src/HOL/simpdata.ML
author wenzelm
Thu Jul 30 19:18:50 1998 +0200 (1998-07-30)
changeset 5220 07f80f447b27
parent 5219 924359415f09
child 5278 a903b66822e2
permissions -rw-r--r--
made SML/NJ happy;
clasohm@1465
     1
(*  Title:      HOL/simpdata.ML
clasohm@923
     2
    ID:         $Id$
clasohm@1465
     3
    Author:     Tobias Nipkow
clasohm@923
     4
    Copyright   1991  University of Cambridge
clasohm@923
     5
wenzelm@4794
     6
Instantiation of the generic simplifier.
clasohm@923
     7
*)
clasohm@923
     8
paulson@1984
     9
section "Simplifier";
paulson@1984
    10
paulson@1984
    11
(*** Addition of rules to simpsets and clasets simultaneously ***)
paulson@1984
    12
berghofe@5190
    13
infix 4 addIffs delIffs;
berghofe@5190
    14
paulson@1984
    15
(*Takes UNCONDITIONAL theorems of the form A<->B to 
paulson@2031
    16
        the Safe Intr     rule B==>A and 
paulson@2031
    17
        the Safe Destruct rule A==>B.
paulson@1984
    18
  Also ~A goes to the Safe Elim rule A ==> ?R
paulson@1984
    19
  Failing other cases, A is added as a Safe Intr rule*)
paulson@1984
    20
local
paulson@1984
    21
  val iff_const = HOLogic.eq_const HOLogic.boolT;
paulson@1984
    22
berghofe@5190
    23
  fun addIff ((cla, simp), th) = 
berghofe@5190
    24
      (case HOLogic.dest_Trueprop (#prop (rep_thm th)) of
berghofe@5190
    25
                (Const("Not", _) $ A) =>
berghofe@5190
    26
                    cla addSEs [zero_var_indexes (th RS notE)]
paulson@2031
    27
              | (con $ _ $ _) =>
berghofe@5190
    28
                    if con = iff_const
berghofe@5190
    29
                    then cla addSIs [zero_var_indexes (th RS iffD2)]  
berghofe@5190
    30
                              addSDs [zero_var_indexes (th RS iffD1)]
berghofe@5190
    31
                    else  cla addSIs [th]
berghofe@5190
    32
              | _ => cla addSIs [th],
berghofe@5190
    33
       simp addsimps [th])
paulson@1984
    34
      handle _ => error ("AddIffs: theorem must be unconditional\n" ^ 
berghofe@5190
    35
                         string_of_thm th);
paulson@1984
    36
berghofe@5190
    37
  fun delIff ((cla, simp), th) = 
berghofe@5190
    38
      (case HOLogic.dest_Trueprop (#prop (rep_thm th)) of
berghofe@5190
    39
                (Const ("Not", _) $ A) =>
berghofe@5190
    40
                    cla delrules [zero_var_indexes (th RS notE)]
paulson@2031
    41
              | (con $ _ $ _) =>
berghofe@5190
    42
                    if con = iff_const
berghofe@5190
    43
                    then cla delrules [zero_var_indexes (th RS iffD2),
berghofe@5190
    44
                                       make_elim (zero_var_indexes (th RS iffD1))]
berghofe@5190
    45
                    else cla delrules [th]
berghofe@5190
    46
              | _ => cla delrules [th],
berghofe@5190
    47
       simp delsimps [th])
berghofe@5190
    48
      handle _ => (warning("DelIffs: ignoring conditional theorem\n" ^ 
berghofe@5190
    49
                          string_of_thm th); (cla, simp));
berghofe@5190
    50
berghofe@5190
    51
  fun store_clasimp (cla, simp) = (claset_ref () := cla; simpset_ref () := simp)
paulson@1984
    52
in
berghofe@5190
    53
val op addIffs = foldl addIff;
berghofe@5190
    54
val op delIffs = foldl delIff;
berghofe@5190
    55
