src/HOL/NSA/StarDef.thy
author haftmann
Mon Feb 08 14:22:22 2010 +0100 (2010-02-08)
changeset 35043 07dbdf60d5ad
parent 35035 2c159d2cdae7
child 35050 9f841f20dca6
permissions -rw-r--r--
dropped accidental duplication of "lin" prefix from cs. 108662d50512
huffman@27468
     1
(*  Title       : HOL/Hyperreal/StarDef.thy
huffman@27468
     2
    Author      : Jacques D. Fleuriot and Brian Huffman
huffman@27468
     3
*)
huffman@27468
     4
huffman@27468
     5
header {* Construction of Star Types Using Ultrafilters *}
huffman@27468
     6
huffman@27468
     7
theory StarDef
huffman@27468
     8
imports Filter
huffman@27468
     9
uses ("transfer.ML")
huffman@27468
    10
begin
huffman@27468
    11
huffman@27468
    12
subsection {* A Free Ultrafilter over the Naturals *}
huffman@27468
    13
huffman@27468
    14
definition
huffman@27468
    15
  FreeUltrafilterNat :: "nat set set"  ("\<U>") where
huffman@27468
    16
  "\<U> = (SOME U. freeultrafilter U)"
huffman@27468
    17
huffman@27468
    18
lemma freeultrafilter_FreeUltrafilterNat: "freeultrafilter \<U>"
huffman@27468
    19
apply (unfold FreeUltrafilterNat_def)
huffman@27468
    20
apply (rule someI_ex [where P=freeultrafilter])
huffman@27468
    21
apply (rule freeultrafilter_Ex)
huffman@27468
    22
apply (rule nat_infinite)
huffman@27468
    23
done
huffman@27468
    24
wenzelm@30729
    25
interpretation FreeUltrafilterNat: freeultrafilter FreeUltrafilterNat
huffman@27468
    26
by (rule freeultrafilter_FreeUltrafilterNat)
huffman@27468
    27
huffman@27468
    28
text {* This rule takes the place of the old ultra tactic *}
huffman@27468
    29
huffman@27468
    30
lemma ultra:
huffman@27468
    31
  "\<lbrakk>{n. P n} \<in> \<U>; {n. P n \<longrightarrow> Q n} \<in> \<U>\<rbrakk> \<Longrightarrow> {n. Q n} \<in> \<U>"
huffman@27468
    32
by (simp add: Collect_imp_eq
huffman@27468
    33
    FreeUltrafilterNat.Un_iff FreeUltrafilterNat.Compl_iff)
huffman@27468
    34
huffman@27468
    35
huffman@27468
    36
subsection {* Definition of @{text star} type constructor *}
huffman@27468
    37
huffman@27468
    38
definition
huffman@27468
    39
  starrel :: "((nat \<Rightarrow> 'a) \<times> (nat \<Rightarrow> 'a)) set" where
huffman@27468
    40
  "starrel = {(X,Y). {n. X n = Y n} \<in> \<U>}"
huffman@27468
    41
huffman@27468
    42
typedef 'a star = "(UNIV :: (nat \<Rightarrow> 'a) set) // starrel"
huffman@27468
    43
by (auto intro: quotientI)
huffman@27468
    44
huffman@27468
    45
definition
huffman@27468
    46
  star_n :: "(nat \<Rightarrow> 'a) \<Rightarrow> 'a star" where
huffman@27468
    47
  "star_n X = Abs_star (starrel `` {X})"
huffman@27468
    48
huffman@27468
    49
theorem star_cases [case_names star_n, cases type: star]:
huffman@27468
    50
  "(\<And>X. x = star_n X \<Longrightarrow> P) \<Longrightarrow> P"
huffman@27468
    51
by (cases x, unfold star_n_def star_def, erule quotientE, fast)
huffman@27468
    52
huffman@27468
    53
lemma all_star_eq: "(\<forall>x. P x) = (\<forall>X. P (star_n X))"
huffman@27468
    54
by (auto, rule_tac x=x in star_cases, simp)
huffman@27468
    55
huffman@27468
    56
lemma ex_star_eq: "(\<exists>x. P x) = (\<exists>X. P (star_n X))"
huffman@27468
    57
by (auto, rule_tac x=x in star_cases, auto)
huffman@27468
    58
huffman@27468
    59
text {* Proving that @{term starrel} is an equivalence relation *}
huffman@27468
    60
huffman@27468
    61
lemma starrel_iff [iff]: "((X,Y) \<in> starrel) = ({n. X n = Y n} \<in> \<U>)"
huffman@27468
    62
by (simp add: starrel_def)
huffman@27468
    63
huffman@27468
    64
lemma equiv_starrel: "equiv UNIV starrel"
huffman@27468
    65
proof (rule equiv.intro)
nipkow@30198
    66
  show "refl starrel" by (simp add: refl_on_def)
huffman@27468
    67
  show "sym starrel" by (simp add: sym_def eq_commute)
huffman@27468
    68
  show "trans starrel" by (auto intro: transI elim!: ultra)
huffman@27468
    69
qed
huffman@27468
    70
huffman@27468
    71
lemmas equiv_starrel_iff =
huffman@27468
    72
  eq_equiv_class_iff [OF equiv_starrel UNIV_I UNIV_I]
huffman@27468
    73
huffman@27468
    74
lemma starrel_in_star: "starrel``{x} \<in> star"
huffman@27468
    75
by (simp add: star_def quotientI)
huffman@27468
    76
huffman@27468
    77
lemma star_n_eq_iff: "(star_n X = star_n Y) = ({n. X n = Y n} \<in> \<U>)"
huffman@27468
    78
by (simp add: star_n_def Abs_star_inject starrel_in_star equiv_starrel_iff)
huffman@27468
    79
huffman@27468
    80
huffman@27468
    81
subsection {* Transfer principle *}
huffman@27468
    82
huffman@27468
    83
text {* This introduction rule starts each transfer proof. *}
huffman@27468
    84
lemma transfer_start:
huffman@27468
    85
  "P \<equiv> {n. Q} \<in> \<U> \<Longrightarrow> Trueprop P \<equiv> Trueprop Q"
huffman@27468
    86
by (subgoal_tac "P \<equiv> Q", simp, simp add: atomize_eq)
huffman@27468
    87
huffman@27468
    88
text {*Initialize transfer tactic.*}
huffman@27468
    89
use "transfer.ML"
huffman@27468
    90
setup Transfer.setup
huffman@27468
    91
huffman@27468
    92
text {* Transfer introduction rules. *}
huffman@27468
    93
huffman@27468
    94
lemma transfer_ex [transfer_intro]:
huffman@27468
    95
  "\<lbrakk>\<And>X. p (star_n X) \<equiv> {n. P n (X n)} \<in> \<U>\<rbrakk>
huffman@27468
    96
    \<Longrightarrow> \<exists>x::'a star. p x \<equiv> {n. \<exists>x. P n x} \<in> \<U>"
huffman@27468
    97
by (simp only: ex_star_eq FreeUltrafilterNat.Collect_ex)
huffman@27468
    98
huffman@27468
    99
lemma transfer_all [transfer_intro]:
huffman@27468
   100
  "\<lbrakk>\<And>X. p (star_n X) \<equiv> {n. P n (X n)} \<in> \<U>\<rbrakk>
huffman@27468
   101
    \<Longrightarrow> \<forall>x::'a star. p x \<equiv> {n. \<forall>x. P n x} \<in> \<U>"
huffman@27468
   102
by (simp only: all_star_eq FreeUltrafilterNat.Collect_all)
huffman@27468
   103
huffman@27468
   104
lemma transfer_not [transfer_intro]:
huffman@27468
   105
  "\<lbrakk>p \<equiv> {n. P n} \<in> \<U>\<rbrakk> \<Longrightarrow> \<not> p \<equiv> {n. \<not> P n} \<in> \<U>"
huffman@27468
   106
by (simp only: FreeUltrafilterNat.Collect_not)
huffman@27468
   107
huffman@27468
   108
lemma transfer_conj [transfer_intro]:
huffman@27468
   109
  "\<lbrakk>p \<equiv> {n. P n} \<in> \<U>; q \<equiv> {n. Q n} \<in> \<U>\<rbrakk>
huffman@27468
   110
    \<Longrightarrow> p \<and> q \<equiv> {n. P n \<and> Q n} \<in> \<U>"
