src/HOL/Tools/res_axioms.ML
author skalberg
Sun Feb 13 17:15:14 2005 +0100 (2005-02-13)
changeset 15531 08c8dad8e399
parent 15499 419dc5ffe8bc
child 15579 32bee18c675f
permissions -rw-r--r--
Deleted Library.option type.
paulson@15347
     1
(*  Author: Jia Meng, Cambridge University Computer Laboratory
paulson@15347
     2
    ID: $Id$
paulson@15347
     3
    Copyright 2004 University of Cambridge
paulson@15347
     4
paulson@15347
     5
Transformation of axiom rules (elim/intro/etc) into CNF forms.    
paulson@15347
     6
*)
paulson@15347
     7
paulson@15347
     8
paulson@15347
     9
paulson@15347
    10
signature RES_ELIM_RULE =
paulson@15347
    11
sig
paulson@15347
    12
paulson@15347
    13
exception ELIMR2FOL of string
paulson@15347
    14
val elimRule_tac : Thm.thm -> Tactical.tactic
paulson@15347
    15
val elimR2Fol : Thm.thm -> Term.term
paulson@15347
    16
val transform_elim : Thm.thm -> Thm.thm
paulson@15347
    17
paulson@15347
    18
end;
paulson@15347
    19
paulson@15347
    20
structure ResElimRule: RES_ELIM_RULE =
paulson@15347
    21
paulson@15347
    22
struct
paulson@15347
    23
paulson@15390
    24
(* a tactic used to prove an elim-rule. *)
paulson@15347
    25
fun elimRule_tac thm =
paulson@15347
    26
    ((rtac impI 1) ORELSE (rtac notI 1)) THEN (etac thm 1) THEN
paulson@15371
    27
    REPEAT(Fast_tac 1);
paulson@15347
    28
paulson@15347
    29
paulson@15347
    30
(* This following version fails sometimes, need to investigate, do not use it now. *)
paulson@15347
    31
fun elimRule_tac' thm =
paulson@15347
    32
   ((rtac impI 1) ORELSE (rtac notI 1)) THEN (etac thm 1) THEN
paulson@15347
    33
   REPEAT(SOLVE((etac exI 1) ORELSE (rtac conjI 1) ORELSE (rtac disjI1 1) ORELSE (rtac disjI2 1))); 
paulson@15347
    34
paulson@15347
    35
paulson@15347
    36
exception ELIMR2FOL of string;
paulson@15347
    37
paulson@15390
    38
(* functions used to construct a formula *)
paulson@15390
    39
paulson@15347
    40
fun make_imp (prem,concl) = Const("op -->", Type("fun",[Type("bool",[]),Type("fun",[Type("bool",[]),Type("bool",[])])])) $ prem $ concl;
paulson@15347
    41
paulson@15347
    42
paulson@15347
    43
fun make_disjs [x] = x
paulson@15347
    44
  | make_disjs (x :: xs) = Const("op |",Type("fun",[Type("bool",[]),Type("fun",[Type("bool",[]),Type("bool",[])])])) $ x $ (make_disjs xs)
paulson@15347
    45
paulson@15347
    46
paulson@15347
    47
fun make_conjs [x] = x
paulson@15347
    48
  | make_conjs (x :: xs) = Const("op &", Type("fun",[Type("bool",[]),Type("fun",[Type("bool",[]),Type("bool",[])])])) $ x $ (make_conjs xs)
paulson@15347
    49
paulson@15347
    50
paulson@15347
    51
fun add_EX term [] = term
paulson@15347
    52
  | add_EX term ((x,xtp)::xs) = add_EX (Const ("Ex",Type("fun",[Type("fun",[xtp,Type("bool",[])]),Type("bool",[])])) $ Abs (x,xtp,term)) xs;
paulson@15347
    53
paulson@15347
    54
paulson@15347
    55
exception TRUEPROP of string; 
paulson@15347
    56
paulson@15347
    57
fun strip_trueprop (Const ("Trueprop", Type("fun",[Type("bool",[]),Type("prop",[])])) $ P) = P
paulson@15347
    58
  | strip_trueprop _ = raise TRUEPROP("not a prop!");
paulson@15347
    59
paulson@15347
    60
paulson@15371
    61