fun AddIffs thms = store_clasimp ((claset (), simpset ()) addIffs thms);
berghofe@5190
    56
fun DelIffs thms = store_clasimp ((claset (), simpset ()) delIffs thms);
paulson@1984
    57
end;
paulson@1984
    58
nipkow@4640
    59
qed_goal "meta_eq_to_obj_eq" HOL.thy "x==y ==> x=y"
nipkow@4640
    60
  (fn [prem] => [rewtac prem, rtac refl 1]);
nipkow@4640
    61
clasohm@923
    62
local
clasohm@923
    63
paulson@4769
    64
  fun prover s = prove_goal HOL.thy s (K [Blast_tac 1]);
clasohm@923
    65
paulson@1922
    66
  val P_imp_P_iff_True = prover "P --> (P = True)" RS mp;
paulson@1922
    67
  val P_imp_P_eq_True = P_imp_P_iff_True RS eq_reflection;
clasohm@923
    68
paulson@1922
    69
  val not_P_imp_P_iff_F = prover "~P --> (P = False)" RS mp;
paulson@1922
    70
  val not_P_imp_P_eq_False = not_P_imp_P_iff_F RS eq_reflection;
clasohm@923
    71
paulson@1922
    72
  fun atomize pairs =
paulson@1922
    73
    let fun atoms th =
paulson@2031
    74
          (case concl_of th of
paulson@2031
    75
             Const("Trueprop",_) $ p =>
paulson@2031
    76
               (case head_of p of
paulson@2031
    77
                  Const(a,_) =>
paulson@2031
    78
                    (case assoc(pairs,a) of
paulson@2031
    79
                       Some(rls) => flat (map atoms ([th] RL rls))
paulson@2031
    80
                     | None => [th])
paulson@2031
    81
                | _ => [th])
paulson@2031
    82
           | _ => [th])
paulson@1922
    83
    in atoms end;
clasohm@923
    84
nipkow@2134
    85
  fun gen_all th = forall_elim_vars (#maxidx(rep_thm th)+1) th;
nipkow@2134
    86
nipkow@2134
    87
in
nipkow@2134
    88
nipkow@3896
    89
  fun mk_meta_eq r = r RS eq_reflection;
nipkow@4677
    90
  fun mk_meta_eq_True r = Some(r RS meta_eq_to_obj_eq RS P_imp_P_eq_True);
nipkow@3896
    91
nipkow@3896
    92
  fun mk_meta_eq_simp r = case concl_of r of
paulson@2031
    93
          Const("==",_)$_$_ => r
nipkow@4677
    94
      |   _$(Const("op =",_)$lhs$rhs) => mk_meta_eq r
paulson@2718
    95
      |   _$(Const("Not",_)$_) => r RS not_P_imp_P_eq_False
paulson@1922
    96
      |   _ => r RS P_imp_P_eq_True;
paulson@1922
    97
  (* last 2 lines requires all formulae to be of the from Trueprop(.) *)
clasohm@923
    98
paulson@2082
    99
val simp_thms = map prover
paulson@2082
   100
 [ "(x=x) = True",
paulson@2082
   101
   "(~True) = False", "(~False) = True", "(~ ~ P) = P",
paulson@2082
   102
   "(~P) ~= P", "P ~= (~P)", "(P ~= Q) = (P = (~Q))",
nipkow@4640
   103
   "(True=P) = P", "(P=True) = P", "(False=P) = (~P)", "(P=False) = (~P)",
paulson@2082
   104
   "(True --> P) = P", "(False --> P) = True", 
paulson@2082
   105
   "(P --> True) = True", "(P --> P) = True",
paulson@2082
   106
   "(P --> False) = (~P)", "(P --> ~P) = (~P)",
paulson@2082
   107
   "(P & True) = P", "(True & P) = P", 
nipkow@2800
   108
   "(P & False) = False", "(False & P) = False",
nipkow@2800
   109
   "(P & P) = P", "(P & (P & Q)) = (P & Q)",
paulson@3913
   110
   "(P & ~P) = False",    "(~P & P) = False",
paulson@2082
   111
   "(P | True) = True", "(True | P) = True", 
nipkow@2800
   112
   "(P | False) = P", "(False | P) = P",
nipkow@2800
   113
   "(P | P) = P", "(P | (P | Q)) = (P | Q)",
paulson@3913
   114
   "(P | ~P) = True",    "(~P | P) = True",
paulson@2082
   115
   "((~P) = (~Q)) = (P=Q)",
wenzelm@3842
   116