huffman@27468
   111
by (simp only: FreeUltrafilterNat.Collect_conj)
huffman@27468
   112
huffman@27468
   113
lemma transfer_disj [transfer_intro]:
huffman@27468
   114
  "\<lbrakk>p \<equiv> {n. P n} \<in> \<U>; q \<equiv> {n. Q n} \<in> \<U>\<rbrakk>
huffman@27468
   115
    \<Longrightarrow> p \<or> q \<equiv> {n. P n \<or> Q n} \<in> \<U>"
huffman@27468
   116
by (simp only: FreeUltrafilterNat.Collect_disj)
huffman@27468
   117
huffman@27468
   118
lemma transfer_imp [transfer_intro]:
huffman@27468
   119
  "\<lbrakk>p \<equiv> {n. P n} \<in> \<U>; q \<equiv> {n. Q n} \<in> \<U>\<rbrakk>
huffman@27468
   120
    \<Longrightarrow> p \<longrightarrow> q \<equiv> {n. P n \<longrightarrow> Q n} \<in> \<U>"
huffman@27468
   121
by (simp only: imp_conv_disj transfer_disj transfer_not)
huffman@27468
   122
huffman@27468
   123
lemma transfer_iff [transfer_intro]:
huffman@27468
   124
  "\<lbrakk>p \<equiv> {n. P n} \<in> \<U>; q \<equiv> {n. Q n} \<in> \<U>\<rbrakk>
huffman@27468
   125
    \<Longrightarrow> p = q \<equiv> {n. P n = Q n} \<in> \<U>"
huffman@27468
   126
by (simp only: iff_conv_conj_imp transfer_conj transfer_imp)
huffman@27468
   127
huffman@27468
   128
lemma transfer_if_bool [transfer_intro]:
huffman@27468
   129
  "\<lbrakk>p \<equiv> {n. P n} \<in> \<U>; x \<equiv> {n. X n} \<in> \<U>; y \<equiv> {n. Y n} \<in> \<U>\<rbrakk>
huffman@27468
   130
    \<Longrightarrow> (if p then x else y) \<equiv> {n. if P n then X n else Y n} \<in> \<U>"
huffman@27468
   131
by (simp only: if_bool_eq_conj transfer_conj transfer_imp transfer_not)
huffman@27468
   132
huffman@27468
   133
lemma transfer_eq [transfer_intro]:
huffman@27468
   134
  "\<lbrakk>x \<equiv> star_n X; y \<equiv> star_n Y\<rbrakk> \<Longrightarrow> x = y \<equiv> {n. X n = Y n} \<in> \<U>"
huffman@27468
   135
by (simp only: star_n_eq_iff)
huffman@27468
   136
huffman@27468
   137
lemma transfer_if [transfer_intro]:
huffman@27468
   138
  "\<lbrakk>p \<equiv> {n. P n} \<in> \<U>; x \<equiv> star_n X; y \<equiv> star_n Y\<rbrakk>
huffman@27468
   139
    \<Longrightarrow> (if p then x else y) \<equiv> star_n (\<lambda>n. if P n then X n else Y n)"
huffman@27468
   140
apply (rule eq_reflection)
huffman@27468
   141
apply (auto simp add: star_n_eq_iff transfer_not elim!: ultra)
huffman@27468
   142
done
huffman@27468
   143
huffman@27468
   144
lemma transfer_fun_eq [transfer_intro]:
huffman@27468
   145
  "\<lbrakk>\<And>X. f (star_n X) = g (star_n X) 
huffman@27468
   146
    \<equiv> {n. F n (X n) = G n (X n)} \<in> \<U>\<rbrakk>
huffman@27468
   147
      \<Longrightarrow> f = g \<equiv> {n. F n = G n} \<in> \<U>"
huffman@27468
   148
by (simp only: expand_fun_eq transfer_all)
huffman@27468
   149
huffman@27468
   150
lemma transfer_star_n [transfer_intro]: "star_n X \<equiv> star_n (\<lambda>n. X n)"
huffman@27468
   151
by (rule reflexive)
huffman@27468
   152
huffman@27468
   153
lemma transfer_bool [transfer_intro]: "p \<equiv> {n. p} \<in> \<U>"
huffman@27468
   154
by (simp add: atomize_eq)
huffman@27468
   155
huffman@27468
   156
huffman@27468
   157
subsection {* Standard elements *}
huffman@27468
   158
huffman@27468
   159
definition
huffman@27468
   160
  star_of :: "'a \<Rightarrow> 'a star" where
huffman@27468
   161
  "star_of x == star_n (\<lambda>n. x)"
huffman@27468
   162
huffman@27468
   163
definition
huffman@27468
   164
  Standard :: "'a star set" where
huffman@27468
   165
  "Standard = range star_of"
huffman@27468
   166
huffman@27468
   167
text {* Transfer tactic should remove occurrences of @{term star_of} *}
huffman@27468
   168
setup {* Transfer.add_const "StarDef.star_of" *}
huffman@27468
   169
huffman@27468
   170
declare star_of_def [transfer_intro]
huffman@27468
   171
huffman@27468
   172
lemma star_of_inject: "(star_of x = star_of y) = (x = y)"
huffman@27468
   173
by (transfer, rule refl)
huffman@27468
   174
huffman@27468
   175
lemma Standard_star_of [simp]: "star_of x \<in> Standard"
huffman@27468
   176
by (simp add: Standard_def)
huffman@27468
   177
huffman@27468
   178
huffman@27468
   179
subsection {* Internal functions *}
huffman@27468
   180
huffman@27468
   181
definition
huffman@27468
   182
  Ifun :: "('a \<Rightarrow> 'b) star \<Rightarrow> 'a star \<Rightarrow> 'b star" ("_ \<star> _" [300,301] 300) where
huffman@27468
   183
  "Ifun f \<equiv> \<lambda>x. Abs_star
huffman@27468
   184
       (\<Union>F\<in>Rep_star f. \<Union>X\<in>Rep_star x. starrel``{\<lambda>n. F n (X n)})"
huffman@27468
   185
huffman@27468
   186
lemma Ifun_congruent2:
huffman@27468
   187
  "congruent2 starrel starrel (\<lambda>F X. starrel``{\<lambda>n. F n (X n)})"
huffman@27468
   188
by (auto simp add: congruent2_def equiv_starrel_iff elim!: ultra)
huffman@27468
   189
huffman@27468
   190
lemma Ifun_star_n: "star_n F \<star> star_n X = star_n (\<lambda>n. F n (X n))"
huffman@27468
   191
by (simp add: Ifun_def star_n_def Abs_star_inverse starrel_in_star
huffman@27468
   192
    UN_equiv_class2 [OF equiv_starrel equiv_starrel Ifun_congruent2])
huffman@27468
   193
huffman@27468
   194
text {* Transfer tactic should remove occurrences of @{term Ifun} *}
huffman@27468
   195
setup {* Transfer.add_const "StarDef.Ifun" *}
huffman@27468
   196
huffman@27468
   197
lemma transfer_Ifun [transfer_intro]:
huffman@27468
   198
  "\<lbrakk>f \<equiv> star_n F; x \<equiv> star_n X\<rbrakk> \<Longrightarrow> f \<star> x \<equiv> star_n (\<lambda>n. F n (X n))"
huffman@27468
   199
by (simp only: Ifun_star_n)
huffman@27468
   200
huffman@27468
   201
lemma Ifun_star_of [simp]: "star_of f \<star> star_of x = star_of (f x)"
huffman@27468
   202
by (transfer, rule refl)
huffman@27468
   203
huffman@27468
   204
lemma Standard_Ifun [simp]:
huffman@27468
   205
  "\<lbrakk>f \<in> Standard; x \<in> Standard\<rbrakk> \<Longrightarrow> f \<star> x \<in> Standard"
huffman@27468
   206
by (auto simp add: Standard_def)
huffman@27468
   207
huffman@27468
   208
text {* Nonstandard extensions of functions *}
huffman@27468
   209
huffman@27468
   210
definition
huffman@27468
   211
  starfun :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a star \<Rightarrow> 'b star)"  ("*f* _" [80] 80) where
huffman@27468
   212
  "starfun f == \<lambda>x. star_of f \<star> x"
huffman@27468
   213
huffman@27468
   214
definition
huffman@27468
   215
  starfun2 :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> ('a star \<Rightarrow> 'b star \<Rightarrow> 'c star)"