fun neg P = Const ("Not", Type("fun",[Type("bool",[]),Type("bool",[])])) $ P;
paulson@15371
    62
paulson@15371
    63
paulson@15371
    64
fun is_neg (Const("Trueprop",_) $ (Const("Not",_) $ Free(p,_))) (Const("Trueprop",_) $ Free(q,_))= (p = q)
paulson@15371
    65
  | is_neg _ _ = false;
paulson@15371
    66
paulson@15347
    67
paulson@15347
    68
exception STRIP_CONCL;
paulson@15347
    69
paulson@15347
    70
paulson@15371
    71
fun strip_concl' prems bvs (Const ("==>",_) $ P $ Q) =
paulson@15347
    72
    let val P' = strip_trueprop P
paulson@15347
    73
	val prems' = P'::prems
paulson@15347
    74
    in
paulson@15371
    75
	strip_concl' prems' bvs  Q
paulson@15347
    76
    end
paulson@15371
    77
  | strip_concl' prems bvs P = 
paulson@15371
    78
    let val P' = neg (strip_trueprop P)
paulson@15371
    79
    in
paulson@15371
    80
	add_EX (make_conjs (P'::prems)) bvs
paulson@15371
    81
    end;
paulson@15371
    82
paulson@15371
    83
paulson@15371
    84
fun strip_concl prems bvs concl (Const ("all", _) $ Abs (x,xtp,body))  = strip_concl prems ((x,xtp)::bvs) concl body
paulson@15371
    85
  | strip_concl prems bvs concl (Const ("==>",_) $ P $ Q) =
paulson@15371
    86
    if (is_neg P concl) then (strip_concl' prems bvs Q)
paulson@15371
    87
    else
paulson@15371
    88
	(let val P' = strip_trueprop P
paulson@15371
    89
	     val prems' = P'::prems
paulson@15371
    90
	 in
paulson@15371
    91
	     strip_concl prems' bvs  concl Q
paulson@15371
    92
	 end)
paulson@15371
    93
  | strip_concl prems bvs concl _ = add_EX (make_conjs prems) bvs;
paulson@15347
    94
 
paulson@15347
    95
paulson@15347
    96
paulson@15371
    97
fun trans_elim (main,others,concl) =
paulson@15371
    98
    let val others' = map (strip_concl [] [] concl) others
paulson@15347
    99
	val disjs = make_disjs others'
paulson@15347
   100
    in
paulson@15347
   101
	make_imp(strip_trueprop main,disjs)
paulson@15347
   102
    end;
paulson@15347
   103
paulson@15347
   104
paulson@15390
   105
(* aux function of elim2Fol, take away predicate variable. *)
paulson@15371
   106
fun elimR2Fol_aux prems concl = 
paulson@15347
   107
    let val nprems = length prems
paulson@15347
   108
	val main = hd prems
paulson@15347
   109
    in
paulson@15347
   110
	if (nprems = 1) then neg (strip_trueprop main)
paulson@15371
   111
        else trans_elim (main, tl prems, concl)
paulson@15347
   112
    end;
paulson@15347
   113
paulson@15347
   114
paulson@15347
   115
fun trueprop term = Const ("Trueprop", Type("fun",[Type("bool",[]),Type("prop",[])])) $ term; 
paulson@15347
   116
	    
paulson@15390
   117
(* convert an elim rule into an equivalent formula, of type Term.term. *)
paulson@15347
   118
fun elimR2Fol elimR = 
paulson@15347
   119
    let val elimR' = Drule.freeze_all elimR
paulson@15347
   120
	val (prems,concl) = (prems_of elimR', concl_of elimR')
paulson@15347
   121
    in
paulson@15347
   122
	case concl of Const("Trueprop",_) $ Free(_,Type("bool",[])) 
paulson@15371
   123
		      => trueprop (elimR2Fol_aux prems concl)
paulson@15371
   124
                    | Free(x,Type("prop",[])) => trueprop(elimR2Fol_aux prems concl) 
paulson@15347
   125
		    | _ => raise ELIMR2FOL("Not an elimination rule!")