   "(!x. P) = P", "(? x. P) = P", "? x. x=t", "? x. t=x", 
paulson@4351
   117
(*two needed for the one-point-rule quantifier simplification procs*)
paulson@4351
   118
   "(? x. x=t & P(x)) = P(t)",		(*essential for termination!!*)
paulson@4351
   119
   "(! x. t=x --> P(x)) = P(t)" ];      (*covers a stray case*)
clasohm@923
   120
lcp@988
   121
(*Add congruence rules for = (instead of ==) *)
oheimb@2636
   122
infix 4 addcongs delcongs;
paulson@4351
   123
nipkow@4640
   124
fun mk_meta_cong rl =
nipkow@4640
   125
  standard(mk_meta_eq(replicate (nprems_of rl) meta_eq_to_obj_eq MRS rl))
nipkow@4640
   126
  handle THM _ =>
nipkow@4640
   127
  error("Premises and conclusion of congruence rules must be =-equalities");
nipkow@4640
   128
nipkow@4640
   129
fun ss addcongs congs = ss addeqcongs (map mk_meta_cong congs);
nipkow@4640
   130
nipkow@4640
   131
fun ss delcongs congs = ss deleqcongs (map mk_meta_cong congs);
clasohm@923
   132
wenzelm@4086
   133
fun Addcongs congs = (simpset_ref() := simpset() addcongs congs);
wenzelm@4086
   134
fun Delcongs congs = (simpset_ref() := simpset() delcongs congs);
clasohm@1264
   135
nipkow@3896
   136
fun mksimps pairs = map mk_meta_eq_simp o atomize pairs o gen_all;
clasohm@923
   137
paulson@1922
   138
val imp_cong = impI RSN
paulson@1922
   139
    (2, prove_goal HOL.thy "(P=P')--> (P'--> (Q=Q'))--> ((P-->Q) = (P'-->Q'))"
paulson@4769
   140
        (fn _=> [Blast_tac 1]) RS mp RS mp);
paulson@1922
   141
paulson@1948
   142
(*Miniscoping: pushing in existential quantifiers*)
paulson@1948
   143
val ex_simps = map prover 
wenzelm@3842
   144
                ["(EX x. P x & Q)   = ((EX x. P x) & Q)",
wenzelm@3842
   145
                 "(EX x. P & Q x)   = (P & (EX x. Q x))",
wenzelm@3842
   146
                 "(EX x. P x | Q)   = ((EX x. P x) | Q)",
wenzelm@3842
   147
                 "(EX x. P | Q x)   = (P | (EX x. Q x))",
wenzelm@3842
   148
                 "(EX x. P x --> Q) = ((ALL x. P x) --> Q)",
wenzelm@3842
   149
                 "(EX x. P --> Q x) = (P --> (EX x. Q x))"];
paulson@1948
   150
paulson@1948
   151
(*Miniscoping: pushing in universal quantifiers*)
paulson@1948
   152
val all_simps = map prover
wenzelm@3842
   153
                ["(ALL x. P x & Q)   = ((ALL x. P x) & Q)",
wenzelm@3842
   154
                 "(ALL x. P & Q x)   = (P & (ALL x. Q x))",
wenzelm@3842
   155
                 "(ALL x. P x | Q)   = ((ALL x. P x) | Q)",
wenzelm@3842
   156
                 "(ALL x. P | Q x)   = (P | (ALL x. Q x))",
wenzelm@3842
   157
                 "(ALL x. P x --> Q) = ((EX x. P x) --> Q)",
wenzelm@3842
   158
                 "(ALL x. P --> Q x) = (P --> (ALL x. Q x))"];
paulson@1948
   159
clasohm@923
   160
paulson@2022
   161
(* elimination of existential quantifiers in assumptions *)
clasohm@923
   162
clasohm@923
   163
val ex_all_equiv =
clasohm@923
   164
  let val lemma1 = prove_goal HOL.thy
clasohm@923
   165
        "(? x. P(x) ==> PROP Q) ==> (!!x. P(x) ==> PROP Q)"
clasohm@923
   166
        (fn prems => [resolve_tac prems 1, etac exI 1]);
clasohm@923
   167
      val lemma2 = prove_goalw HOL.thy [Ex_def]
clasohm@923
   168
        "(!!x. P(x) ==> PROP Q) ==> (? x. P(x) ==> PROP Q)"
clasohm@923
   169
        (fn prems => [REPEAT(resolve_tac prems 1)])
clasohm@923
   170
  in equal_intr lemma1 lemma2 end;
clasohm@923
   171