huffman@27468
   216
    ("*f2* _" [80] 80) where
huffman@27468
   217
  "starfun2 f == \<lambda>x y. star_of f \<star> x \<star> y"
huffman@27468
   218
huffman@27468
   219
declare starfun_def [transfer_unfold]
huffman@27468
   220
declare starfun2_def [transfer_unfold]
huffman@27468
   221
huffman@27468
   222
lemma starfun_star_n: "( *f* f) (star_n X) = star_n (\<lambda>n. f (X n))"
huffman@27468
   223
by (simp only: starfun_def star_of_def Ifun_star_n)
huffman@27468
   224
huffman@27468
   225
lemma starfun2_star_n:
huffman@27468
   226
  "( *f2* f) (star_n X) (star_n Y) = star_n (\<lambda>n. f (X n) (Y n))"
huffman@27468
   227
by (simp only: starfun2_def star_of_def Ifun_star_n)
huffman@27468
   228
huffman@27468
   229
lemma starfun_star_of [simp]: "( *f* f) (star_of x) = star_of (f x)"
huffman@27468
   230
by (transfer, rule refl)
huffman@27468
   231
huffman@27468
   232
lemma starfun2_star_of [simp]: "( *f2* f) (star_of x) = *f* f x"
huffman@27468
   233
by (transfer, rule refl)
huffman@27468
   234
huffman@27468
   235
lemma Standard_starfun [simp]: "x \<in> Standard \<Longrightarrow> starfun f x \<in> Standard"
huffman@27468
   236
by (simp add: starfun_def)
huffman@27468
   237
huffman@27468
   238
lemma Standard_starfun2 [simp]:
huffman@27468
   239
  "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> starfun2 f x y \<in> Standard"
huffman@27468
   240
by (simp add: starfun2_def)
huffman@27468
   241
huffman@27468
   242
lemma Standard_starfun_iff:
huffman@27468
   243
  assumes inj: "\<And>x y. f x = f y \<Longrightarrow> x = y"
huffman@27468
   244
  shows "(starfun f x \<in> Standard) = (x \<in> Standard)"
huffman@27468
   245
proof
huffman@27468
   246
  assume "x \<in> Standard"
huffman@27468
   247
  thus "starfun f x \<in> Standard" by simp
huffman@27468
   248
next
huffman@27468
   249
  have inj': "\<And>x y. starfun f x = starfun f y \<Longrightarrow> x = y"
huffman@27468
   250
    using inj by transfer
huffman@27468
   251
  assume "starfun f x \<in> Standard"
huffman@27468
   252
  then obtain b where b: "starfun f x = star_of b"
huffman@27468
   253
    unfolding Standard_def ..
huffman@27468
   254
  hence "\<exists>x. starfun f x = star_of b" ..
huffman@27468
   255
  hence "\<exists>a. f a = b" by transfer
huffman@27468
   256
  then obtain a where "f a = b" ..
huffman@27468
   257
  hence "starfun f (star_of a) = star_of b" by transfer
huffman@27468
   258
  with b have "starfun f x = starfun f (star_of a)" by simp
huffman@27468
   259
  hence "x = star_of a" by (rule inj')
huffman@27468
   260
  thus "x \<in> Standard"
huffman@27468
   261
    unfolding Standard_def by auto
huffman@27468
   262
qed
huffman@27468
   263
huffman@27468
   264
lemma Standard_starfun2_iff:
huffman@27468
   265
  assumes inj: "\<And>a b a' b'. f a b = f a' b' \<Longrightarrow> a = a' \<and> b = b'"
huffman@27468
   266
  shows "(starfun2 f x y \<in> Standard) = (x \<in> Standard \<and> y \<in> Standard)"
huffman@27468
   267
proof
huffman@27468
   268
  assume "x \<in> Standard \<and> y \<in> Standard"
huffman@27468
   269
  thus "starfun2 f x y \<in> Standard" by simp
huffman@27468
   270
next
huffman@27468
   271
  have inj': "\<And>x y z w. starfun2 f x y = starfun2 f z w \<Longrightarrow> x = z \<and> y = w"
huffman@27468
   272
    using inj by transfer
huffman@27468
   273
  assume "starfun2 f x y \<in> Standard"
huffman@27468
   274
  then obtain c where c: "starfun2 f x y = star_of c"
huffman@27468
   275
    unfolding Standard_def ..
huffman@27468
   276
  hence "\<exists>x y. starfun2 f x y = star_of c" by auto
huffman@27468
   277
  hence "\<exists>a b. f a b = c" by transfer
huffman@27468
   278
  then obtain a b where "f a b = c" by auto
huffman@27468
   279
  hence "starfun2 f (star_of a) (star_of b) = star_of c"
huffman@27468
   280
    by transfer
huffman@27468
   281
  with c have "starfun2 f x y = starfun2 f (star_of a) (star_of b)"
huffman@27468
   282
    by simp
huffman@27468
   283
  hence "x = star_of a \<and> y = star_of b"
huffman@27468
   284
    by (rule inj')
huffman@27468
   285
  thus "x \<in> Standard \<and> y \<in> Standard"
huffman@27468
   286
    unfolding Standard_def by auto
huffman@27468
   287
qed
huffman@27468
   288
huffman@27468
   289
huffman@27468
   290
subsection {* Internal predicates *}
huffman@27468
   291
huffman@27468
   292
definition unstar :: "bool star \<Rightarrow> bool" where
haftmann@28562
   293
  [code del]: "unstar b \<longleftrightarrow> b = star_of True"
huffman@27468
   294
huffman@27468
   295
lemma unstar_star_n: "unstar (star_n P) = ({n. P n} \<in> \<U>)"
huffman@27468
   296
by (simp add: unstar_def star_of_def star_n_eq_iff)
huffman@27468
   297
huffman@27468
   298
lemma unstar_star_of [simp]: "unstar (star_of p) = p"
huffman@27468
   299
by (simp add: unstar_def star_of_inject)
huffman@27468
   300
huffman@27468
   301
text {* Transfer tactic should remove occurrences of @{term unstar} *}
huffman@27468
   302
setup {* Transfer.add_const "StarDef.unstar" *}
huffman@27468
   303
huffman@27468
   304
lemma transfer_unstar [transfer_intro]:
huffman@27468
   305
  "p \<equiv> star_n P \<Longrightarrow> unstar p \<equiv> {n. P n} \<in> \<U>"
huffman@27468
   306
by (simp only: unstar_star_n)
huffman@27468
   307
huffman@27468
   308
definition
huffman@27468
   309
  starP :: "('a \<Rightarrow> bool) \<Rightarrow> 'a star \<Rightarrow> bool"  ("*p* _" [80] 80) where
huffman@27468
   310
  "*p* P = (\<lambda>x. unstar (star_of P \<star> x))"
huffman@27468
   311
huffman@27468
   312
definition
huffman@27468
   313
  starP2 :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a star \<Rightarrow> 'b star \<Rightarrow> bool"  ("*p2* _" [80] 80) where
huffman@27468
   314
  "*p2* P = (\<lambda>x y. unstar (star_of P \<star> x \<star> y))"
huffman@27468
   315
huffman@27468
   316
declare starP_def [transfer_unfold]
huffman@27468
   317
declare starP2_def [transfer_unfold]
huffman@27468
   318
huffman@27468
   319
lemma starP_star_n: "( *p* P) (star_n X) = ({n. P (X n)} \<in> \<U>)"
huffman@27468
   320
by (simp only: starP_def star_of_def Ifun_star_n unstar_star_n)
huffman@27468
   321
huffman@27468
   322
lemma starP2_star_n:
huffman@27468
   323
  "( *p2* P) (star_n X) (star_n Y) = ({n. P (X n) (Y n)} \<in> \<U>)"
huffman@27468
   324
