15@56215
   349
lp15@56215
   350
lemma complex_differentiable_power:
lp15@56215
   351
  assumes "f complex_differentiable (at a within s)" 
lp15@56215
   352
    shows "(\<lambda>z. f z ^ n) complex_differentiable (at a within s)"
lp15@56215
   353
  using assms unfolding complex_differentiable_def
lp15@56215
   354
  by (metis DERIV_power)
lp15@56215
   355
lp15@56215
   356
lemma complex_differentiable_transform_within:
lp15@56215
   357
  "0 < d \<Longrightarrow>
lp15@56215
   358
        x \<in> s \<Longrightarrow>
lp15@56215
   359
        (\<And>x'. x' \<in> s \<Longrightarrow> dist x' x < d \<Longrightarrow> f x' = g x') \<Longrightarrow>
lp15@56215
   360
        f complex_differentiable (at x within s)
lp15@56215
   361
        \<Longrightarrow> g complex_differentiable (at x within s)"
lp15@56215
   362
  unfolding complex_differentiable_def has_field_derivative_def
lp15@56215
   363
  by (blast intro: has_derivative_transform_within)
lp15@56215
   364
lp15@56215
   365
lemma complex_differentiable_compose_within:
lp15@56215
   366
  assumes "f complex_differentiable (at a within s)" 
lp15@56215
   367
          "g complex_differentiable (at (f a) within f`s)"
lp15@56215
   368
    shows "(g o f) complex_differentiable (at a within s)"
lp15@56215
   369
  using assms unfolding complex_differentiable_def
lp15@56215
   370
  by (metis DERIV_image_chain)
lp15@56215
   371
hoelzl@56370
   372
lemma complex_differentiable_compose:
hoelzl@56370
   373
  "f complex_differentiable at z \<Longrightarrow> g complex_differentiable at (f z)
hoelzl@56370
   374
          \<Longrightarrow> (g o f) complex_differentiable at z"
hoelzl@56370
   375
by (metis complex_differentiable_at_within complex_differentiable_compose_within)
hoelzl@56370
   376
lp15@56215
   377
lemma complex_differentiable_within_open:
lp15@56215
   378
     "\<lbrakk>a \<in> s; open s\<rbrakk> \<Longrightarrow> f complex_differentiable at a within s \<longleftrightarrow> 
lp15@56215
   379
                          f complex_differentiable at a"
lp15@56215
   380
  unfolding complex_differentiable_def
lp15@56215
   381
  by (metis at_within_open)
lp15@56215
   382
lp15@56215
   383
subsection{*Caratheodory characterization.*}
lp15@56215
   384
lp15@56215
   385
lemma complex_differentiable_caratheodory_at:
lp15@56215
   386
  "f complex_differentiable (at z) \<longleftrightarrow>
lp15@56215
   387
         (\<exists>g. (\<forall>w. f(w) - f(z) = g(w) * (w - z)) \<and> continuous (at z) g)"
lp15@56215
   388
  using CARAT_DERIV [of f]
lp15@56215
   389
  by (simp add: complex_differentiable_def has_field_derivative_def)
lp15@56215
   390
lp15@56215
   391
lemma complex_differentiable_caratheodory_within:
lp15@56215
   392
  "f complex_differentiable (at z within s) \<longleftrightarrow>
lp15@56215
   393
         (\<exists>g. (\<forall>w. f(w) - f(z) = g(w) * (w - z)) \<and> continuous (at z within s) g)"
lp15@56215
   394
  using DERIV_caratheodory_within [of f]
lp15@56215
   395
  by (simp add: complex_differentiable_def has_field_derivative_def)
lp15@56215
   396
hoelzl@56370
   397
subsection{*Holomorphic*}
hoelzl@56370
   398
hoelzl@56370
   399
definition holomorphic_on :: "[complex \<Rightarrow> complex, complex set] \<Rightarrow> bool"
hoelzl@56370
   400
           (infixl "(holomorphic'_on)" 50)
hoelzl@56370
   401
  where "f holomorphic_on s \<equiv> \<forall>x\<in>s. f complex_differentiable (at x within s)"
hoelzl@56370
   402
  
hoelzl@56370
   403
lemma holomorphic_on_empty: "f holomorphic_on {}"
hoelzl@56370
   404
  by (simp add: holomorphic_on_def)
hoelzl@56370
   405
hoelzl@56370
   406
lemma holomorphic_on_open:
hoelzl@56370
   407
    "open s \<Longrightarrow> f holomorphic_on s \<longleftrightarrow> (\<forall>x \<in> s. \<exists>f'. DERIV f x :> f')"
hoelzl@56370
   408
  by (auto simp: holomorphic_on_def complex_differentiable_def has_field_derivative_def at_within_open [of _ s])
hoelzl@56370
   409
hoelzl@56370
   410
lemma holomorphic_on_imp_continuous_on: 
hoelzl@56370
   411
    "f holomorphic_on s \<Longrightarrow> continuous_on s f"
hoelzl@56370
   412
  by (metis complex_differentiable_imp_continuous_at continuous_on_eq_continuous_within holomorphic_on_def) 
hoelzl@56370
   413
hoelzl@56370
   414
lemma holomorphic_on_subset:
hoelzl@56370
   415
    "f holomorphic_on s \<Longrightarrow> t \<subseteq> s \<Longrightarrow> f holomorphic_on t"
hoelzl@56370
   416
  unfolding holomorphic_on_def
hoelzl@56370
   417
  by (metis complex_differentiable_within_subset subsetD)
hoelzl@56370
   418
hoelzl@56370
   419
lemma holomorphic_transform: "\<lbrakk>f holomorphic_on s; \<And>x. x \<in> s \<Longrightarrow> f x = g x\<rbrakk> \<Longrightarrow> g holomorphic_on s"
hoelzl@56370
   420
  by (metis complex_differentiable_transform_within linordered_field_no_ub holomorphic_on_def)
hoelzl@56370
   421
hoelzl@56370
   422
lemma holomorphic_cong: "s = t ==> (\<And>x. x \<in> s \<Longrightarrow> f x = g x) \<Longrightarrow> f holomorphic_on s \<longleftrightarrow> g holomorphic_on t"
hoelzl@56370
   423
  by (metis holomorphic_transform)
hoelzl@56370
   424
hoelzl@56370
   425
lemma holomorphic_on_linear: "(op * c) holomorphic_on s"
hoelzl@56370
   426
  unfolding holomorphic_on_def by (metis complex_differentiable_linear)
hoelzl@56370
   427
hoelzl@56370
   428
lemma holomorphic_on_const: "(\<lambda>z. c) holomorphic_on s"
hoelzl@56370
   429
  unfolding holomorphic_on_def by (metis complex_differentiable_const)
hoelzl@56370
   430
hoelzl@56370
   431
lemma holomorphic_on_ident: "(\<lambda>x. x) holomorphic_on s"
hoelzl@56370
   432
  unfolding holomorphic_on_def by (metis complex_differentiable_ident)
hoelzl@56370
   433
hoelzl@56370
   434
lemma holomorphic_on_id: "id holomorphic_on s"
hoelzl@56370
   435
  unfolding id_def by (rule holomorphic_on_ident)
hoelzl@56370
   436
hoelzl@56370
   437