paulson@15347
   126
    end;
paulson@15347
   127
paulson@15347
   128
paulson@15347
   129
paulson@15347
   130
(**** use prove_goalw_cterm to prove ****)
paulson@15347
   131
paulson@15390
   132
(* convert an elim-rule into an equivalent theorem that does not have the predicate variable. *) 
paulson@15347
   133
fun transform_elim thm =
paulson@15347
   134
    let val tm = elimR2Fol thm
paulson@15347
   135
	val ctm = cterm_of (sign_of_thm thm) tm	
paulson@15347
   136
    in
paulson@15347
   137
	prove_goalw_cterm [] ctm (fn prems => [elimRule_tac thm])
paulson@15347
   138
    end;	
paulson@15347
   139
paulson@15347
   140
paulson@15347
   141
end;
paulson@15347
   142
paulson@15347
   143
paulson@15347
   144
(* some lemmas *)
paulson@15347
   145
paulson@15347
   146
Goal "(P==True) ==> P";
paulson@15347
   147
by(Blast_tac 1);
paulson@15347
   148
qed "Eq_TrueD1";
paulson@15347
   149
paulson@15347
   150
Goal "(P=True) ==> P";
paulson@15347
   151
by(Blast_tac 1);
paulson@15347
   152
qed "Eq_TrueD2";
paulson@15347
   153
paulson@15347
   154
Goal "(P==False) ==> ~P";
paulson@15347
   155
by(Blast_tac 1);
paulson@15347
   156
qed "Eq_FalseD1";
paulson@15347
   157
paulson@15347
   158
Goal "(P=False) ==> ~P";
paulson@15347
   159
by(Blast_tac 1);
paulson@15347
   160
qed "Eq_FalseD2";
paulson@15347
   161
paulson@15359
   162
local 
paulson@15347
   163
paulson@15359
   164
    fun prove s = prove_goal (the_context()) s (fn _ => [Simp_tac 1]);
paulson@15347
   165
paulson@15359
   166
val small_simps = 
paulson@15359
   167
  map prove 
paulson@15359
   168
   ["(P | True) == True", "(True | P) == True",
paulson@15359
   169
    "(P & True) == P", "(True & P) == P",
paulson@15359
   170
    "(False | P) == P", "(P | False) == P",
paulson@15359
   171
    "(False & P) == False", "(P & False) == False",
paulson@15359
   172
    "~True == False", "~False == True"];
paulson@15359
   173
in
paulson@15347
   174
paulson@15359
   175
val small_simpset = empty_ss addsimps small_simps
paulson@15347
   176
paulson@15359
   177
end;
paulson@15347
   178
paulson@15347
   179
paulson@15347
   180
signature RES_AXIOMS =
paulson@15347
   181
sig
paulson@15347
   182
paulson@15347
   183
val clausify_axiom : Thm.thm -> ResClause.clause list
paulson@15347
   184
val cnf_axiom : Thm.thm -> Thm.thm list
paulson@15499
   185
val meta_cnf_axiom : Thm.thm -> Thm.thm list
paulson@15347
   186
val cnf_elim : Thm.thm -> Thm.thm list
paulson@15347
   187
val cnf_rule : Thm.thm -> Thm.thm list
paulson@15347
   188
val cnf_classical_rules_thy : Theory.theory -> Thm.thm list list * Thm.thm list
paulson@15347
   189
val clausify_classical_rules_thy 
paulson@15347
   190
: Theory.theory -> ResClause.clause list list * Thm.thm list
paulson@15347
   191
val cnf_simpset_rules_thy 
paulson@15347
   192
: Theory.theory -> Thm.thm list list * Thm.thm list
paulson@15347
   193
val clausify_simpset_rules_thy 
paulson@15347
   194
: Theory.theory -> ResClause.clause list list * Thm.thm list
paulson@15347
   195
val rm_Eps 
paulson@15347
   196