by (simp only: starP2_def star_of_def Ifun_star_n unstar_star_n)
huffman@27468
   325
huffman@27468
   326
lemma starP_star_of [simp]: "( *p* P) (star_of x) = P x"
huffman@27468
   327
by (transfer, rule refl)
huffman@27468
   328
huffman@27468
   329
lemma starP2_star_of [simp]: "( *p2* P) (star_of x) = *p* P x"
huffman@27468
   330
by (transfer, rule refl)
huffman@27468
   331
huffman@27468
   332
huffman@27468
   333
subsection {* Internal sets *}
huffman@27468
   334
huffman@27468
   335
definition
huffman@27468
   336
  Iset :: "'a set star \<Rightarrow> 'a star set" where
huffman@27468
   337
  "Iset A = {x. ( *p2* op \<in>) x A}"
huffman@27468
   338
huffman@27468
   339
lemma Iset_star_n:
huffman@27468
   340
  "(star_n X \<in> Iset (star_n A)) = ({n. X n \<in> A n} \<in> \<U>)"
huffman@27468
   341
by (simp add: Iset_def starP2_star_n)
huffman@27468
   342
huffman@27468
   343
text {* Transfer tactic should remove occurrences of @{term Iset} *}
huffman@27468
   344
setup {* Transfer.add_const "StarDef.Iset" *}
huffman@27468
   345
huffman@27468
   346
lemma transfer_mem [transfer_intro]:
huffman@27468
   347
  "\<lbrakk>x \<equiv> star_n X; a \<equiv> Iset (star_n A)\<rbrakk>
huffman@27468
   348
    \<Longrightarrow> x \<in> a \<equiv> {n. X n \<in> A n} \<in> \<U>"
huffman@27468
   349
by (simp only: Iset_star_n)
huffman@27468
   350
huffman@27468
   351
lemma transfer_Collect [transfer_intro]:
huffman@27468
   352
  "\<lbrakk>\<And>X. p (star_n X) \<equiv> {n. P n (X n)} \<in> \<U>\<rbrakk>
huffman@27468
   353
    \<Longrightarrow> Collect p \<equiv> Iset (star_n (\<lambda>n. Collect (P n)))"
huffman@27468
   354
by (simp add: atomize_eq expand_set_eq all_star_eq Iset_star_n)
huffman@27468
   355
huffman@27468
   356
lemma transfer_set_eq [transfer_intro]:
huffman@27468
   357
  "\<lbrakk>a \<equiv> Iset (star_n A); b \<equiv> Iset (star_n B)\<rbrakk>
huffman@27468
   358
    \<Longrightarrow> a = b \<equiv> {n. A n = B n} \<in> \<U>"
huffman@27468
   359
by (simp only: expand_set_eq transfer_all transfer_iff transfer_mem)
huffman@27468
   360
huffman@27468
   361
lemma transfer_ball [transfer_intro]:
huffman@27468
   362
  "\<lbrakk>a \<equiv> Iset (star_n A); \<And>X. p (star_n X) \<equiv> {n. P n (X n)} \<in> \<U>\<rbrakk>
huffman@27468
   363
    \<Longrightarrow> \<forall>x\<in>a. p x \<equiv> {n. \<forall>x\<in>A n. P n x} \<in> \<U>"
huffman@27468
   364
by (simp only: Ball_def transfer_all transfer_imp transfer_mem)
huffman@27468
   365
huffman@27468
   366
lemma transfer_bex [transfer_intro]:
huffman@27468
   367
  "\<lbrakk>a \<equiv> Iset (star_n A); \<And>X. p (star_n X) \<equiv> {n. P n (X n)} \<in> \<U>\<rbrakk>
huffman@27468
   368
    \<Longrightarrow> \<exists>x\<in>a. p x \<equiv> {n. \<exists>x\<in>A n. P n x} \<in> \<U>"
huffman@27468
   369
by (simp only: Bex_def transfer_ex transfer_conj transfer_mem)
huffman@27468
   370
huffman@27468
   371
lemma transfer_Iset [transfer_intro]:
huffman@27468
   372
  "\<lbrakk>a \<equiv> star_n A\<rbrakk> \<Longrightarrow> Iset a \<equiv> Iset (star_n (\<lambda>n. A n))"
huffman@27468
   373
by simp
huffman@27468
   374
huffman@27468
   375
text {* Nonstandard extensions of sets. *}
huffman@27468
   376
huffman@27468
   377
definition
huffman@27468
   378
  starset :: "'a set \<Rightarrow> 'a star set" ("*s* _" [80] 80) where
huffman@27468
   379
  "starset A = Iset (star_of A)"
huffman@27468
   380
huffman@27468
   381
declare starset_def [transfer_unfold]
huffman@27468
   382
huffman@27468
   383
lemma starset_mem: "(star_of x \<in> *s* A) = (x \<in> A)"
huffman@27468
   384
by (transfer, rule refl)
huffman@27468
   385
huffman@27468
   386
lemma starset_UNIV: "*s* (UNIV::'a set) = (UNIV::'a star set)"
huffman@27468
   387
by (transfer UNIV_def, rule refl)
huffman@27468
   388
huffman@27468
   389
lemma starset_empty: "*s* {} = {}"
huffman@27468
   390
by (transfer empty_def, rule refl)
huffman@27468
   391
huffman@27468
   392
lemma starset_insert: "*s* (insert x A) = insert (star_of x) ( *s* A)"
huffman@27468
   393
by (transfer insert_def Un_def, rule refl)
huffman@27468
   394
huffman@27468
   395
lemma starset_Un: "*s* (A \<union> B) = *s* A \<union> *s* B"
huffman@27468
   396
by (transfer Un_def, rule refl)
huffman@27468
   397
huffman@27468
   398
lemma starset_Int: "*s* (A \<inter> B) = *s* A \<inter> *s* B"
huffman@27468
   399
by (transfer Int_def, rule refl)
huffman@27468
   400
huffman@27468
   401
lemma starset_Compl: "*s* -A = -( *s* A)"
huffman@27468
   402
by (transfer Compl_eq, rule refl)
huffman@27468
   403
huffman@27468
   404
lemma starset_diff: "*s* (A - B) = *s* A - *s* B"
huffman@27468
   405
by (transfer set_diff_eq, rule refl)
huffman@27468
   406
huffman@27468
   407
lemma starset_image: "*s* (f ` A) = ( *f* f) ` ( *s* A)"
huffman@27468
   408
by (transfer image_def, rule refl)
huffman@27468
   409
huffman@27468
   410
lemma starset_vimage: "*s* (f -` A) = ( *f* f) -` ( *s* A)"
huffman@27468
   411
by (transfer vimage_def, rule refl)
huffman@27468
   412
huffman@27468
   413
lemma starset_subset: "( *s* A \<subseteq> *s* B) = (A \<subseteq> B)"
huffman@27468
   414
by (transfer subset_eq, rule refl)
huffman@27468
   415
huffman@27468
   416
lemma starset_eq: "( *s* A = *s* B) = (A = B)"
huffman@27468
   417
by (transfer, rule refl)
huffman@27468
   418
huffman@27468
   419
lemmas starset_simps [simp] =
huffman@27468
   420
  starset_mem     starset_UNIV
huffman@27468
   421
  starset_empty   starset_insert
huffman@27468
   422
  starset_Un      starset_Int
huffman@27468
   423
  starset_Compl   starset_diff
huffman@27468
   424
  starset_image   starset_vimage
huffman@27468
   425
  starset_subset  starset_eq
huffman@27468
   426
huffman@27468
   427
huffman@27468
   428
subsection {* Syntactic classes *}
huffman@27468
   429
huffman@27468
   430
instantiation star :: (zero) zero
huffman@27468
   431
begin
huffman@27468
   432
huffman@27468
   433
definition
haftmann@28562
   434
  star_zero_def [code del]:    "0 \<equiv> star_of 0"
huffman@27468
   435
huffman@27468
   436
instance ..
huffman@27468
   437
huffman@27468
   438
end
huffman@27468
   439
huffman@27468
   440
instantiation star :: (one) one
huffman@27468
   441
begin
huffman@27468
   442
huffman@27468
   443
definition
haftmann@28562
   444
  star_one_def [code del]:     "1 \<equiv> star_of 1"
huffman@27468
   445
huffman@27468
   446
instance ..