lemma holomorphic_on_compose:
hoelzl@56370
   438
  "f holomorphic_on s \<Longrightarrow> g holomorphic_on (f ` s) \<Longrightarrow> (g o f) holomorphic_on s"
hoelzl@56370
   439
  using complex_differentiable_compose_within[of f _ s g]
hoelzl@56370
   440
  by (auto simp: holomorphic_on_def)
hoelzl@56370
   441
hoelzl@56370
   442
lemma holomorphic_on_compose_gen:
hoelzl@56370
   443
  "f holomorphic_on s \<Longrightarrow> g holomorphic_on t \<Longrightarrow> f ` s \<subseteq> t \<Longrightarrow> (g o f) holomorphic_on s"
hoelzl@56370
   444
  by (metis holomorphic_on_compose holomorphic_on_subset)
hoelzl@56370
   445
hoelzl@56370
   446
lemma holomorphic_on_minus: "f holomorphic_on s \<Longrightarrow> (\<lambda>z. -(f z)) holomorphic_on s"
hoelzl@56370
   447
  by (metis complex_differentiable_minus holomorphic_on_def)
hoelzl@56370
   448
hoelzl@56370
   449
lemma holomorphic_on_add:
hoelzl@56370
   450
  "\<lbrakk>f holomorphic_on s; g holomorphic_on s\<rbrakk> \<Longrightarrow> (\<lambda>z. f z + g z) holomorphic_on s"
hoelzl@56370
   451
  unfolding holomorphic_on_def by (metis complex_differentiable_add)
hoelzl@56370
   452
hoelzl@56370
   453
lemma holomorphic_on_diff:
hoelzl@56370
   454
  "\<lbrakk>f holomorphic_on s; g holomorphic_on s\<rbrakk> \<Longrightarrow> (\<lambda>z. f z - g z) holomorphic_on s"
hoelzl@56370
   455
  unfolding holomorphic_on_def by (metis complex_differentiable_diff)
hoelzl@56370
   456
hoelzl@56370
   457
lemma holomorphic_on_mult:
hoelzl@56370
   458
  "\<lbrakk>f holomorphic_on s; g holomorphic_on s\<rbrakk> \<Longrightarrow> (\<lambda>z. f z * g z) holomorphic_on s"
hoelzl@56370
   459
  unfolding holomorphic_on_def by (metis complex_differentiable_mult)
hoelzl@56370
   460
hoelzl@56370
   461
lemma holomorphic_on_inverse:
hoelzl@56370
   462
  "\<lbrakk>f holomorphic_on s; \<And>z. z \<in> s \<Longrightarrow> f z \<noteq> 0\<rbrakk> \<Longrightarrow> (\<lambda>z. inverse (f z)) holomorphic_on s"
hoelzl@56370
   463
  unfolding holomorphic_on_def by (metis complex_differentiable_inverse)
hoelzl@56370
   464
hoelzl@56370
   465
lemma holomorphic_on_divide:
hoelzl@56370
   466
  "\<lbrakk>f holomorphic_on s; g holomorphic_on s; \<And>z. z \<in> s \<Longrightarrow> g z \<noteq> 0\<rbrakk> \<Longrightarrow> (\<lambda>z. f z / g z) holomorphic_on s"
hoelzl@56370
   467
  unfolding holomorphic_on_def by (metis complex_differentiable_divide)
hoelzl@56370
   468
hoelzl@56370
   469
lemma holomorphic_on_power:
hoelzl@56370
   470
  "f holomorphic_on s \<Longrightarrow> (\<lambda>z. (f z)^n) holomorphic_on s"
hoelzl@56370
   471
  unfolding holomorphic_on_def by (metis complex_differentiable_power)
hoelzl@56370
   472
hoelzl@56370
   473
lemma holomorphic_on_setsum:
hoelzl@56370
   474
  "(\<And>i. i \<in> I \<Longrightarrow> (f i) holomorphic_on s) \<Longrightarrow> (\<lambda>x. setsum (\<lambda>i. f i x) I) holomorphic_on s"
hoelzl@56370
   475
  unfolding holomorphic_on_def by (metis complex_differentiable_setsum)
hoelzl@56370
   476
hoelzl@56370
   477
definition deriv :: "('a \<Rightarrow> 'a::real_normed_field) \<Rightarrow> 'a \<Rightarrow> 'a" where
hoelzl@56370
   478
  "deriv f x \<equiv> THE D. DERIV f x :> D"
hoelzl@56370
   479
hoelzl@56370
   480
lemma DERIV_imp_deriv: "DERIV f x :> f' \<Longrightarrow> deriv f x = f'"
hoelzl@56370
   481
  unfolding deriv_def by (metis the_equality DERIV_unique)
hoelzl@56370
   482
hoelzl@56370
   483
lemma DERIV_deriv_iff_real_differentiable:
hoelzl@56370
   484
  fixes x :: real
hoelzl@56370
   485
  shows "DERIV f x :> deriv f x \<longleftrightarrow> f differentiable at x"
hoelzl@56370
   486
  unfolding differentiable_def by (metis DERIV_imp_deriv has_real_derivative_iff)
hoelzl@56370
   487
hoelzl@56370
   488
lemma real_derivative_chain:
hoelzl@56370
   489
  fixes x :: real
hoelzl@56370
   490
  shows "f differentiable at x \<Longrightarrow> g differentiable at (f x)
hoelzl@56370
   491
    \<Longrightarrow> deriv (g o f) x = deriv g (f x) * deriv f x"
hoelzl@56370
   492
  by (metis DERIV_deriv_iff_real_differentiable DERIV_chain DERIV_imp_deriv)
hoelzl@56370
   493
hoelzl@56370
   494
lemma DERIV_deriv_iff_complex_differentiable:
hoelzl@56370
   495
  "DERIV f x :> deriv f x \<longleftrightarrow> f complex_differentiable at x"
hoelzl@56370
   496
  unfolding complex_differentiable_def by (metis DERIV_imp_deriv)
hoelzl@56370
   497
hoelzl@56370
   498
lemma complex_derivative_chain:
hoelzl@56370
   499
  "f complex_differentiable at x \<Longrightarrow> g complex_differentiable at (f x)
hoelzl@56370
   500
    \<Longrightarrow> deriv (g o f) x = deriv g (f x) * deriv f x"
hoelzl@56370
   501
  by (metis DERIV_deriv_iff_complex_differentiable DERIV_chain DERIV_imp_deriv)
hoelzl@56370
   502
hoelzl@56370
   503
lemma complex_derivative_linear: "deriv (\<lambda>w. c * w) = (\<lambda>z. c)"
hoelzl@56370
   504
  by (metis DERIV_imp_deriv DERIV_cmult_Id)
hoelzl@56370
   505
hoelzl@56370
   506
lemma complex_derivative_ident: "deriv (\<lambda>w. w) = (\<lambda>z. 1)"
hoelzl@56370
   507
  by (metis DERIV_imp_deriv DERIV_ident)
hoelzl@56370
   508
hoelzl@56370
   509
lemma complex_derivative_const: "deriv (\<lambda>w. c) = (\<lambda>z. 0)"
hoelzl@56370
   510
  by (metis DERIV_imp_deriv DERIV_const)
hoelzl@56370
   511
hoelzl@56370
   512
lemma complex_derivative_add:
hoelzl@56370
   513
  "\<lbrakk>f complex_differentiable at z; g complex_differentiable at z\<rbrakk>  
hoelzl@56370
   514
   \<Longrightarrow> deriv (\<lambda>w. f w + g w) z = deriv f z + deriv g z"
hoelzl@56370
   515
  unfolding DERIV_deriv_iff_complex_differentiable[symmetric]
hoelzl@56381
   516
  by (auto intro!: DERIV_imp_deriv derivative_intros)
hoelzl@56370
   517
hoelzl@56370
   518
lemma complex_derivative_diff:
hoelzl@56370
   519
  "\<lbrakk>f complex_differentiable at z; g complex_differentiable at z\<rbrakk>  
hoelzl@56370