clasohm@923
   172
end;
clasohm@923
   173
nipkow@3654
   174
(* Elimination of True from asumptions: *)
nipkow@3654
   175
nipkow@3654
   176
val True_implies_equals = prove_goal HOL.thy
nipkow@3654
   177
 "(True ==> PROP P) == PROP P"
oheimb@4525
   178
(K [rtac equal_intr_rule 1, atac 2,
nipkow@3654
   179
          METAHYPS (fn prems => resolve_tac prems 1) 1,
nipkow@3654
   180
          rtac TrueI 1]);
nipkow@3654
   181
paulson@4769
   182
fun prove nm thm  = qed_goal nm HOL.thy thm (K [Blast_tac 1]);
clasohm@923
   183
clasohm@923
   184
prove "conj_commute" "(P&Q) = (Q&P)";
clasohm@923
   185
prove "conj_left_commute" "(P&(Q&R)) = (Q&(P&R))";
clasohm@923
   186
val conj_comms = [conj_commute, conj_left_commute];
nipkow@2134
   187
prove "conj_assoc" "((P&Q)&R) = (P&(Q&R))";
clasohm@923
   188
paulson@1922
   189
prove "disj_commute" "(P|Q) = (Q|P)";
paulson@1922
   190
prove "disj_left_commute" "(P|(Q|R)) = (Q|(P|R))";
paulson@1922
   191
val disj_comms = [disj_commute, disj_left_commute];
nipkow@2134
   192
prove "disj_assoc" "((P|Q)|R) = (P|(Q|R))";
paulson@1922
   193
clasohm@923
   194
prove "conj_disj_distribL" "(P&(Q|R)) = (P&Q | P&R)";
clasohm@923
   195
prove "conj_disj_distribR" "((P|Q)&R) = (P&R | Q&R)";
nipkow@1485
   196
paulson@1892
   197
prove "disj_conj_distribL" "(P|(Q&R)) = ((P|Q) & (P|R))";
paulson@1892
   198
prove "disj_conj_distribR" "((P&Q)|R) = ((P|R) & (Q|R))";
paulson@1892
   199
nipkow@2134
   200
prove "imp_conjR" "(P --> (Q&R)) = ((P-->Q) & (P-->R))";
nipkow@2134
   201
prove "imp_conjL" "((P&Q) -->R)  = (P --> (Q --> R))";
nipkow@2134
   202
prove "imp_disjL" "((P|Q) --> R) = ((P-->R)&(Q-->R))";
paulson@1892
   203
paulson@3448
   204
(*These two are specialized, but imp_disj_not1 is useful in Auth/Yahalom.ML*)
paulson@3448
   205
prove "imp_disj_not1" "((P --> Q | R)) = (~Q --> P --> R)";
paulson@3448
   206
prove "imp_disj_not2" "((P --> Q | R)) = (~R --> P --> Q)";
paulson@3448
   207
paulson@3904
   208
prove "imp_disj1" "((P-->Q)|R) = (P--> Q|R)";
paulson@3904
   209
prove "imp_disj2" "(Q|(P-->R)) = (P--> Q|R)";
paulson@3904
   210
nipkow@1485
   211
prove "de_Morgan_disj" "(~(P | Q)) = (~P & ~Q)";
nipkow@1485
   212
prove "de_Morgan_conj" "(~(P & Q)) = (~P | ~Q)";
paulson@3446
   213
prove "not_imp" "(~(P --> Q)) = (P & ~Q)";
paulson@1922
   214
prove "not_iff" "(P~=Q) = (P = (~Q))";
oheimb@4743
   215
prove "disj_not1" "(~P | Q) = (P --> Q)";
oheimb@4743
   216
prove "disj_not2" "(P | ~Q) = (Q --> P)"; (* changes orientation :-( *)
nipkow@1485
   217
nipkow@4830
   218
(*Avoids duplication of subgoals after split_if, when the true and false 
nipkow@2134
   219
  cases boil down to the same thing.*) 
nipkow@2134
   220
prove "cases_simp" "((P --> Q) & (~P --> Q)) = Q";
nipkow@2134
   221
wenzelm@3842
   222
prove "not_all" "(~ (! x. P(x))) = (? x.~P(x))";
paulson@1922
   223
prove "imp_all" "((! x. P x) --> Q) = (? x. P x --> Q)";
wenzelm@3842
   224
prove "not_ex"  "(~ (? x. P(x))) = (! x.~P(x))";
paulson@1922
   225
prove "imp_ex" "((? x. P x) --> Q) = (! x. P x --> Q)";
oheimb@1660
   226
nipkow@1655
   227
prove "ex_disj_distrib" "(? x. P(x) | Q(x)) = ((? x. P(x)) | (? x. Q(x)))";
nipkow@1655
   228
prove "all_conj_distrib" "(!x. P(x) & Q(x)) = ((! x. P(x)) & (! x. Q(x)))";
nipkow@1655
   229
nipkow@2134
   230
(* '&' congruence rule: not included by default!