huffman@27468
   447
huffman@27468
   448
end
huffman@27468
   449
huffman@27468
   450
instantiation star :: (plus) plus
huffman@27468
   451
begin
huffman@27468
   452
huffman@27468
   453
definition
haftmann@28562
   454
  star_add_def [code del]:     "(op +) \<equiv> *f2* (op +)"
huffman@27468
   455
huffman@27468
   456
instance ..
huffman@27468
   457
huffman@27468
   458
end
huffman@27468
   459
huffman@27468
   460
instantiation star :: (times) times
huffman@27468
   461
begin
huffman@27468
   462
huffman@27468
   463
definition
haftmann@28562
   464
  star_mult_def [code del]:    "(op *) \<equiv> *f2* (op *)"
huffman@27468
   465
huffman@27468
   466
instance ..
huffman@27468
   467
huffman@27468
   468
end
huffman@27468
   469
huffman@27468
   470
instantiation star :: (uminus) uminus
huffman@27468
   471
begin
huffman@27468
   472
huffman@27468
   473
definition
haftmann@28562
   474
  star_minus_def [code del]:   "uminus \<equiv> *f* uminus"
huffman@27468
   475
huffman@27468
   476
instance ..
huffman@27468
   477
huffman@27468
   478
end
huffman@27468
   479
huffman@27468
   480
instantiation star :: (minus) minus
huffman@27468
   481
begin
huffman@27468
   482
huffman@27468
   483
definition
haftmann@28562
   484
  star_diff_def [code del]:    "(op -) \<equiv> *f2* (op -)"
huffman@27468
   485
huffman@27468
   486
instance ..
huffman@27468
   487
huffman@27468
   488
end
huffman@27468
   489
huffman@27468
   490
instantiation star :: (abs) abs
huffman@27468
   491
begin
huffman@27468
   492
huffman@27468
   493
definition
huffman@27468
   494
  star_abs_def:     "abs \<equiv> *f* abs"
huffman@27468
   495
huffman@27468
   496
instance ..
huffman@27468
   497
huffman@27468
   498
end
huffman@27468
   499
huffman@27468
   500
instantiation star :: (sgn) sgn
huffman@27468
   501
begin
huffman@27468
   502
huffman@27468
   503
definition
huffman@27468
   504
  star_sgn_def:     "sgn \<equiv> *f* sgn"
huffman@27468
   505
huffman@27468
   506
instance ..
huffman@27468
   507
huffman@27468
   508
end
huffman@27468
   509
huffman@27468
   510
instantiation star :: (inverse) inverse
huffman@27468
   511
begin
huffman@27468
   512
huffman@27468
   513
definition
huffman@27468
   514
  star_divide_def:  "(op /) \<equiv> *f2* (op /)"
huffman@27468
   515
huffman@27468
   516
definition
huffman@27468
   517
  star_inverse_def: "inverse \<equiv> *f* inverse"
huffman@27468
   518
huffman@27468
   519
instance ..
huffman@27468
   520
huffman@27468
   521
end
huffman@27468
   522
huffman@27468
   523
instantiation star :: (number) number
huffman@27468
   524
begin
huffman@27468
   525
huffman@27468
   526
definition
huffman@27468
   527
  star_number_def:  "number_of b \<equiv> star_of (number_of b)"
huffman@27468
   528
huffman@27468
   529
instance ..
huffman@27468
   530
huffman@27468
   531
end
huffman@27468
   532
haftmann@27651
   533
instance star :: (Ring_and_Field.dvd) Ring_and_Field.dvd ..
haftmann@27651
   534
huffman@27468
   535
instantiation star :: (Divides.div) Divides.div
huffman@27468
   536
begin
huffman@27468
   537
huffman@27468
   538
definition
huffman@27468
   539
  star_div_def:     "(op div) \<equiv> *f2* (op div)"
huffman@27468
   540
huffman@27468
   541
definition
huffman@27468
   542
  star_mod_def:     "(op mod) \<equiv> *f2* (op mod)"
huffman@27468
   543
huffman@27468
   544
instance ..
huffman@27468
   545
huffman@27468
   546
end
huffman@27468
   547
huffman@27468
   548
instantiation star :: (ord) ord
huffman@27468
   549
begin
huffman@27468
   550
huffman@27468
   551
definition
huffman@27468
   552
  star_le_def:      "(op \<le>) \<equiv> *p2* (op \<le>)"
huffman@27468
   553
huffman@27468
   554
definition
huffman@27468
   555
  star_less_def:    "(op <) \<equiv> *p2* (op <)"
huffman@27468
   556
huffman@27468
   557
instance ..
huffman@27468
   558
huffman@27468
   559
end
huffman@27468
   560
huffman@27468
   561
lemmas star_class_defs [transfer_unfold] =
huffman@27468
   562
  star_zero_def     star_one_def      star_number_def
huffman@27468
   563
  star_add_def      star_diff_def     star_minus_def
huffman@27468
   564
  star_mult_def     star_divide_def   star_inverse_def
huffman@27468
   565
  star_le_def       star_less_def     star_abs_def       star_sgn_def
haftmann@30968
   566
  star_div_def      star_mod_def
huffman@27468
   567
huffman@27468
   568
text {* Class operations preserve standard elements *}
huffman@27468
   569
huffman@27468
   570
lemma Standard_zero: "0 \<in> Standard"
huffman@27468
   571
by (simp add: star_zero_def)
huffman@27468
   572
huffman@27468
   573
lemma Standard_one: "1 \<in> Standard"
huffman@27468
   574
by (simp add: star_one_def)
huffman@27468
   575
huffman@27468
   576
lemma Standard_number_of: "number_of b \<in> Standard"
huffman@27468
   577
by (simp add: star_number_def)
huffman@27468
   578
huffman@27468
   579
lemma Standard_add: "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> x + y \<in> Standard"
huffman@27468
   580
by (simp add: star_add_def)
huffman@27468
   581
huffman@27468
   582
lemma Standard_diff: "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> x - y \<in> Standard"
huffman@27468
   583
by (simp add: star_diff_def)
huffman@27468
   584
huffman@27468
   585
lemma Standard_minus: "x \<in> Standard \<Longrightarrow> - x \<in> Standard"
huffman@27468
   586
by (simp add: star_minus_def)
huffman@27468
   587
huffman@27468
   588
lemma Standard_mult: "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> x * y \<in> Standard"
huffman@27468
   589
by (simp add: star_mult_def)
huffman@27468
   590
huffman@27468
   591
lemma Standard_divide: "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> x / y \<in> Standard"
huffman@27468
   592
by (simp add: star_divide_def)
huffman@27468
   593
huffman@27468
   594
lemma Standard_inverse: "x \<in> Standard \<Longrightarrow> inverse x \<in> Standard"
huffman@27468
   595
by (simp add: star_inverse_def)
huffman@27468
   596
huffman@27468
   597
lemma Standard_abs: "x \<in> Standard \<Longrightarrow> abs x \<in> Standard"
huffman@27468
   598
by (simp add: star_abs_def)
huffman@27468
   599
huffman@27468
   600
lemma Standard_div: "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> x div y \<in> Standard"
huffman@27468
   601
by (simp add: star_div_def)
huffman@27468
   602
huffman@27468
   603
lemma Standard_mod: "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> x mod y \<in> Standard"
huffman@27468
   604
by (simp add: star_mod_def)
huffman@27468
   605
huffman@27468
   606
lemmas Standard_simps [simp] =
huffman@27468
   607
  Standard_zero  Standard_one  Standard_number_of
huffman@27468
   608
  Standard_add  Standard_diff  Standard_minus
huffman@27468
   609
  Standard_mult  Standard_divide  Standard_inverse
huffman@27468
   610
  Standard_abs  Standard_div  Standard_mod
huffman@27468
   611
huffman@27468
   612