   520
   \<Longrightarrow> deriv (\<lambda>w. f w - g w) z = deriv f z - deriv g z"
hoelzl@56370
   521
  unfolding DERIV_deriv_iff_complex_differentiable[symmetric]
hoelzl@56381
   522
  by (auto intro!: DERIV_imp_deriv derivative_intros)
hoelzl@56370
   523
hoelzl@56370
   524
lemma complex_derivative_mult:
hoelzl@56370
   525
  "\<lbrakk>f complex_differentiable at z; g complex_differentiable at z\<rbrakk>  
hoelzl@56370
   526
   \<Longrightarrow> deriv (\<lambda>w. f w * g w) z = f z * deriv g z + deriv f z * g z"
hoelzl@56370
   527
  unfolding DERIV_deriv_iff_complex_differentiable[symmetric]
hoelzl@56381
   528
  by (auto intro!: DERIV_imp_deriv derivative_eq_intros)
hoelzl@56370
   529
hoelzl@56370
   530
lemma complex_derivative_cmult:
hoelzl@56370
   531
  "f complex_differentiable at z \<Longrightarrow> deriv (\<lambda>w. c * f w) z = c * deriv f z"
hoelzl@56370
   532
  unfolding DERIV_deriv_iff_complex_differentiable[symmetric]
hoelzl@56381
   533
  by (auto intro!: DERIV_imp_deriv derivative_eq_intros)
hoelzl@56370
   534
hoelzl@56370
   535
lemma complex_derivative_cmult_right:
hoelzl@56370
   536
  "f complex_differentiable at z \<Longrightarrow> deriv (\<lambda>w. f w * c) z = deriv f z * c"
hoelzl@56370
   537
  unfolding DERIV_deriv_iff_complex_differentiable[symmetric]
hoelzl@56381
   538
  by (auto intro!: DERIV_imp_deriv derivative_eq_intros)
hoelzl@56370
   539
hoelzl@56370
   540
lemma complex_derivative_transform_within_open:
hoelzl@56370
   541
  "\<lbrakk>f holomorphic_on s; g holomorphic_on s; open s; z \<in> s; \<And>w. w \<in> s \<Longrightarrow> f w = g w\<rbrakk> 
hoelzl@56370
   542
   \<Longrightarrow> deriv f z = deriv g z"
hoelzl@56370
   543
  unfolding holomorphic_on_def
hoelzl@56370
   544
  by (rule DERIV_imp_deriv)
hoelzl@56370
   545
     (metis DERIV_deriv_iff_complex_differentiable DERIV_transform_within_open at_within_open)
hoelzl@56370
   546
hoelzl@56370
   547
lemma complex_derivative_compose_linear:
hoelzl@56370
   548
  "f complex_differentiable at (c * z) \<Longrightarrow> deriv (\<lambda>w. f (c * w)) z = c * deriv f (c * z)"
hoelzl@56370
   549
apply (rule DERIV_imp_deriv)
hoelzl@56370
   550
apply (simp add: DERIV_deriv_iff_complex_differentiable [symmetric])
hoelzl@56370
   551
apply (metis DERIV_chain' DERIV_cmult_Id comm_semiring_1_class.normalizing_semiring_rules(7))  
hoelzl@56370
   552
done
hoelzl@56370
   553
lp15@56215
   554
subsection{*analyticity on a set*}
lp15@56215
   555
lp15@56215
   556
definition analytic_on (infixl "(analytic'_on)" 50)  
lp15@56215
   557
  where
lp15@56215
   558
   "f analytic_on s \<equiv> \<forall>x \<in> s. \<exists>e. 0 < e \<and> f holomorphic_on (ball x e)"
lp15@56215
   559
hoelzl@56370
   560
lemma analytic_imp_holomorphic: "f analytic_on s \<Longrightarrow> f holomorphic_on s"
hoelzl@56370
   561
  by (simp add: at_within_open [OF _ open_ball] analytic_on_def holomorphic_on_def)
hoelzl@56370
   562
     (metis centre_in_ball complex_differentiable_at_within)
lp15@56215
   563
hoelzl@56370
   564
lemma analytic_on_open: "open s \<Longrightarrow> f analytic_on s \<longleftrightarrow> f holomorphic_on s"
lp15@56215
   565
apply (auto simp: analytic_imp_holomorphic)
lp15@56215
   566
apply (auto simp: analytic_on_def holomorphic_on_def)
lp15@56215
   567
by (metis holomorphic_on_def holomorphic_on_subset open_contains_ball)
lp15@56215
   568
lp15@56215
   569
lemma analytic_on_imp_differentiable_at:
lp15@56215
   570
  "f analytic_on s \<Longrightarrow> x \<in> s \<Longrightarrow> f complex_differentiable (at x)"
hoelzl@56370
   571
 apply (auto simp: analytic_on_def holomorphic_on_def)
lp15@56215
   572
by (metis Topology_Euclidean_Space.open_ball centre_in_ball complex_differentiable_within_open)
lp15@56215
   573
hoelzl@56370
   574
lemma analytic_on_subset: "f analytic_on s \<Longrightarrow> t \<subseteq> s \<Longrightarrow> f analytic_on t"
lp15@56215
   575
  by (auto simp: analytic_on_def)
lp15@56215
   576
hoelzl@56370
   577
lemma analytic_on_Un: "f analytic_on (s \<union> t) \<longleftrightarrow> f analytic_on s \<and> f analytic_on t"
lp15@56215
   578
  by (auto simp: analytic_on_def)
lp15@56215
   579
hoelzl@56370
   580
lemma analytic_on_Union: "f analytic_on (\<Union> s) \<longleftrightarrow> (\<forall>t \<in> s. f analytic_on t)"
hoelzl@56370
   581
  by (auto simp: analytic_on_def)
hoelzl@56370
   582
hoelzl@56370
   583
lemma analytic_on_UN: "f analytic_on (\<Union>i\<in>I. s i) \<longleftrightarrow> (\<forall>i\<in>I. f analytic_on (s i))"
lp15@56215
   584
  by (auto simp: analytic_on_def)
lp15@56215
   585
  
lp15@56215
   586
lemma analytic_on_holomorphic:
lp15@56215
   587
  "f analytic_on s \<longleftrightarrow> (\<exists>t. open t \<and> s \<subseteq> t \<and> f holomorphic_on t)"
lp15@56215
   588
  (is "?lhs = ?rhs")
lp15@56215
   589
proof -
lp15@56215
   590
  have "?lhs \<longleftrightarrow> (\<exists>t. open t \<and> s \<subseteq> t \<and> f analytic_on t)"
lp15@56215
   591
  proof safe
lp15@56215
   592
    assume "f analytic_on s"
lp15@56215
   593
    then show "\<exists>t. open t \<and> s \<subseteq> t \<and> f analytic_on t"
lp15@56215
   594
      apply (simp add: analytic_on_def)
lp15@56215
   595
      apply (rule exI [where x="\<Union>{u. open u \<and> f analytic_on u}"], auto)
lp15@56215
   596
      apply (metis Topology_Euclidean_Space.open_ball analytic_on_open centre_in_ball)
lp15@56215
   597
      by (metis analytic_on_def)
lp15@56215
   598
  next
lp15@56215
   599
    fix t
lp15@56215
   600
    assume "open t" "s \<subseteq> t" "f analytic_on t" 
lp15@56215
   601
    then show "f analytic_on s"
lp15@56215
   602
        by (metis analytic_on_subset)
lp15@56215
   603
  qed
lp15@56215
   604
  also have "... \<longleftrightarrow> ?rhs"
lp15@56215
   605
    by (auto simp: analytic_on_open)
lp15@56215
   606
  finally show ?thesis .