nipkow@2134
   231
   May slow rewrite proofs down by as much as 50% *)
nipkow@2134
   232
nipkow@2134
   233
let val th = prove_goal HOL.thy 
nipkow@2134
   234
                "(P=P')--> (P'--> (Q=Q'))--> ((P&Q) = (P'&Q'))"
paulson@4769
   235
                (fn _=> [Blast_tac 1])
nipkow@2134
   236
in  bind_thm("conj_cong",standard (impI RSN (2, th RS mp RS mp)))  end;
nipkow@2134
   237
nipkow@2134
   238
let val th = prove_goal HOL.thy 
nipkow@2134
   239
                "(Q=Q')--> (Q'--> (P=P'))--> ((P&Q) = (P'&Q'))"
paulson@4769
   240
                (fn _=> [Blast_tac 1])
nipkow@2134
   241
in  bind_thm("rev_conj_cong",standard (impI RSN (2, th RS mp RS mp)))  end;
nipkow@2134
   242
nipkow@2134
   243
(* '|' congruence rule: not included by default! *)
nipkow@2134
   244
nipkow@2134
   245
let val th = prove_goal HOL.thy 
nipkow@2134
   246
                "(P=P')--> (~P'--> (Q=Q'))--> ((P|Q) = (P'|Q'))"
paulson@4769
   247
                (fn _=> [Blast_tac 1])
nipkow@2134
   248
in  bind_thm("disj_cong",standard (impI RSN (2, th RS mp RS mp)))  end;
nipkow@2134
   249
nipkow@2134
   250
prove "eq_sym_conv" "(x=y) = (y=x)";
nipkow@2134
   251
nipkow@2134
   252
qed_goalw "o_apply" HOL.thy [o_def] "(f o g) x = f (g x)"
oheimb@4525
   253
 (K [rtac refl 1]);
nipkow@2134
   254
nipkow@2134
   255
qed_goalw "if_True" HOL.thy [if_def] "(if True then x else y) = x"
oheimb@4525
   256
 (K [Blast_tac 1]);
nipkow@2134
   257
nipkow@2134
   258
qed_goalw "if_False" HOL.thy [if_def] "(if False then x else y) = y"
oheimb@4525
   259
 (K [Blast_tac 1]);
nipkow@2134
   260
nipkow@2134
   261
qed_goal "if_P" HOL.thy "P ==> (if P then x else y) = x"
nipkow@2134
   262
 (fn [prem] => [ stac (prem RS eqTrueI) 1, rtac if_True 1 ]);
nipkow@2134
   263
(*
nipkow@2134
   264
qed_goal "if_not_P" HOL.thy "~P ==> (if P then x else y) = y"
nipkow@2134
   265
 (fn [prem] => [ stac (prem RS not_P_imp_P_iff_F) 1, rtac if_False 1 ]);
nipkow@2134
   266
*)
nipkow@2134
   267
qed_goalw "if_not_P" HOL.thy [if_def] "!!P. ~P ==> (if P then x else y) = y"
oheimb@4525
   268
 (K [Blast_tac 1]);
nipkow@2134
   269
nipkow@4830
   270
qed_goal "split_if" HOL.thy
oheimb@4205
   271
    "P(if Q then x else y) = ((Q --> P(x)) & (~Q --> P(y)))" (K [
oheimb@4205
   272
	res_inst_tac [("Q","Q")] (excluded_middle RS disjE) 1,
nipkow@2134
   273
         stac if_P 2,
nipkow@2134
   274
         stac if_not_P 1,
paulson@4769
   275
         ALLGOALS (Blast_tac)]);
nipkow@4830
   276
(* for backwards compatibility: *)
nipkow@4830
   277
val expand_if = split_if;
oheimb@4205
   278
oheimb@4205
   279
qed_goal "split_if_asm" HOL.thy
paulson@4769
   280
    "P(if Q then x else y) = (~((Q & ~P x) | (~Q & ~P y)))"
nipkow@4830
   281
    (K [stac split_if 1,
paulson@4769
   282
	Blast_tac 1]);
nipkow@2134
   283
paulson@4769
   284
(*This form is useful for expanding IFs on the RIGHT of the ==> symbol*)
paulson@4769
   285
qed_goal "if_bool_eq_conj" HOL.thy
paulson@4769
   286
    "(if P then Q else R) = ((P-->Q) & (~P-->R))"
nipkow@4830
   287
    (K [rtac split_if 1]);
paulson@4769
   288
paulson@4769
   289
(*And this form is useful for expanding IFs on the LEFT*)
paulson@4769
   290
qed_goal "if_bool_eq_disj" HOL.thy
paulson@4769