text {* @{term star_of} preserves class operations *}
huffman@27468
   613
huffman@27468
   614
lemma star_of_add: "star_of (x + y) = star_of x + star_of y"
huffman@27468
   615
by transfer (rule refl)
huffman@27468
   616
huffman@27468
   617
lemma star_of_diff: "star_of (x - y) = star_of x - star_of y"
huffman@27468
   618
by transfer (rule refl)
huffman@27468
   619
huffman@27468
   620
lemma star_of_minus: "star_of (-x) = - star_of x"
huffman@27468
   621
by transfer (rule refl)
huffman@27468
   622
huffman@27468
   623
lemma star_of_mult: "star_of (x * y) = star_of x * star_of y"
huffman@27468
   624
by transfer (rule refl)
huffman@27468
   625
huffman@27468
   626
lemma star_of_divide: "star_of (x / y) = star_of x / star_of y"
huffman@27468
   627
by transfer (rule refl)
huffman@27468
   628
huffman@27468
   629
lemma star_of_inverse: "star_of (inverse x) = inverse (star_of x)"
huffman@27468
   630
by transfer (rule refl)
huffman@27468
   631
huffman@27468
   632
lemma star_of_div: "star_of (x div y) = star_of x div star_of y"
huffman@27468
   633
by transfer (rule refl)
huffman@27468
   634
huffman@27468
   635
lemma star_of_mod: "star_of (x mod y) = star_of x mod star_of y"
huffman@27468
   636
by transfer (rule refl)
huffman@27468
   637
huffman@27468
   638
lemma star_of_abs: "star_of (abs x) = abs (star_of x)"
huffman@27468
   639
by transfer (rule refl)
huffman@27468
   640
huffman@27468
   641
text {* @{term star_of} preserves numerals *}
huffman@27468
   642
huffman@27468
   643
lemma star_of_zero: "star_of 0 = 0"
huffman@27468
   644
by transfer (rule refl)
huffman@27468
   645
huffman@27468
   646
lemma star_of_one: "star_of 1 = 1"
huffman@27468
   647
by transfer (rule refl)
huffman@27468
   648
huffman@27468
   649
lemma star_of_number_of: "star_of (number_of x) = number_of x"
huffman@27468
   650
by transfer (rule refl)
huffman@27468
   651
huffman@27468
   652
text {* @{term star_of} preserves orderings *}
huffman@27468
   653
huffman@27468
   654
lemma star_of_less: "(star_of x < star_of y) = (x < y)"
huffman@27468
   655
by transfer (rule refl)
huffman@27468
   656
huffman@27468
   657
lemma star_of_le: "(star_of x \<le> star_of y) = (x \<le> y)"
huffman@27468
   658
by transfer (rule refl)
huffman@27468
   659
huffman@27468
   660
lemma star_of_eq: "(star_of x = star_of y) = (x = y)"
huffman@27468
   661
by transfer (rule refl)
huffman@27468
   662
huffman@27468
   663
text{*As above, for 0*}
huffman@27468
   664
huffman@27468
   665
lemmas star_of_0_less = star_of_less [of 0, simplified star_of_zero]
huffman@27468
   666
lemmas star_of_0_le   = star_of_le   [of 0, simplified star_of_zero]
huffman@27468
   667
lemmas star_of_0_eq   = star_of_eq   [of 0, simplified star_of_zero]
huffman@27468
   668
huffman@27468
   669
lemmas star_of_less_0 = star_of_less [of _ 0, simplified star_of_zero]
huffman@27468
   670
lemmas star_of_le_0   = star_of_le   [of _ 0, simplified star_of_zero]
huffman@27468
   671
lemmas star_of_eq_0   = star_of_eq   [of _ 0, simplified star_of_zero]
huffman@27468
   672
huffman@27468
   673
text{*As above, for 1*}
huffman@27468
   674
huffman@27468
   675
lemmas star_of_1_less = star_of_less [of 1, simplified star_of_one]
huffman@27468
   676
lemmas star_of_1_le   = star_of_le   [of 1, simplified star_of_one]
huffman@27468
   677
lemmas star_of_1_eq   = star_of_eq   [of 1, simplified star_of_one]
huffman@27468
   678
huffman@27468
   679
lemmas star_of_less_1 = star_of_less [of _ 1, simplified star_of_one]
huffman@27468
   680
lemmas star_of_le_1   = star_of_le   [of _ 1, simplified star_of_one]
huffman@27468
   681
lemmas star_of_eq_1   = star_of_eq   [of _ 1, simplified star_of_one]
huffman@27468
   682
huffman@27468
   683
text{*As above, for numerals*}
huffman@27468
   684
huffman@27468
   685
lemmas star_of_number_less =
huffman@27468
   686
  star_of_less [of "number_of w", standard, simplified star_of_number_of]
huffman@27468
   687
lemmas star_of_number_le   =
huffman@27468
   688
  star_of_le   [of "number_of w", standard, simplified star_of_number_of]
huffman@27468
   689
lemmas star_of_number_eq   =
huffman@27468
   690
  star_of_eq   [of "number_of w", standard, simplified star_of_number_of]
huffman@27468
   691
huffman@27468
   692
lemmas star_of_less_number =
huffman@27468
   693
  star_of_less [of _ "number_of w", standard, simplified star_of_number_of]
huffman@27468
   694
lemmas star_of_le_number   =
huffman@27468
   695
  star_of_le   [of _ "number_of w", standard, simplified star_of_number_of]
huffman@27468
   696
lemmas star_of_eq_number   =
huffman@27468
   697
  star_of_eq   [of _ "number_of w", standard, simplified star_of_number_of]
huffman@27468
   698
huffman@27468
   699
lemmas star_of_simps [simp] =
huffman@27468
   700
  star_of_add     star_of_diff    star_of_minus
huffman@27468
   701
  star_of_mult    star_of_divide  star_of_inverse
haftmann@30968
   702
  star_of_div     star_of_mod     star_of_abs
huffman@27468
   703
  star_of_zero    star_of_one     star_of_number_of
huffman@27468
   704
  star_of_less    star_of_le      star_of_eq
huffman@27468
   705
  star_of_0_less  star_of_0_le    star_of_0_eq
huffman@27468
   706
  star_of_less_0  star_of_le_0    star_of_eq_0
huffman@27468
   707
  star_of_1_less  star_of_1_le    star_of_1_eq
huffman@27468
   708
  star_of_less_1  star_of_le_1    star_of_eq_1
huffman@27468
   709
  star_of_number_less star_of_number_le star_of_number_eq
huffman@27468
   710
  star_of_less_number star_of_le_number star_of_eq_number
huffman@27468
   711
huffman@27468
   712
subsection {* Ordering and lattice classes *}
huffman@27468
   713
huffman@27468
   714
instance star :: (order) order
huffman@27468
   715
apply (intro_classes)
haftmann@27682
   716
apply (transfer, rule less_le_not_le)
huffman@27468
   717
apply (transfer, rule order_refl)
huffman@27468
   718
apply (transfer, erule (1) order_trans)
huffman@27468
   719
apply (transfer, erule (1) order_antisym)
huffman@27468
   720
done
huffman@27468
   721
haftmann@35028
   722
instantiation star :: (semilattice_inf) semilattice_inf
huffman@27468
   723
begin
huffman@27468
   724
huffman@27468
   725
definition
huffman@27468
   726
  star_inf_def [transfer_unfold]: "inf \<equiv> *f2* inf"
huffman@27468
   727
huffman@27468
   728
instance
huffman@27468
   729
  by default (transfer star_inf_def, auto)+
huffman@27468
   730
huffman@27468
   731
end
huffman@27468
   732
haftmann@35028
   733
instantiation star :: (semilattice_sup) semilattice_sup
huffman@27468
   734
begin
huffman@27468
   735
huffman@27468
   736
definition
huffman@27468
   737
  star_sup_def [transfer_unfold]: "sup \<equiv> *f2* sup"
huffman@27468
   738
huffman@27468
   739
instance
huffman@27468
   740
  by default (transfer star_sup_def, auto)+
huffman@27468
   741
huffman@27468
   742
end
huffman@27468
   743
huffman@27468
   744
instance star :: (lattice) lattice ..