lp15@56215
   607
qed
lp15@56215
   608
lp15@56215
   609
lemma analytic_on_linear: "(op * c) analytic_on s"
hoelzl@56370
   610
  by (auto simp add: analytic_on_holomorphic holomorphic_on_linear)
lp15@56215
   611
lp15@56215
   612
lemma analytic_on_const: "(\<lambda>z. c) analytic_on s"
hoelzl@56370
   613
  by (metis analytic_on_def holomorphic_on_const zero_less_one)
hoelzl@56370
   614
hoelzl@56370
   615
lemma analytic_on_ident: "(\<lambda>x. x) analytic_on s"
hoelzl@56370
   616
  by (simp add: analytic_on_def holomorphic_on_ident gt_ex)
lp15@56215
   617
lp15@56215
   618
lemma analytic_on_id: "id analytic_on s"
hoelzl@56370
   619
  unfolding id_def by (rule analytic_on_ident)
lp15@56215
   620
lp15@56215
   621
lemma analytic_on_compose:
lp15@56215
   622
  assumes f: "f analytic_on s"
lp15@56215
   623
      and g: "g analytic_on (f ` s)"
lp15@56215
   624
    shows "(g o f) analytic_on s"
lp15@56215
   625
unfolding analytic_on_def
lp15@56215
   626
proof (intro ballI)
lp15@56215
   627
  fix x
lp15@56215
   628
  assume x: "x \<in> s"
lp15@56215
   629
  then obtain e where e: "0 < e" and fh: "f holomorphic_on ball x e" using f
lp15@56215
   630
    by (metis analytic_on_def)
lp15@56215
   631
  obtain e' where e': "0 < e'" and gh: "g holomorphic_on ball (f x) e'" using g
lp15@56215
   632
    by (metis analytic_on_def g image_eqI x) 
lp15@56215
   633
  have "isCont f x"
lp15@56215
   634
    by (metis analytic_on_imp_differentiable_at complex_differentiable_imp_continuous_at f x)
lp15@56215
   635
  with e' obtain d where d: "0 < d" and fd: "f ` ball x d \<subseteq> ball (f x) e'"
lp15@56215
   636
     by (auto simp: continuous_at_ball)
lp15@56215
   637
  have "g \<circ> f holomorphic_on ball x (min d e)" 
lp15@56215
   638
    apply (rule holomorphic_on_compose)
lp15@56215
   639
    apply (metis fh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
lp15@56215
   640
    by (metis fd gh holomorphic_on_subset image_mono min.cobounded1 subset_ball)
lp15@56215
   641
  then show "\<exists>e>0. g \<circ> f holomorphic_on ball x e"
lp15@56215
   642
    by (metis d e min_less_iff_conj) 
lp15@56215
   643
qed
lp15@56215
   644
lp15@56215
   645
lemma analytic_on_compose_gen:
lp15@56215
   646
  "f analytic_on s \<Longrightarrow> g analytic_on t \<Longrightarrow> (\<And>z. z \<in> s \<Longrightarrow> f z \<in> t)
lp15@56215
   647
             \<Longrightarrow> g o f analytic_on s"
lp15@56215
   648
by (metis analytic_on_compose analytic_on_subset image_subset_iff)
lp15@56215
   649
lp15@56215
   650
lemma analytic_on_neg:
lp15@56215
   651
  "f analytic_on s \<Longrightarrow> (\<lambda>z. -(f z)) analytic_on s"
lp15@56215
   652
by (metis analytic_on_holomorphic holomorphic_on_minus)
lp15@56215
   653
lp15@56215
   654
lemma analytic_on_add:
lp15@56215
   655
  assumes f: "f analytic_on s"
lp15@56215
   656
      and g: "g analytic_on s"
lp15@56215
   657
    shows "(\<lambda>z. f z + g z) analytic_on s"
lp15@56215
   658
unfolding analytic_on_def
lp15@56215
   659
proof (intro ballI)
lp15@56215
   660
  fix z
lp15@56215
   661
  assume z: "z \<in> s"
lp15@56215
   662
  then obtain e where e: "0 < e" and fh: "f holomorphic_on ball z e" using f
lp15@56215
   663
    by (metis analytic_on_def)
lp15@56215
   664
  obtain e' where e': "0 < e'" and gh: "g holomorphic_on ball z e'" using g
lp15@56215
   665
    by (metis analytic_on_def g z) 
lp15@56215
   666
  have "(\<lambda>z. f z + g z) holomorphic_on ball z (min e e')" 
lp15@56215
   667
    apply (rule holomorphic_on_add) 
lp15@56215
   668
    apply (metis fh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
lp15@56215
   669
    by (metis gh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
lp15@56215
   670
  then show "\<exists>e>0. (\<lambda>z. f z + g z) holomorphic_on ball z e"
lp15@56215
   671
    by (metis e e' min_less_iff_conj)
lp15@56215
   672
qed
lp15@56215
   673
lp15@56215
   674
lemma analytic_on_diff:
lp15@56215
   675
  assumes f: "f analytic_on s"
lp15@56215
   676
      and g: "g analytic_on s"
lp15@56215
   677
    shows "(\<lambda>z. f z - g z) analytic_on s"
lp15@56215
   678
unfolding analytic_on_def
lp15@56215
   679
proof (intro ballI)
lp15@56215
   680
  fix z
lp15@56215
   681
  assume z: "z \<in> s"
lp15@56215
   682
  then obtain e where e: "0 < e" and fh: "f holomorphic_on ball z e" using f
lp15@56215
   683
    by (metis analytic_on_def)
lp15@56215
   684
  obtain e' where e': "0 < e'" and gh: "g holomorphic_on ball z e'" using g
lp15@56215
   685
    by (metis analytic_on_def g z) 
lp15@56215
   686
  have "(\<lambda>z. f z - g z) holomorphic_on ball z (min e e')" 
lp15@56215
   687
    apply (rule holomorphic_on_diff) 
lp15@56215
   688
    apply (metis fh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
lp15@56215
   689
    by (metis gh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
lp15@56215
   690
  then show "\<exists>e>0. (\<lambda>z. f z - g z) holomorphic_on ball z e"
lp15@56215
   691
    by (metis e e' min_less_iff_conj)
lp15@56215
   692
qed
lp15@56215
   693
lp15@56215
   694
lemma analytic_on_mult:
lp15@56215
   695
  assumes f: "f analytic_on s"
lp15@56215
   696
      and g: "g analytic_on s"
lp15@56215
   697
    shows "(\<lambda>z. f z * g z) analytic_on s"
lp15@56215
   698
unfolding analytic_on_def
lp15@56215
   699
proof (intro ballI)
lp15@56215
   700
  fix z
lp15@56215
   701
  assume z: "z \<in> s"
lp15@56215
   702
  then obtain e where e: "0 < e" and fh: "f holomorphic_on ball z e" using f
lp15@56215
   703
    by (metis analytic_on_def)
lp15@56215
   704
  obtain e' where e': "0 < e'" and gh: "g holomorphic_on ball z e'" using g
lp15@56215
   705
    by (metis analytic_on_def g z) 
lp15@56215
   706
  have "(\<lambda>z. f z * g z) holomorphic_on ball z (min e e')" 
lp15@56215
   707
    apply (rule holomorphic_on_mult) 
lp15@56215
   708
    apply (metis fh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
lp15@56215
   709
    by (metis gh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
lp15@56215
   710
  then show "\<exists>e>0. (\<lambda>z. f z * g z) holomorphic_on ball z e"
lp15@56215
   711
    by (metis e e' min_less_iff_conj)
lp15@56215
   712
qed
lp15@56215
   713
lp15@56215
   714
lemma analytic_on_inverse:
lp15@56215
   715
  assumes f: "f analytic_on s"
lp15@56215
   716
      and nz: "(\<And>z. z \<in> s \<Longrightarrow> f z \<noteq> 0)"
lp15@56215
   717
    shows "(\<lambda>z. inverse (f z)) analytic_on s"
lp15@56215
   718
unfolding analytic_on_def
lp15@56215
   719
proof (intro ballI)
lp15@56215
   720
  fix z
lp15@56215
   721
  assume z: "z \<in> s"
lp15@56215
   722
  then obtain e where e: "0 < e" and fh: "f holomorphic_on ball z e" using f
lp15@56215
   723
    by (metis analytic_on_def)
lp15@56215
   724
  have "continuous_on (ball z e) f"
lp15@56215
   725