   291
    "(if P then Q else R) = ((P&Q) | (~P&R))"
nipkow@4830
   292
    (K [stac split_if 1,
paulson@4769
   293
	Blast_tac 1]);
nipkow@2134
   294
paulson@4351
   295
paulson@4351
   296
(*** make simplification procedures for quantifier elimination ***)
paulson@4351
   297
paulson@4351
   298
structure Quantifier1 = Quantifier1Fun(
paulson@4351
   299
struct
paulson@4351
   300
  (*abstract syntax*)
paulson@4351
   301
  fun dest_eq((c as Const("op =",_)) $ s $ t) = Some(c,s,t)
paulson@4351
   302
    | dest_eq _ = None;
paulson@4351
   303
  fun dest_conj((c as Const("op &",_)) $ s $ t) = Some(c,s,t)
paulson@4351
   304
    | dest_conj _ = None;
paulson@4351
   305
  val conj = HOLogic.conj
paulson@4351
   306
  val imp  = HOLogic.imp
paulson@4351
   307
  (*rules*)
paulson@4351
   308
  val iff_reflection = eq_reflection
paulson@4351
   309
  val iffI = iffI
paulson@4351
   310
  val sym  = sym
paulson@4351
   311
  val conjI= conjI
paulson@4351
   312
  val conjE= conjE
paulson@4351
   313
  val impI = impI
paulson@4351
   314
  val impE = impE
paulson@4351
   315
  val mp   = mp
paulson@4351
   316
  val exI  = exI
paulson@4351
   317
  val exE  = exE
paulson@4351
   318
  val allI = allI
paulson@4351
   319
  val allE = allE
paulson@4351
   320
end);
paulson@4351
   321
nipkow@4320
   322
local
nipkow@4320
   323
val ex_pattern =
paulson@4351
   324
  read_cterm (sign_of HOL.thy) ("EX x. P(x) & Q(x)",HOLogic.boolT)
paulson@3913
   325
nipkow@4320
   326
val all_pattern =
paulson@4351
   327
  read_cterm (sign_of HOL.thy) ("ALL x. P(x) & P'(x) --> Q(x)",HOLogic.boolT)
nipkow@4320
   328
nipkow@4320
   329
in
nipkow@4320
   330
val defEX_regroup =
nipkow@4320
   331
  mk_simproc "defined EX" [ex_pattern] Quantifier1.rearrange_ex;
nipkow@4320
   332
val defALL_regroup =
nipkow@4320
   333
  mk_simproc "defined ALL" [all_pattern] Quantifier1.rearrange_all;
nipkow@4320
   334
end;
paulson@3913
   335
paulson@4351
   336
paulson@4351
   337
(*** Case splitting ***)
paulson@3913
   338
oheimb@2263
   339
local val mktac = mk_case_split_tac (meta_eq_to_obj_eq RS iffD2)
oheimb@2263
   340
in
oheimb@2263
   341
fun split_tac splits = mktac (map mk_meta_eq splits)
oheimb@2263
   342
end;
oheimb@2263
   343
oheimb@2263
   344
local val mktac = mk_case_split_inside_tac (meta_eq_to_obj_eq RS iffD2)
oheimb@2263
   345
in
oheimb@2263
   346
fun split_inside_tac splits = mktac (map mk_meta_eq splits)
oheimb@2263
   347
end;
oheimb@2263
   348
oheimb@4205
   349
val split_asm_tac = mk_case_split_asm_tac split_tac 
oheimb@4205
   350
			(disjE,conjE,exE,contrapos,contrapos2,notnotD);
oheimb@4189
   351
nipkow@4681
   352
infix 4 addsplits delsplits;
nipkow@4681
   353
nipkow@4669
   354
fun ss addsplits splits =
oheimb@4930
   355
  let fun addsplit (ss,split) =
oheimb@4930
   356
        let val (name,asm) = split_thm_info split 
oheimb@4930
   357
        in ss addloop ("split "^ name ^ (if asm then " asm" else ""),
oheimb@4930
   358
		       (if asm then split_asm_tac else split_tac) [split]) end
nipkow@4669
   359
  in foldl addsplit (ss,splits) end;
oheimb@2263
   360
nipkow@4681
   361
fun ss delsplits splits =
nipkow@4681
   362
  let fun delsplit(ss,split) =
oheimb@4930
   363