huffman@27468
   745
huffman@27468
   746
instance star :: (distrib_lattice) distrib_lattice
huffman@27468
   747
  by default (transfer, auto simp add: sup_inf_distrib1)
huffman@27468
   748
huffman@27468
   749
lemma Standard_inf [simp]:
huffman@27468
   750
  "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> inf x y \<in> Standard"
huffman@27468
   751
by (simp add: star_inf_def)
huffman@27468
   752
huffman@27468
   753
lemma Standard_sup [simp]:
huffman@27468
   754
  "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> sup x y \<in> Standard"
huffman@27468
   755
by (simp add: star_sup_def)
huffman@27468
   756
huffman@27468
   757
lemma star_of_inf [simp]: "star_of (inf x y) = inf (star_of x) (star_of y)"
huffman@27468
   758
by transfer (rule refl)
huffman@27468
   759
huffman@27468
   760
lemma star_of_sup [simp]: "star_of (sup x y) = sup (star_of x) (star_of y)"
huffman@27468
   761
by transfer (rule refl)
huffman@27468
   762
huffman@27468
   763
instance star :: (linorder) linorder
huffman@27468
   764
by (intro_classes, transfer, rule linorder_linear)
huffman@27468
   765
huffman@27468
   766
lemma star_max_def [transfer_unfold]: "max = *f2* max"
huffman@27468
   767
apply (rule ext, rule ext)
huffman@27468
   768
apply (unfold max_def, transfer, fold max_def)
huffman@27468
   769
apply (rule refl)
huffman@27468
   770
done
huffman@27468
   771
huffman@27468
   772
lemma star_min_def [transfer_unfold]: "min = *f2* min"
huffman@27468
   773
apply (rule ext, rule ext)
huffman@27468
   774
apply (unfold min_def, transfer, fold min_def)
huffman@27468
   775
apply (rule refl)
huffman@27468
   776
done
huffman@27468
   777
huffman@27468
   778
lemma Standard_max [simp]:
huffman@27468
   779
  "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> max x y \<in> Standard"
huffman@27468
   780
by (simp add: star_max_def)
huffman@27468
   781
huffman@27468
   782
lemma Standard_min [simp]:
huffman@27468
   783
  "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> min x y \<in> Standard"
huffman@27468
   784
by (simp add: star_min_def)
huffman@27468
   785
huffman@27468
   786
lemma star_of_max [simp]: "star_of (max x y) = max (star_of x) (star_of y)"
huffman@27468
   787
by transfer (rule refl)
huffman@27468
   788
huffman@27468
   789
lemma star_of_min [simp]: "star_of (min x y) = min (star_of x) (star_of y)"
huffman@27468
   790
by transfer (rule refl)
huffman@27468
   791
huffman@27468
   792
huffman@27468
   793
subsection {* Ordered group classes *}
huffman@27468
   794
huffman@27468
   795
instance star :: (semigroup_add) semigroup_add
huffman@27468
   796
by (intro_classes, transfer, rule add_assoc)
huffman@27468
   797
huffman@27468
   798
instance star :: (ab_semigroup_add) ab_semigroup_add
huffman@27468
   799
by (intro_classes, transfer, rule add_commute)
huffman@27468
   800
huffman@27468
   801
instance star :: (semigroup_mult) semigroup_mult
huffman@27468
   802
by (intro_classes, transfer, rule mult_assoc)
huffman@27468
   803
huffman@27468
   804
instance star :: (ab_semigroup_mult) ab_semigroup_mult
huffman@27468
   805
by (intro_classes, transfer, rule mult_commute)
huffman@27468
   806
huffman@27468
   807
instance star :: (comm_monoid_add) comm_monoid_add
haftmann@28059
   808
by (intro_classes, transfer, rule comm_monoid_add_class.add_0)
huffman@27468
   809
huffman@27468
   810
instance star :: (monoid_mult) monoid_mult
huffman@27468
   811
apply (intro_classes)
huffman@27468
   812
apply (transfer, rule mult_1_left)
huffman@27468
   813
apply (transfer, rule mult_1_right)
huffman@27468
   814
done
huffman@27468
   815
huffman@27468
   816
instance star :: (comm_monoid_mult) comm_monoid_mult
huffman@27468
   817
by (intro_classes, transfer, rule mult_1)
huffman@27468
   818
huffman@27468
   819
instance star :: (cancel_semigroup_add) cancel_semigroup_add
huffman@27468
   820
apply (intro_classes)
huffman@27468
   821
apply (transfer, erule add_left_imp_eq)
huffman@27468
   822
apply (transfer, erule add_right_imp_eq)
huffman@27468
   823
done
huffman@27468
   824
huffman@27468
   825
instance star :: (cancel_ab_semigroup_add) cancel_ab_semigroup_add
huffman@27468
   826
by (intro_classes, transfer, rule add_imp_eq)
huffman@27468
   827
huffman@29904
   828
instance star :: (cancel_comm_monoid_add) cancel_comm_monoid_add ..
huffman@29904
   829
huffman@27468
   830
instance star :: (ab_group_add) ab_group_add
huffman@27468
   831
apply (intro_classes)
huffman@27468
   832
apply (transfer, rule left_minus)
huffman@27468
   833
apply (transfer, rule diff_minus)
huffman@27468
   834
done
huffman@27468
   835
haftmann@35028
   836
instance star :: (ordered_ab_semigroup_add) ordered_ab_semigroup_add
huffman@27468
   837
by (intro_classes, transfer, rule add_left_mono)
huffman@27468
   838
haftmann@35028
   839
instance star :: (ordered_cancel_ab_semigroup_add) ordered_cancel_ab_semigroup_add ..
huffman@27468
   840
haftmann@35028
   841
instance star :: (ordered_ab_semigroup_add_imp_le) ordered_ab_semigroup_add_imp_le
huffman@27468
   842
by (intro_classes, transfer, rule add_le_imp_le_left)
huffman@27468
   843
haftmann@35028
   844
instance star :: (ordered_comm_monoid_add) ordered_comm_monoid_add ..
haftmann@35028
   845
instance star :: (ordered_ab_group_add) ordered_ab_group_add ..
huffman@27468
   846
haftmann@35028
   847
instance star :: (ordered_ab_group_add_abs) ordered_ab_group_add_abs 
huffman@27468
   848
  by intro_classes (transfer,
huffman@27468
   849
    simp add: abs_ge_self abs_leI abs_triangle_ineq)+
huffman@27468
   850
haftmann@35028
   851
instance star :: (linordered_cancel_ab_semigroup_add) linordered_cancel_ab_semigroup_add ..
huffman@27468
   852
huffman@27468
   853
huffman@27468
   854
subsection {* Ring and field classes *}
huffman@27468
   855
huffman@27468
   856
instance star :: (semiring) semiring
huffman@27468
   857
apply (intro_classes)
huffman@27468
   858
apply (transfer, rule left_distrib)
huffman@27468
   859
apply (transfer, rule right_distrib)
huffman@27468
   860
done
huffman@27468
   861
huffman@27468
   862
instance star :: (semiring_0) semiring_0 
huffman@27468
   863
by intro_classes (transfer, simp)+
huffman@27468
   864
huffman@27468
   865
instance star :: (semiring_0_cancel) semiring_0_cancel ..
huffman@27468
   866
huffman@27468
   867
instance star :: (comm_semiring) comm_semiring 
huffman@27468
   868
by (intro_classes, transfer, rule left_distrib)
huffman@27468
   869
huffman@27468
   870
instance star :: (comm_semiring_0) comm_semiring_0 ..
huffman@27468
   871
instance star :: (comm_semiring_0_cancel) comm_semiring_0_cancel ..
huffman@27468
   872
huffman@27468
   873
instance star :: (zero_neq_one) zero_neq_one
huffman@27468
   874
by (intro_classes, transfer, rule zero_neq_one)
huffman@27468
   875
huffman@27468
   876
instance star :: (semiring_1) semiring_1 ..
huffman@27468
   877
instance star :: (comm_semiring_1) comm_semiring_1 ..
huffman@27468
   878
huffman@27468
   879
instance star :: (no_zero_divisors) no_zero_divisors
huffman@27468
   880
by (intro_classes, transfer, rule no_zero_divisors)
huffman@27468
   881
huffman@27468
   882
instance star :: (semiring_1_cancel) semiring_1_cancel ..
huffman@27468
   883
instance star :: (comm_semiring_1_cancel) comm_semiring_1_cancel ..
huffman@27468
   884
instance star :: (ring) ring ..
huffman@27468
   885
instance star :: (comm_ring) comm_ring ..
huffman@27468
   886
instance star :: (ring_1) ring_1 ..