: (Term.term * Term.term) list -> Thm.thm list -> Term.term list
paulson@15347
   197
end;
paulson@15347
   198
paulson@15347
   199
structure ResAxioms : RES_AXIOMS =
paulson@15347
   200
 
paulson@15347
   201
struct
paulson@15347
   202
paulson@15347
   203
open ResElimRule;
paulson@15347
   204
paulson@15347
   205
(* to be fixed: cnf_intro, cnf_rule, is_introR *)
paulson@15347
   206
paulson@15390
   207
(* check if a rule is an elim rule *)
paulson@15347
   208
fun is_elimR thm = 
paulson@15347
   209
    case (concl_of thm) of (Const ("Trueprop", _) $ Var (idx,_)) => true
paulson@15347
   210
			 | Var(indx,Type("prop",[])) => true
paulson@15347
   211
			 | _ => false;
paulson@15347
   212
paulson@15347
   213
paulson@15390
   214
(* repeated resolution *)
paulson@15347
   215
fun repeat_RS thm1 thm2 =
paulson@15347
   216
    let val thm1' =  thm1 RS thm2 handle THM _ => thm1
paulson@15347
   217
    in
paulson@15347
   218
	if eq_thm(thm1,thm1') then thm1' else (repeat_RS thm1' thm2)
paulson@15347
   219
    end;
paulson@15347
   220
paulson@15347
   221
paulson@15347
   222
paulson@15347
   223
(* added this function to remove True/False in a theorem that is in NNF form. *)
paulson@15347
   224
fun rm_TF_nnf thm = simplify small_simpset thm;
paulson@15347
   225
paulson@15390
   226
paulson@15390
   227
(* convert a theorem into NNF and also skolemize it. *)
paulson@15347
   228
fun skolem_axiom thm = 
paulson@15347
   229
    let val thm' = (skolemize o rm_TF_nnf o  make_nnf o ObjectLogic.atomize_thm o Drule.freeze_all) thm
paulson@15347
   230
    in 
paulson@15347
   231
	repeat_RS thm' someI_ex
paulson@15347
   232
    end;
paulson@15347
   233
paulson@15347
   234
paulson@15499
   235
fun isa_cls thm = make_clauses [skolem_axiom thm]
paulson@15347
   236
paulson@15495
   237
fun cnf_elim thm = isa_cls (transform_elim thm);
paulson@15347
   238
paulson@15347
   239
val cnf_rule = isa_cls;	
paulson@15347
   240
paulson@15347
   241
paulson@15347
   242
paulson@15370
   243
(*Transfer a theorem in to theory Reconstruction.thy if it is not already
paulson@15359
   244
  inside that theory -- because it's needed for Skolemization *)
paulson@15359
   245
paulson@15370
   246
val recon_thy = ThyInfo.get_theory"Reconstruction";
paulson@15359
   247
paulson@15370
   248
fun transfer_to_Reconstruction thm =
paulson@15370
   249
    transfer recon_thy thm handle THM _ => thm;
paulson@15347
   250
paulson@15347
   251
(* remove "True" clause *)
paulson@15347
   252
fun rm_redundant_cls [] = []
paulson@15347
   253
  | rm_redundant_cls (thm::thms) =
paulson@15347
   254
    let val t = prop_of thm
paulson@15347
   255
    in
paulson@15347
   256
	case t of (Const ("Trueprop", _) $ Const ("True", _)) => rm_redundant_cls thms
paulson@15347
   257
		| _ => thm::(rm_redundant_cls thms)
paulson@15347
   258
    end;
paulson@15347
   259
paulson@15347
   260
(* transform an Isabelle thm into CNF *)
paulson@15347
   261
fun cnf_axiom thm =
paulson@15370
   262
    let val thm' = transfer_to_Reconstruction thm
paulson@15499
   263