    by (metis fh holomorphic_on_imp_continuous_on)
lp15@56215
   726
  then obtain e' where e': "0 < e'" and nz': "\<And>y. dist z y < e' \<Longrightarrow> f y \<noteq> 0" 
lp15@56215
   727
    by (metis Topology_Euclidean_Space.open_ball centre_in_ball continuous_on_open_avoid e z nz)  
lp15@56215
   728
  have "(\<lambda>z. inverse (f z)) holomorphic_on ball z (min e e')" 
lp15@56215
   729
    apply (rule holomorphic_on_inverse)
lp15@56215
   730
    apply (metis fh holomorphic_on_subset min.cobounded2 min.commute subset_ball)
lp15@56215
   731
    by (metis nz' mem_ball min_less_iff_conj) 
lp15@56215
   732
  then show "\<exists>e>0. (\<lambda>z. inverse (f z)) holomorphic_on ball z e"
lp15@56215
   733
    by (metis e e' min_less_iff_conj)
lp15@56215
   734
qed
lp15@56215
   735
lp15@56215
   736
lp15@56215
   737
lemma analytic_on_divide:
lp15@56215
   738
  assumes f: "f analytic_on s"
lp15@56215
   739
      and g: "g analytic_on s"
lp15@56215
   740
      and nz: "(\<And>z. z \<in> s \<Longrightarrow> g z \<noteq> 0)"
lp15@56215
   741
    shows "(\<lambda>z. f z / g z) analytic_on s"
lp15@56215
   742
unfolding divide_inverse
lp15@56215
   743
by (metis analytic_on_inverse analytic_on_mult f g nz)
lp15@56215
   744
lp15@56215
   745
lemma analytic_on_power:
lp15@56215
   746
  "f analytic_on s \<Longrightarrow> (\<lambda>z. (f z) ^ n) analytic_on s"
lp15@56215
   747
by (induct n) (auto simp: analytic_on_const analytic_on_mult)
lp15@56215
   748
lp15@56215
   749
lemma analytic_on_setsum:
hoelzl@56369
   750
  "(\<And>i. i \<in> I \<Longrightarrow> (f i) analytic_on s) \<Longrightarrow> (\<lambda>x. setsum (\<lambda>i. f i x) I) analytic_on s"
hoelzl@56369
   751
  by (induct I rule: infinite_finite_induct) (auto simp: analytic_on_const analytic_on_add)
lp15@56215
   752
lp15@56215
   753
subsection{*analyticity at a point.*}
lp15@56215
   754
lp15@56215
   755
lemma analytic_at_ball:
lp15@56215
   756
  "f analytic_on {z} \<longleftrightarrow> (\<exists>e. 0<e \<and> f holomorphic_on ball z e)"
lp15@56215
   757
by (metis analytic_on_def singleton_iff)
lp15@56215
   758
lp15@56215
   759
lemma analytic_at:
lp15@56215
   760
    "f analytic_on {z} \<longleftrightarrow> (\<exists>s. open s \<and> z \<in> s \<and> f holomorphic_on s)"
lp15@56215
   761
by (metis analytic_on_holomorphic empty_subsetI insert_subset)
lp15@56215
   762
lp15@56215
   763
lemma analytic_on_analytic_at:
lp15@56215
   764
    "f analytic_on s \<longleftrightarrow> (\<forall>z \<in> s. f analytic_on {z})"
lp15@56215
   765
by (metis analytic_at_ball analytic_on_def)
lp15@56215
   766
lp15@56215
   767
lemma analytic_at_two:
lp15@56215
   768
  "f analytic_on {z} \<and> g analytic_on {z} \<longleftrightarrow>
lp15@56215
   769
   (\<exists>s. open s \<and> z \<in> s \<and> f holomorphic_on s \<and> g holomorphic_on s)"
lp15@56215
   770
  (is "?lhs = ?rhs")
lp15@56215
   771
proof 
lp15@56215
   772
  assume ?lhs
lp15@56215
   773
  then obtain s t 
lp15@56215
   774
    where st: "open s" "z \<in> s" "f holomorphic_on s"
lp15@56215
   775
              "open t" "z \<in> t" "g holomorphic_on t"
lp15@56215
   776
    by (auto simp: analytic_at)
lp15@56215
   777
  show ?rhs
lp15@56215
   778
    apply (rule_tac x="s \<inter> t" in exI)
lp15@56215
   779
    using st
lp15@56215
   780
    apply (auto simp: Diff_subset holomorphic_on_subset)
lp15@56215
   781
    done
lp15@56215
   782
next
lp15@56215
   783
  assume ?rhs 
lp15@56215
   784
  then show ?lhs
lp15@56215
   785
    by (force simp add: analytic_at)
lp15@56215
   786
qed
lp15@56215
   787
lp15@56215
   788
subsection{*Combining theorems for derivative with ``analytic at'' hypotheses*}
lp15@56215
   789
lp15@56215
   790
lemma 
lp15@56215
   791
  assumes "f analytic_on {z}" "g analytic_on {z}"
hoelzl@56370
   792
  shows complex_derivative_add_at: "deriv (\<lambda>w. f w + g w) z = deriv f z + deriv g z"
hoelzl@56370
   793
    and complex_derivative_diff_at: "deriv (\<lambda>w. f w - g w) z = deriv f z - deriv g z"
hoelzl@56370
   794
    and complex_derivative_mult_at: "deriv (\<lambda>w. f w * g w) z =
hoelzl@56370
   795
           f z * deriv g z + deriv f z * g z"
lp15@56215
   796
proof -
lp15@56215
   797
  obtain s where s: "open s" "z \<in> s" "f holomorphic_on s" "g holomorphic_on s"
lp15@56215
   798
    using assms by (metis analytic_at_two)
hoelzl@56370
   799
  show "deriv (\<lambda>w. f w + g w) z = deriv f z + deriv g z"
hoelzl@56370
   800
    apply (rule DERIV_imp_deriv [OF DERIV_add])
lp15@56215
   801
    using s
hoelzl@56370
   802
    apply (auto simp: holomorphic_on_open complex_differentiable_def DERIV_deriv_iff_complex_differentiable)
lp15@56215
   803
    done
hoelzl@56370
   804
  show "deriv (\<lambda>w. f w - g w) z = deriv f z - deriv g z"
hoelzl@56370
   805
    apply (rule DERIV_imp_deriv [OF DERIV_diff])
lp15@56215
   806
    using s
hoelzl@56370
   807
    apply (auto simp: holomorphic_on_open complex_differentiable_def DERIV_deriv_iff_complex_differentiable)
lp15@56215
   808
    done
hoelzl@56370
   809
  show "deriv (\<lambda>w. f w * g w) z = f z * deriv g z + deriv f z * g z"
hoelzl@56370
   810
    apply (rule DERIV_imp_deriv [OF DERIV_mult'])
lp15@56215
   811
    using s
hoelzl@56370
   812
    apply (auto simp: holomorphic_on_open complex_differentiable_def DERIV_deriv_iff_complex_differentiable)
lp15@56215
   813
    done
lp15@56215
   814
qed
lp15@56215
   815
lp15@56215
   816
lemma complex_derivative_cmult_at:
hoelzl@56370
   817
  "f analytic_on {z} \<Longrightarrow>  deriv (\<lambda>w. c * f w) z = c * deriv f z"
lp15@56215
   818
by (auto simp: complex_derivative_mult_at complex_derivative_const analytic_on_const)
lp15@56215
   819
lp15@56215
   820
lemma complex_derivative_cmult_right_at:
hoelzl@56370
   821
  "f analytic_on {z} \<Longrightarrow>  deriv (\<lambda>w. f w * c) z = deriv f z * c"
lp15@56215
   822
by (auto simp: complex_derivative_mult_at complex_derivative_const analytic_on_const)
lp15@56215
   823
lp15@56215
   824
subsection{*Complex differentiation of sequences and series*}
lp15@56215
   825
lp15@56215
   826
lemma has_complex_derivative_sequence:
lp15@56215
   827
  fixes s :: "complex set"
lp15@56215
   828
  assumes cvs: "convex s"
lp15@56215
   829
      and df:  "\<And>n x. x \<in> s \<Longrightarrow> (f n has_field_derivative f' n x) (at x within s)"
lp15@56215
   830
      and conv: "\<And>e. 0 < e \<Longrightarrow> \<exists>N. \<forall>n x. n \<ge> N \<longrightarrow> x \<in> s \<longrightarrow> norm (f' n x - g' x) \<le> e"
lp15@56215
   831
      and "\<exists>x l. x \<in> s \<and> ((\<lambda>n. f n x) ---> l) sequentially"
lp15@56215
   832
    shows "\<exists>g. \<forall>x \<in> s. ((\<lambda>n. f n x) ---> g x) sequentially \<and> 
lp15@56215
   833
                       (g has_field_derivative (g' x)) (at x within s)"
lp15@56215
   834
proof -