huffman@27468
   887
instance star :: (comm_ring_1) comm_ring_1 ..
huffman@27468
   888
instance star :: (ring_no_zero_divisors) ring_no_zero_divisors ..
huffman@27468
   889
instance star :: (ring_1_no_zero_divisors) ring_1_no_zero_divisors ..
huffman@27468
   890
instance star :: (idom) idom .. 
huffman@27468
   891
huffman@27468
   892
instance star :: (division_ring) division_ring
huffman@27468
   893
apply (intro_classes)
huffman@27468
   894
apply (transfer, erule left_inverse)
huffman@27468
   895
apply (transfer, erule right_inverse)
huffman@27468
   896
done
huffman@27468
   897
huffman@27468
   898
instance star :: (field) field
huffman@27468
   899
apply (intro_classes)
huffman@27468
   900
apply (transfer, erule left_inverse)
huffman@27468
   901
apply (transfer, rule divide_inverse)
huffman@27468
   902
done
huffman@27468
   903
huffman@27468
   904
instance star :: (division_by_zero) division_by_zero
huffman@27468
   905
by (intro_classes, transfer, rule inverse_zero)
huffman@27468
   906
haftmann@35028
   907
instance star :: (ordered_semiring) ordered_semiring
huffman@27468
   908
apply (intro_classes)
huffman@27468
   909
apply (transfer, erule (1) mult_left_mono)
huffman@27468
   910
apply (transfer, erule (1) mult_right_mono)
huffman@27468
   911
done
huffman@27468
   912
haftmann@35028
   913
instance star :: (ordered_cancel_semiring) ordered_cancel_semiring ..
huffman@27468
   914
haftmann@35043
   915
instance star :: (linordered_semiring_strict) linordered_semiring_strict
huffman@27468
   916
apply (intro_classes)
huffman@27468
   917
apply (transfer, erule (1) mult_strict_left_mono)
huffman@27468
   918
apply (transfer, erule (1) mult_strict_right_mono)
huffman@27468
   919
done
huffman@27468
   920
haftmann@35028
   921
instance star :: (ordered_comm_semiring) ordered_comm_semiring
haftmann@28059
   922
by (intro_classes, transfer, rule mult_mono1_class.mult_mono1)
huffman@27468
   923
haftmann@35028
   924
instance star :: (ordered_cancel_comm_semiring) ordered_cancel_comm_semiring ..
huffman@27468
   925
haftmann@35028
   926
instance star :: (linordered_comm_semiring_strict) linordered_comm_semiring_strict
haftmann@35028
   927
by (intro_classes, transfer, rule mult_strict_left_mono_comm)
huffman@27468
   928
haftmann@35028
   929
instance star :: (ordered_ring) ordered_ring ..
haftmann@35028
   930
instance star :: (ordered_ring_abs) ordered_ring_abs
huffman@27468
   931
  by intro_classes  (transfer, rule abs_eq_mult)
huffman@27468
   932
huffman@27468
   933
instance star :: (abs_if) abs_if
huffman@27468
   934
by (intro_classes, transfer, rule abs_if)
huffman@27468
   935
huffman@27468
   936
instance star :: (sgn_if) sgn_if
huffman@27468
   937
by (intro_classes, transfer, rule sgn_if)
huffman@27468
   938
haftmann@35043
   939
instance star :: (linordered_ring_strict) linordered_ring_strict ..
haftmann@35028
   940
instance star :: (ordered_comm_ring) ordered_comm_ring ..
huffman@27468
   941
haftmann@35028
   942
instance star :: (linordered_semidom) linordered_semidom
huffman@27468
   943
by (intro_classes, transfer, rule zero_less_one)
huffman@27468
   944
haftmann@35028
   945
instance star :: (linordered_idom) linordered_idom ..
haftmann@35028
   946
instance star :: (linordered_field) linordered_field ..
huffman@27468
   947
haftmann@30968
   948
haftmann@30968
   949
subsection {* Power *}
haftmann@30968
   950
haftmann@30968
   951
lemma star_power_def [transfer_unfold]:
haftmann@30968
   952
  "(op ^) \<equiv> \<lambda>x n. ( *f* (\<lambda>x. x ^ n)) x"
haftmann@30968
   953
proof (rule eq_reflection, rule ext, rule ext)
haftmann@30968
   954
  fix n :: nat
haftmann@30968
   955
  show "\<And>x::'a star. x ^ n = ( *f* (\<lambda>x. x ^ n)) x" 
haftmann@30968
   956
  proof (induct n)
haftmann@30968
   957
    case 0
haftmann@30968
   958
    have "\<And>x::'a star. ( *f* (\<lambda>x. 1)) x = 1"
haftmann@30968
   959
      by transfer simp
haftmann@30968
   960
    then show ?case by simp
haftmann@30968
   961
  next
haftmann@30968
   962
    case (Suc n)
haftmann@30968
   963
    have "\<And>x::'a star. x * ( *f* (\<lambda>x\<Colon>'a. x ^ n)) x = ( *f* (\<lambda>x\<Colon>'a. x * x ^ n)) x"
haftmann@30968
   964
      by transfer simp
haftmann@30968
   965
    with Suc show ?case by simp
haftmann@30968
   966
  qed
haftmann@30968
   967
qed
huffman@27468
   968
haftmann@30968
   969
lemma Standard_power [simp]: "x \<in> Standard \<Longrightarrow> x ^ n \<in> Standard"
haftmann@30968
   970
  by (simp add: star_power_def)
haftmann@30968
   971
haftmann@30968
   972
lemma star_of_power [simp]: "star_of (x ^ n) = star_of x ^ n"
haftmann@30968
   973
  by transfer (rule refl)
haftmann@30968
   974
huffman@27468
   975
huffman@27468
   976
subsection {* Number classes *}
huffman@27468
   977
huffman@27468
   978
lemma star_of_nat_def [transfer_unfold]: "of_nat n = star_of (of_nat n)"
huffman@27468
   979
by (induct n, simp_all)
huffman@27468
   980
huffman@27468
   981
lemma Standard_of_nat [simp]: "of_nat n \<in> Standard"
huffman@27468
   982
by (simp add: star_of_nat_def)
huffman@27468
   983
huffman@27468
   984
lemma star_of_of_nat [simp]: "star_of (of_nat n) = of_nat n"
huffman@27468
   985
by transfer (rule refl)
huffman@27468
   986
huffman@27468
   987
lemma star_of_int_def [transfer_unfold]: "of_int z = star_of (of_int z)"
huffman@27468
   988
by (rule_tac z=z in int_diff_cases, simp)
huffman@27468
   989
huffman@27468
   990
lemma Standard_of_int [simp]: "of_int z \<in> Standard"
huffman@27468
   991
by (simp add: star_of_int_def)
huffman@27468
   992
huffman@27468
   993
lemma star_of_of_int [simp]: "star_of (of_int z) = of_int z"
huffman@27468
   994
by transfer (rule refl)
huffman@27468
   995
huffman@27468
   996
instance star :: (semiring_char_0) semiring_char_0
huffman@27468
   997
by intro_classes (simp only: star_of_nat_def star_of_eq of_nat_eq_iff)
huffman@27468
   998
huffman@27468
   999
instance star :: (ring_char_0) ring_char_0 ..
huffman@27468
  1000
huffman@27468
  1001
instance star :: (number_ring) number_ring
huffman@27468
  1002
by (intro_classes, simp only: star_number_def star_of_int_def number_of_eq)
huffman@27468
  1003
huffman@27468
  1004
subsection {* Finite class *}
huffman@27468
  1005
huffman@27468
  1006
lemma starset_finite: "finite A \<Longrightarrow> *s* A = star_of ` A"
huffman@27468
  1007
by (erule finite_induct, simp_all)
huffman@27468
  1008
huffman@27468
  1009
instance star :: (finite) finite
huffman@27468
  1010
apply (intro_classes)
huffman@27468
  1011
apply (subst starset_UNIV [symmetric])
huffman@27468
  1012
apply (subst starset_finite [OF finite])
huffman@27468
  1013
apply (rule finite_imageI [OF finite])
huffman@27468
  1014
done
huffman@27468
  1015
huffman@27468
  1016
end