        let val (name,asm) = split_thm_info split 
oheimb@4930
   364
        in ss delloop ("split "^ name ^ (if asm then " asm" else "")) end
nipkow@4681
   365
  in foldl delsplit (ss,splits) end;
nipkow@4681
   366
nipkow@4681
   367
fun Addsplits splits = (simpset_ref() := simpset() addsplits splits);
nipkow@4681
   368
fun Delsplits splits = (simpset_ref() := simpset() delsplits splits);
nipkow@4681
   369
oheimb@2251
   370
qed_goal "if_cancel" HOL.thy "(if c then x else x) = x"
nipkow@4830
   371
  (K [split_tac [split_if] 1, Blast_tac 1]);
oheimb@2251
   372
oheimb@4718
   373
qed_goal "if_eq_cancel" HOL.thy "(if x = y then y else x) = x"
nipkow@4830
   374
  (K [split_tac [split_if] 1, Blast_tac 1]);
oheimb@4718
   375
nipkow@2134
   376
(** 'if' congruence rules: neither included by default! *)
nipkow@2134
   377
nipkow@2134
   378
(*Simplifies x assuming c and y assuming ~c*)
nipkow@2134
   379
qed_goal "if_cong" HOL.thy
nipkow@2134
   380
  "[| b=c; c ==> x=u; ~c ==> y=v |] ==>\
nipkow@2134
   381
\  (if b then x else y) = (if c then u else v)"
nipkow@2134
   382
  (fn rew::prems =>
nipkow@4830
   383
   [stac rew 1, stac split_if 1, stac split_if 1,
paulson@2935
   384
    blast_tac (HOL_cs addDs prems) 1]);
nipkow@2134
   385
nipkow@2134
   386
(*Prevents simplification of x and y: much faster*)
nipkow@2134
   387
qed_goal "if_weak_cong" HOL.thy
nipkow@2134
   388
  "b=c ==> (if b then x else y) = (if c then x else y)"
nipkow@2134
   389
  (fn [prem] => [rtac (prem RS arg_cong) 1]);
nipkow@2134
   390
nipkow@2134
   391
(*Prevents simplification of t: much faster*)
nipkow@2134
   392
qed_goal "let_weak_cong" HOL.thy
nipkow@2134
   393
  "a = b ==> (let x=a in t(x)) = (let x=b in t(x))"
nipkow@2134
   394
  (fn [prem] => [rtac (prem RS arg_cong) 1]);
nipkow@2134
   395
nipkow@2134
   396
(*In general it seems wrong to add distributive laws by default: they
nipkow@2134
   397
  might cause exponential blow-up.  But imp_disjL has been in for a while
nipkow@2134
   398
  and cannot be removed without affecting existing proofs.  Moreover, 
nipkow@2134
   399
  rewriting by "(P|Q --> R) = ((P-->R)&(Q-->R))" might be justified on the
nipkow@2134
   400
  grounds that it allows simplification of R in the two cases.*)
nipkow@2134
   401
nipkow@2134
   402
val mksimps_pairs =
nipkow@2134
   403
  [("op -->", [mp]), ("op &", [conjunct1,conjunct2]),
nipkow@2134
   404
   ("All", [spec]), ("True", []), ("False", []),
paulson@4769
   405
   ("If", [if_bool_eq_conj RS iffD1])];
nipkow@1758
   406
nipkow@4640
   407
fun unsafe_solver prems = FIRST'[resolve_tac (reflexive_thm::TrueI::refl::prems),
oheimb@2636
   408
				 atac, etac FalseE];
oheimb@2636
   409
(*No premature instantiation of variables during simplification*)
nipkow@4640
   410
fun   safe_solver prems = FIRST'[match_tac (reflexive_thm::TrueI::prems),
oheimb@2636
   411
				 eq_assume_tac, ematch_tac [FalseE]];
oheimb@2443
   412
oheimb@2636
   413
val HOL_basic_ss = empty_ss setsubgoaler asm_simp_tac
oheimb@2636
   414
			    setSSolver   safe_solver
oheimb@2636
   415
			    setSolver  unsafe_solver
nipkow@4677
   416
			    setmksimps (mksimps mksimps_pairs)
wenzelm@4744
   417
			    setmkeqTrue mk_meta_eq_True;
oheimb@2443
   418