lp15@56215
   835
  from assms obtain x l where x: "x \<in> s" and tf: "((\<lambda>n. f n x) ---> l) sequentially"
lp15@56215
   836
    by blast
lp15@56215
   837
  { fix e::real assume e: "e > 0"
lp15@56215
   838
    then obtain N where N: "\<forall>n\<ge>N. \<forall>x. x \<in> s \<longrightarrow> cmod (f' n x - g' x) \<le> e"
lp15@56215
   839
      by (metis conv)    
lp15@56215
   840
    have "\<exists>N. \<forall>n\<ge>N. \<forall>x\<in>s. \<forall>h. cmod (f' n x * h - g' x * h) \<le> e * cmod h"
lp15@56215
   841
    proof (rule exI [of _ N], clarify)
lp15@56215
   842
      fix n y h
lp15@56215
   843
      assume "N \<le> n" "y \<in> s"
lp15@56215
   844
      then have "cmod (f' n y - g' y) \<le> e"
lp15@56215
   845
        by (metis N)
lp15@56215
   846
      then have "cmod h * cmod (f' n y - g' y) \<le> cmod h * e"
lp15@56215
   847
        by (auto simp: antisym_conv2 mult_le_cancel_left norm_triangle_ineq2)
lp15@56215
   848
      then show "cmod (f' n y * h - g' y * h) \<le> e * cmod h"
lp15@56215
   849
        by (simp add: norm_mult [symmetric] field_simps)
lp15@56215
   850
    qed
lp15@56215
   851
  } note ** = this
lp15@56215
   852
  show ?thesis
lp15@56215
   853
  unfolding has_field_derivative_def
lp15@56215
   854
  proof (rule has_derivative_sequence [OF cvs _ _ x])
lp15@56215
   855
    show "\<forall>n. \<forall>x\<in>s. (f n has_derivative (op * (f' n x))) (at x within s)"
lp15@56215
   856
      by (metis has_field_derivative_def df)
lp15@56215
   857
  next show "(\<lambda>n. f n x) ----> l"
lp15@56215
   858
    by (rule tf)
lp15@56215
   859
  next show "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. \<forall>x\<in>s. \<forall>h. cmod (f' n x * h - g' x * h) \<le> e * cmod h"
lp15@56215
   860
    by (blast intro: **)
lp15@56215
   861
  qed
lp15@56215
   862
qed
lp15@56215
   863
lp15@56215
   864
lp15@56215
   865
lemma has_complex_derivative_series:
lp15@56215
   866
  fixes s :: "complex set"
lp15@56215
   867
  assumes cvs: "convex s"
lp15@56215
   868
      and df:  "\<And>n x. x \<in> s \<Longrightarrow> (f n has_field_derivative f' n x) (at x within s)"
lp15@56215
   869
      and conv: "\<And>e. 0 < e \<Longrightarrow> \<exists>N. \<forall>n x. n \<ge> N \<longrightarrow> x \<in> s 
lp15@56215
   870
                \<longrightarrow> cmod ((\<Sum>i<n. f' i x) - g' x) \<le> e"
lp15@56215
   871
      and "\<exists>x l. x \<in> s \<and> ((\<lambda>n. f n x) sums l)"
lp15@56215
   872
    shows "\<exists>g. \<forall>x \<in> s. ((\<lambda>n. f n x) sums g x) \<and> ((g has_field_derivative g' x) (at x within s))"
lp15@56215
   873
proof -
lp15@56215
   874
  from assms obtain x l where x: "x \<in> s" and sf: "((\<lambda>n. f n x) sums l)"
lp15@56215
   875
    by blast
lp15@56215
   876
  { fix e::real assume e: "e > 0"
lp15@56215
   877
    then obtain N where N: "\<forall>n x. n \<ge> N \<longrightarrow> x \<in> s 
lp15@56215
   878
            \<longrightarrow> cmod ((\<Sum>i<n. f' i x) - g' x) \<le> e"
lp15@56215
   879
      by (metis conv)    
lp15@56215
   880
    have "\<exists>N. \<forall>n\<ge>N. \<forall>x\<in>s. \<forall>h. cmod ((\<Sum>i<n. h * f' i x) - g' x * h) \<le> e * cmod h"
lp15@56215
   881
    proof (rule exI [of _ N], clarify)
lp15@56215
   882
      fix n y h
lp15@56215
   883
      assume "N \<le> n" "y \<in> s"
lp15@56215
   884
      then have "cmod ((\<Sum>i<n. f' i y) - g' y) \<le> e"
lp15@56215
   885
        by (metis N)
lp15@56215
   886
      then have "cmod h * cmod ((\<Sum>i<n. f' i y) - g' y) \<le> cmod h * e"
lp15@56215
   887
        by (auto simp: antisym_conv2 mult_le_cancel_left norm_triangle_ineq2)
lp15@56215
   888
      then show "cmod ((\<Sum>i<n. h * f' i y) - g' y * h) \<le> e * cmod h"
lp15@56215
   889
        by (simp add: norm_mult [symmetric] field_simps setsum_right_distrib)
lp15@56215
   890
    qed
lp15@56215
   891
  } note ** = this
lp15@56215
   892
  show ?thesis
lp15@56215
   893
  unfolding has_field_derivative_def
lp15@56215
   894
  proof (rule has_derivative_series [OF cvs _ _ x])
lp15@56215
   895
    fix n x
lp15@56215
   896
    assume "x \<in> s"
lp15@56215
   897
    then show "((f n) has_derivative (\<lambda>z. z * f' n x)) (at x within s)"
lp15@56215
   898
      by (metis df has_field_derivative_def mult_commute_abs)
lp15@56215
   899
  next show " ((\<lambda>n. f n x) sums l)"
lp15@56215
   900
    by (rule sf)
lp15@56215
   901
  next show "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. \<forall>x\<in>s. \<forall>h. cmod ((\<Sum>i<n. h * f' i x) - g' x * h) \<le> e * cmod h"
lp15@56215
   902
    by (blast intro: **)
lp15@56215
   903
  qed
lp15@56215
   904
qed
lp15@56215
   905
lp15@56215
   906
subsection{*Bound theorem*}
lp15@56215
   907
lp15@56215
   908
lemma complex_differentiable_bound:
lp15@56215
   909
  fixes s :: "complex set"
lp15@56215
   910
  assumes cvs: "convex s"
lp15@56215
   911
      and df:  "\<And>z. z \<in> s \<Longrightarrow> (f has_field_derivative f' z) (at z within s)"
lp15@56215
   912
      and dn:  "\<And>z. z \<in> s \<Longrightarrow> norm (f' z) \<le> B"
lp15@56215
   913
      and "x \<in> s"  "y \<in> s"
lp15@56215
   914
    shows "norm(f x - f y) \<le> B * norm(x - y)"
lp15@56215
   915
  apply (rule differentiable_bound [OF cvs])
huffman@56223
   916
  apply (rule ballI, erule df [unfolded has_field_derivative_def])
huffman@56223
   917
  apply (rule ballI, rule onorm_le, simp add: norm_mult mult_right_mono dn)
huffman@56223
   918
  apply fact
huffman@56223
   919
  apply fact
lp15@56215
   920
  done
lp15@56215
   921
lp15@56215
   922
subsection{*Inverse function theorem for complex derivatives.*}
lp15@56215
   923
lp15@56215
   924
lemma has_complex_derivative_inverse_basic:
lp15@56215
   925
  fixes f :: "complex \<Rightarrow> complex"
lp15@56215
   926
  shows "DERIV f (g y) :> f' \<Longrightarrow>
lp15@56215
   927
        f' \<noteq> 0 \<Longrightarrow>
lp15@56215
   928
        continuous (at y) g \<Longrightarrow>
lp15@56215
   929
        open t \<Longrightarrow>
lp15@56215
   930
        y \<in> t \<Longrightarrow>
lp15@56215
   931
        (\<And>z. z \<in> t \<Longrightarrow> f (g z) = z)
lp15@56215
   932
        \<Longrightarrow> DERIV g y :> inverse (f')"
lp15@56215
   933
  unfolding has_field_derivative_def
lp15@56215
   934
  apply (rule has_derivative_inverse_basic)
lp15@56215
   935
  apply (auto simp:  bounded_linear_mult_right)
lp15@56215
   936
  done
lp15@56215
   937
lp15@56215
   938
(*Used only once, in Multivariate/cauchy.ml. *)
lp15@56215
   939
lemma has_complex_derivative_inverse_strong:
lp15@56215
   940
  fixes f :: "complex \<Rightarrow> complex"
lp15@56215
   941
  shows "DERIV f x :> f' \<Longrightarrow>
lp15@56215
   942
         f' \<noteq> 0 \<Longrightarrow>
lp15@56215
   943
         open s \<Longrightarrow>
lp15@56215
   944