paulson@3446
   419
val HOL_ss = 
paulson@3446
   420
    HOL_basic_ss addsimps 
paulson@3446
   421
     ([triv_forall_equality, (* prunes params *)
nipkow@3654
   422
       True_implies_equals, (* prune asms `True' *)
oheimb@4718
   423
       if_True, if_False, if_cancel, if_eq_cancel,
paulson@3446
   424
       o_apply, imp_disjL, conj_assoc, disj_assoc,
paulson@3904
   425
       de_Morgan_conj, de_Morgan_disj, imp_disj1, imp_disj2, not_imp,
oheimb@4743
   426
       disj_not1, not_all, not_ex, cases_simp]
paulson@3446
   427
     @ ex_simps @ all_simps @ simp_thms)
nipkow@4032
   428
     addsimprocs [defALL_regroup,defEX_regroup]
wenzelm@4744
   429
     addcongs [imp_cong]
nipkow@4830
   430
     addsplits [split_if];
paulson@2082
   431
nipkow@1655
   432
qed_goal "if_distrib" HOL.thy
nipkow@1655
   433
  "f(if c then x else y) = (if c then f x else f y)" 
nipkow@4830
   434
  (K [simp_tac (HOL_ss setloop (split_tac [split_if])) 1]);
nipkow@1655
   435
oheimb@2097
   436
qed_goalw "o_assoc" HOL.thy [o_def] "f o (g o h) = f o g o h"
oheimb@4525
   437
  (K [rtac ext 1, rtac refl 1]);
paulson@1984
   438
paulson@1984
   439
paulson@4327
   440
(*For expand_case_tac*)
paulson@2948
   441
val prems = goal HOL.thy "[| P ==> Q(True); ~P ==> Q(False) |] ==> Q(P)";
paulson@2948
   442
by (case_tac "P" 1);
paulson@2948
   443
by (ALLGOALS (asm_simp_tac (HOL_ss addsimps prems)));
paulson@2948
   444
val expand_case = result();
paulson@2948
   445
paulson@4327
   446
(*Used in Auth proofs.  Typically P contains Vars that become instantiated
paulson@4327
   447
  during unification.*)
paulson@2948
   448
fun expand_case_tac P i =
paulson@2948
   449
    res_inst_tac [("P",P)] expand_case i THEN
paulson@2948
   450
    Simp_tac (i+1) THEN 
paulson@2948
   451
    Simp_tac i;
paulson@2948
   452
paulson@2948
   453
wenzelm@4119
   454
(* install implicit simpset *)
paulson@1984
   455
wenzelm@4086
   456
simpset_ref() := HOL_ss;
paulson@1984
   457
berghofe@3615
   458
oheimb@4652
   459
wenzelm@5219
   460
(*** integration of simplifier with classical reasoner ***)
oheimb@2636
   461
oheimb@2636
   462
(* rot_eq_tac rotates the first equality premise of subgoal i to the front,
oheimb@2636
   463
   fails if there is no equaliy or if an equality is already at the front *)
paulson@3538
   464
local
paulson@3538
   465
  fun is_eq (Const ("Trueprop", _) $ (Const("op ="  ,_) $ _ $ _)) = true
paulson@3538
   466
    | is_eq _ = false;
oheimb@4188
   467
  val find_eq = find_index is_eq;
paulson@3538
   468
in
paulson@3538
   469
val rot_eq_tac = 
oheimb@4188
   470
     SUBGOAL (fn (Bi,i) => let val n = find_eq (Logic.strip_assums_hyp Bi) in
oheimb@4188
   471
		if n>0 then rotate_tac n i else no_tac end)
paulson@3538
   472
end;
oheimb@2636
   473
wenzelm@5219
   474
wenzelm@5219
   475
structure Clasimp = ClasimpFun
wenzelm@5219
   476
 (structure Simplifier = Simplifier and Classical = Classical and Blast = Blast
wenzelm@5220
   477
  val op addcongs = op addcongs and op delcongs = op delcongs
wenzelm@5220
   478
  and op addSaltern = op addSaltern and op addbefore = op addbefore);
wenzelm@5219
   479
oheimb@4652
   480
open Clasimp;
oheimb@2636
   481
oheimb@2636
   482
val HOL_css = (HOL_cs, HOL_ss);