         x \<in> s \<Longrightarrow>
lp15@56215
   945
         continuous_on s f \<Longrightarrow>
lp15@56215
   946
         (\<And>z. z \<in> s \<Longrightarrow> g (f z) = z)
lp15@56215
   947
         \<Longrightarrow> DERIV g (f x) :> inverse (f')"
lp15@56215
   948
  unfolding has_field_derivative_def
lp15@56215
   949
  apply (rule has_derivative_inverse_strong [of s x f g ])
lp15@56215
   950
  using assms 
lp15@56215
   951
  by auto
lp15@56215
   952
lp15@56215
   953
lemma has_complex_derivative_inverse_strong_x:
lp15@56215
   954
  fixes f :: "complex \<Rightarrow> complex"
lp15@56215
   955
  shows  "DERIV f (g y) :> f' \<Longrightarrow>
lp15@56215
   956
          f' \<noteq> 0 \<Longrightarrow>
lp15@56215
   957
          open s \<Longrightarrow>
lp15@56215
   958
          continuous_on s f \<Longrightarrow>
lp15@56215
   959
          g y \<in> s \<Longrightarrow> f(g y) = y \<Longrightarrow>
lp15@56215
   960
          (\<And>z. z \<in> s \<Longrightarrow> g (f z) = z)
lp15@56215
   961
          \<Longrightarrow> DERIV g y :> inverse (f')"
lp15@56215
   962
  unfolding has_field_derivative_def
lp15@56215
   963
  apply (rule has_derivative_inverse_strong_x [of s g y f])
lp15@56215
   964
  using assms 
lp15@56215
   965
  by auto
lp15@56215
   966
hoelzl@56370
   967
subsection {* Taylor on Complex Numbers *}
lp15@56215
   968
lp15@56215
   969
lemma setsum_Suc_reindex:
lp15@56215
   970
  fixes f :: "nat \<Rightarrow> 'a::ab_group_add"
lp15@56215
   971
    shows  "setsum f {0..n} = f 0 - f (Suc n) + setsum (\<lambda>i. f (Suc i)) {0..n}"
lp15@56215
   972
by (induct n) auto
lp15@56215
   973
lp15@56215
   974
lemma complex_taylor:
lp15@56215
   975
  assumes s: "convex s" 
lp15@56215
   976
      and f: "\<And>i x. x \<in> s \<Longrightarrow> i \<le> n \<Longrightarrow> (f i has_field_derivative f (Suc i) x) (at x within s)"
lp15@56215
   977
      and B: "\<And>x. x \<in> s \<Longrightarrow> cmod (f (Suc n) x) \<le> B"
lp15@56215
   978
      and w: "w \<in> s"
lp15@56215
   979
      and z: "z \<in> s"
lp15@56215
   980
    shows "cmod(f 0 z - (\<Sum>i\<le>n. f i w * (z-w) ^ i / of_nat (fact i)))
lp15@56215
   981
          \<le> B * cmod(z - w)^(Suc n) / fact n"
lp15@56215
   982
proof -
lp15@56215
   983
  have wzs: "closed_segment w z \<subseteq> s" using assms
lp15@56215
   984
    by (metis convex_contains_segment)
lp15@56215
   985
  { fix u
lp15@56215
   986
    assume "u \<in> closed_segment w z"
lp15@56215
   987
    then have "u \<in> s"
lp15@56215
   988
      by (metis wzs subsetD)
lp15@56215
   989
    have "(\<Sum>i\<le>n. f i u * (- of_nat i * (z-u)^(i - 1)) / of_nat (fact i) +
lp15@56215
   990
                      f (Suc i) u * (z-u)^i / of_nat (fact i)) = 
lp15@56215
   991
              f (Suc n) u * (z-u) ^ n / of_nat (fact n)"
lp15@56215
   992
    proof (induction n)
lp15@56215
   993
      case 0 show ?case by simp
lp15@56215
   994
    next
lp15@56215
   995
      case (Suc n)
lp15@56215
   996
      have "(\<Sum>i\<le>Suc n. f i u * (- of_nat i * (z-u) ^ (i - 1)) / of_nat (fact i) +
lp15@56215
   997
                             f (Suc i) u * (z-u) ^ i / of_nat (fact i)) =  
lp15@56215
   998
           f (Suc n) u * (z-u) ^ n / of_nat (fact n) +
lp15@56215
   999
           f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n) / of_nat (fact (Suc n)) -
lp15@56215
  1000
           f (Suc n) u * ((1 + of_nat n) * (z-u) ^ n) / of_nat (fact (Suc n))"
lp15@56215
  1001
        using Suc by simp
lp15@56215
  1002
      also have "... = f (Suc (Suc n)) u * (z-u) ^ Suc n / of_nat (fact (Suc n))"
lp15@56215
  1003
      proof -
lp15@56215
  1004
        have "of_nat(fact(Suc n)) *
lp15@56215
  1005
             (f(Suc n) u *(z-u) ^ n / of_nat(fact n) +
lp15@56215
  1006
               f(Suc(Suc n)) u *((z-u) *(z-u) ^ n) / of_nat(fact(Suc n)) -
lp15@56215
  1007
               f(Suc n) u *((1 + of_nat n) *(z-u) ^ n) / of_nat(fact(Suc n))) =
lp15@56215
  1008
            (of_nat(fact(Suc n)) *(f(Suc n) u *(z-u) ^ n)) / of_nat(fact n) +
lp15@56215
  1009
            (of_nat(fact(Suc n)) *(f(Suc(Suc n)) u *((z-u) *(z-u) ^ n)) / of_nat(fact(Suc n))) -
lp15@56215
  1010
            (of_nat(fact(Suc n)) *(f(Suc n) u *(of_nat(Suc n) *(z-u) ^ n))) / of_nat(fact(Suc n))"
lp15@56215
  1011
          by (simp add: algebra_simps del: fact_Suc)
lp15@56215
  1012
        also have "... =
lp15@56215
  1013
                   (of_nat (fact (Suc n)) * (f (Suc n) u * (z-u) ^ n)) / of_nat (fact n) +
lp15@56215
  1014
                   (f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n)) -
lp15@56215
  1015
                   (f (Suc n) u * ((1 + of_nat n) * (z-u) ^ n))"
lp15@56215
  1016
          by (simp del: fact_Suc)
lp15@56215
  1017
        also have "... = 
lp15@56215
  1018
                   (of_nat (Suc n) * (f (Suc n) u * (z-u) ^ n)) +
lp15@56215
  1019
                   (f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n)) -
lp15@56215
  1020
                   (f (Suc n) u * ((1 + of_nat n) * (z-u) ^ n))"
lp15@56215
  1021
          by (simp only: fact_Suc of_nat_mult mult_ac) simp
lp15@56215
  1022
        also have "... = f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n)"
lp15@56215
  1023
          by (simp add: algebra_simps)
lp15@56215
  1024
        finally show ?thesis
lp15@56215
  1025
        by (simp add: mult_left_cancel [where c = "of_nat (fact (Suc n))", THEN iffD1] del: fact_Suc)
lp15@56215
  1026
      qed
lp15@56215
  1027
      finally show ?case .
lp15@56215
  1028
    qed
lp15@56215
  1029
    then have "((\<lambda>v. (\<Sum>i\<le>n. f i v * (z - v)^i / of_nat (fact i))) 
lp15@56215
  1030
                has_field_derivative f (Suc n) u * (z-u) ^ n / of_nat (fact n))
lp15@56215
  1031
               (at u within s)"
hoelzl@56381
  1032
      apply (intro derivative_eq_intros)
lp15@56215
  1033
      apply (blast intro: assms `u \<in> s`)
lp15@56215
  1034
      apply (rule refl)+
lp15@56215
  1035
      apply (auto simp: field_simps)
lp15@56215
  1036
      done
lp15@56215
  1037
  } note sum_deriv = this
lp15@56215
  1038
  { fix u
lp15@56215
  1039
    assume u: "u \<in> closed_segment w z"
lp15@56215
  1040
    then have us: "u \<in> s"
lp15@56215
  1041
      by (metis wzs subsetD)
lp15@56215
  1042
    have "cmod (f (Suc n) u) * cmod (z - u) ^ n \<le> cmod (f (Suc n) u) * cmod (u - z) ^ n"
lp15@56215
  1043
      by (metis norm_minus_commute order_refl)
lp15@56215
  1044
    also have "... \<le> cmod (f (Suc n) u) * cmod (z - w) ^ n"
lp15@56215
  1045
      by (metis mult_left_mono norm_ge_zero power_mono segment_bound [OF u])
lp15@56215
  1046
    also have "... \<le> B * cmod (z - w) ^ n"
lp15@56215
  1047
      by (metis norm_ge_zero zero_le_power mult_right_mono  B [OF us])
lp15@56215
  1048
    finally have "cmod (f (Suc n) u) * cmod (z - u) ^ n \<le> B * cmod (z - w) ^ n" .
lp15@56215
  1049
  } note cmod_bound = this
lp15@56215
  1050
  have "(\<Sum>i\<le>n. f i z * (z - z) ^ i / of_nat (fact i)) = (\<Sum>i\<le>n. (f i z / of_nat (fact i)) * 0 ^ i)"
lp15@56215
  1051
    by simp
lp15@56215
  1052
  also have "\<dots> = f 0 z / of_nat (fact 0)"
lp15@56215
  1053
    by (subst setsum_zero_power) simp
lp15@56215
  1054
  finally have "cmod (f 0 z - (\<Sum>i\<le>n. f i w * (z - w) ^ i / of_nat (fact i))) 
lp15@56215
  1055
            \<le> cmod ((\<Sum>i\<le>n. f i w * (z - w) ^ i / of_nat (fact i)) -
lp15@56215
  1056
                    (\<Sum>i\<le>n. f i z * (z - z) ^ i / of_nat (fact i)))"
lp15@56215
  1057
    by (simp add: norm_minus_commute)
lp15@56215
  1058
  also have "... \<le> B * cmod (z - w) ^ n / real_of_nat (fact n) * cmod (w - z)"
lp15@56215
  1059
    apply (rule complex_differentiable_bound 
lp15@56215
  1060
      [where f' = "\<lambda>w. f (Suc n) w * (z - w)^n / of_nat(fact n)"
lp15@56215
  1061
         and s = "closed_segment w z", OF convex_segment])
lp15@56215
  1062
    apply (auto simp: ends_in_segment real_of_nat_def DERIV_subset [OF sum_deriv wzs]
lp15@56215
  1063
                  norm_divide norm_mult norm_power divide_le_cancel cmod_bound)
lp15@56215
  1064
    done
lp15@56215
  1065
  also have "...  \<le> B * cmod (z - w) ^ Suc n / real (fact n)"
lp15@56215
  1066
    by (simp add: algebra_simps norm_minus_commute real_of_nat_def)
lp15@56215
  1067
  finally show ?thesis .
lp15@56215
  1068
qed
lp15@56215
  1069
lp15@56238
  1070
text{* Something more like the traditional MVT for real components.*}
hoelzl@56370
  1071
lp15@56238
  1072
lemma complex_mvt_line:
hoelzl@56369
  1073
  assumes "\<And>u. u \<in> closed_segment w z \<Longrightarrow> (f has_field_derivative f'(u)) (at u)"
lp15@56238
  1074
    shows "\<exists>u. u \<in> open_segment w z \<and> Re(f z) - Re(f w) = Re(f'(u) * (z - w))"
lp15@56238
  1075
proof -
lp15@56238
  1076
  have twz: "\<And>t. (1 - t) *\<^sub>R w + t *\<^sub>R z = w + t *\<^sub>R (z - w)"
lp15@56238
  1077
    by (simp add: real_vector.scale_left_diff_distrib real_vector.scale_right_diff_distrib)
hoelzl@56381
  1078
  note assms[unfolded has_field_derivative_def, derivative_intros]
lp15@56238
  1079
  show ?thesis
lp15@56238
  1080
    apply (cut_tac mvt_simple
lp15@56238
  1081
                     [of 0 1 "Re o f o (\<lambda>t. (1 - t) *\<^sub>R w +  t *\<^sub>R z)"
lp15@56238
  1082
                      "\<lambda>u. Re o (\<lambda>h. f'((1 - u) *\<^sub>R w + u *\<^sub>R z) * h) o (\<lambda>t. t *\<^sub>R (z - w))"])
lp15@56238
  1083
    apply auto
lp15@56238
  1084
    apply (rule_tac x="(1 - x) *\<^sub>R w + x *\<^sub>R z" in exI)
hoelzl@56369
  1085
    apply (auto simp add: open_segment_def twz) []
hoelzl@56381
  1086
    apply (intro derivative_eq_intros has_derivative_at_within)
hoelzl@56369
  1087
    apply simp_all
hoelzl@56369
  1088
    apply (simp add: fun_eq_iff real_vector.scale_right_diff_distrib)
lp15@56238
  1089
    apply (force simp add: twz closed_segment_def)
lp15@56238
  1090
    done
lp15@56238
  1091
qed
lp15@56238
  1092
lp15@56238
  1093
lemma complex_taylor_mvt:
lp15@56238
  1094
  assumes "\<And>i x. \<lbrakk>x \<in> closed_segment w z; i \<le> n\<rbrakk> \<Longrightarrow> ((f i) has_field_derivative f (Suc i) x) (at x)"
lp15@56238
  1095
    shows "\<exists>u. u \<in> closed_segment w z \<and>
lp15@56238
  1096
            Re (f 0 z) =
lp15@56238
  1097
            Re ((\<Sum>i = 0..n. f i w * (z - w) ^ i / of_nat (fact i)) +
lp15@56238
  1098
                (f (Suc n) u * (z-u)^n / of_nat (fact n)) * (z - w))"
lp15@56238
  1099
proof -
lp15@56238
  1100
  { fix u
lp15@56238
  1101
    assume u: "u \<in> closed_segment w z"
lp15@56238
  1102
    have "(\<Sum>i = 0..n.
lp15@56238
  1103
               (f (Suc i) u * (z-u) ^ i - of_nat i * (f i u * (z-u) ^ (i - Suc 0))) /
lp15@56238
  1104
               of_nat (fact i)) =
lp15@56238
  1105
          f (Suc 0) u -
lp15@56238
  1106
             (f (Suc (Suc n)) u * ((z-u) ^ Suc n) - (of_nat (Suc n)) * (z-u) ^ n * f (Suc n) u) /
lp15@56238
  1107
             of_nat (fact (Suc n)) +
lp15@56238
  1108
             (\<Sum>i = 0..n.
lp15@56238
  1109
                 (f (Suc (Suc i)) u * ((z-u) ^ Suc i) - of_nat (Suc i) * (f (Suc i) u * (z-u) ^ i)) /
lp15@56238
  1110
                 of_nat (fact (Suc i)))"
lp15@56238
  1111
       by (subst setsum_Suc_reindex) simp
lp15@56238
  1112
    also have "... = f (Suc 0) u -
lp15@56238
  1113
             (f (Suc (Suc n)) u * ((z-u) ^ Suc n) - (of_nat (Suc n)) * (z-u) ^ n * f (Suc n) u) /
lp15@56238
  1114
             of_nat (fact (Suc n)) +
lp15@56238
  1115
             (\<Sum>i = 0..n.
lp15@56238
  1116
                 f (Suc (Suc i)) u * ((z-u) ^ Suc i) / of_nat (fact (Suc i))  - 
lp15@56238
  1117
                 f (Suc i) u * (z-u) ^ i / of_nat (fact i))"
lp15@56238
  1118
      by (simp only: diff_divide_distrib fact_cancel mult_ac)
lp15@56238
  1119
    also have "... = f (Suc 0) u -
lp15@56238
  1120
             (f (Suc (Suc n)) u * (z-u) ^ Suc n - of_nat (Suc n) * (z-u) ^ n * f (Suc n) u) /
lp15@56238
  1121
             of_nat (fact (Suc n)) +
lp15@56238
  1122
             f (Suc (Suc n)) u * (z-u) ^ Suc n / of_nat (fact (Suc n)) - f (Suc 0) u"
lp15@56238
  1123
      by (subst setsum_Suc_diff) auto
lp15@56238
  1124
    also have "... = f (Suc n) u * (z-u) ^ n / of_nat (fact n)"
lp15@56238
  1125
      by (simp only: algebra_simps diff_divide_distrib fact_cancel)
lp15@56238
  1126
    finally have "(\<Sum>i = 0..n. (f (Suc i) u * (z - u) ^ i 
lp15@56238
  1127
                             - of_nat i * (f i u * (z-u) ^ (i - Suc 0))) / of_nat (fact i)) =
lp15@56238
  1128
                  f (Suc n) u * (z - u) ^ n / of_nat (fact n)" .
lp15@56238
  1129
    then have "((\<lambda>u. \<Sum>i = 0..n. f i u * (z - u) ^ i / of_nat (fact i)) has_field_derivative
lp15@56238
  1130
                f (Suc n) u * (z - u) ^ n / of_nat (fact n))  (at u)"
hoelzl@56381
  1131
      apply (intro derivative_eq_intros)+
lp15@56238
  1132
      apply (force intro: u assms)
lp15@56238
  1133
      apply (rule refl)+
lp15@56238
  1134
      apply (auto simp: mult_ac)
lp15@56238
  1135
      done
lp15@56238
  1136
  }
lp15@56238
  1137
  then show ?thesis
lp15@56238
  1138
    apply (cut_tac complex_mvt_line [of w z "\<lambda>u. \<Sum>i = 0..n. f i u * (z-u) ^ i / of_nat (fact i)"
lp15@56238
  1139
               "\<lambda>u. (f (Suc n) u * (z-u)^n / of_nat (fact n))"])
lp15@56238
  1140
    apply (auto simp add: intro: open_closed_segment)
lp15@56238
  1141
    done
lp15@56238
  1142
qed
lp15@56238
  1143
lp15@56215
  1144
end