	val thm'' = if (is_elimR thm') then (cnf_elim thm')  else cnf_rule thm'
paulson@15347
   264
    in
paulson@15347
   265
	rm_redundant_cls thm''
paulson@15347
   266
    end;
paulson@15347
   267
paulson@15499
   268
fun meta_cnf_axiom thm = map (zero_var_indexes o make_meta_clause) (cnf_axiom thm);
paulson@15499
   269
paulson@15347
   270
paulson@15347
   271
(* changed: with one extra case added *)
paulson@15347
   272
fun univ_vars_of_aux (Const ("Hilbert_Choice.Eps",_) $ Abs(_,_,body)) vars = univ_vars_of_aux body vars
paulson@15347
   273
  | univ_vars_of_aux (Const ("Ex",_) $ Abs(_,_,body)) vars = univ_vars_of_aux body vars (* EX x. body *)
paulson@15347
   274
  | univ_vars_of_aux (P $ Q) vars =
paulson@15347
   275
    let val vars' = univ_vars_of_aux P vars
paulson@15347
   276
    in
paulson@15347
   277
	univ_vars_of_aux Q vars'
paulson@15347
   278
    end
paulson@15347
   279
  | univ_vars_of_aux (t as Var(_,_)) vars = 
paulson@15347
   280
    if (t mem vars) then vars else (t::vars)
paulson@15347
   281
  | univ_vars_of_aux _ vars = vars;
paulson@15347
   282
  
paulson@15347
   283
paulson@15347
   284
fun univ_vars_of t = univ_vars_of_aux t [];
paulson@15347
   285
paulson@15347
   286
paulson@15347
   287
fun get_new_skolem epss (t as (Const ("Hilbert_Choice.Eps",_) $ Abs(_,tp,_)))  = 
paulson@15347
   288
    let val all_vars = univ_vars_of t
paulson@15347
   289
	val sk_term = ResSkolemFunction.gen_skolem all_vars tp
paulson@15347
   290
    in
paulson@15347
   291
	(sk_term,(t,sk_term)::epss)
paulson@15347
   292
    end;
paulson@15347
   293
paulson@15347
   294
skalberg@15531
   295
fun sk_lookup [] t = NONE
skalberg@15531
   296
  | sk_lookup ((tm,sk_tm)::tms) t = if (t = tm) then SOME (sk_tm) else (sk_lookup tms t);
paulson@15347
   297
paulson@15347
   298
paulson@15390
   299
paulson@15390
   300
(* get the proper skolem term to replace epsilon term *)
paulson@15347
   301
fun get_skolem epss t = 
paulson@15347
   302
    let val sk_fun = sk_lookup epss t
paulson@15347
   303
    in
skalberg@15531
   304
	case sk_fun of NONE => get_new_skolem epss t
skalberg@15531
   305
		     | SOME sk => (sk,epss)
paulson@15347
   306
    end;
paulson@15347
   307
paulson@15347
   308
paulson@15347
   309
fun rm_Eps_cls_aux epss (t as (Const ("Hilbert_Choice.Eps",_) $ Abs(_,_,_))) = get_skolem epss t
paulson@15347
   310
  | rm_Eps_cls_aux epss (P $ Q) =
paulson@15347
   311
    let val (P',epss') = rm_Eps_cls_aux epss P
paulson@15347
   312
	val (Q',epss'') = rm_Eps_cls_aux epss' Q
paulson@15347
   313
    in
paulson@15347
   314
	(P' $ Q',epss'')
paulson@15347
   315
    end
paulson@15347
   316
  | rm_Eps_cls_aux epss t = (t,epss);
paulson@15347
   317
paulson@15347
   318
paulson@15347
   319
fun rm_Eps_cls epss thm =
paulson@15347
   320
    let val tm = prop_of thm
paulson@15347
   321
    in
paulson@15347
   322
	rm_Eps_cls_aux epss tm
paulson@15347
   323
    end;
paulson@15347
   324
paulson@15347
   325
paulson@15390
   326
(* remove the epsilon terms in a formula, by skolem terms. *)
paulson@15347
   327
fun rm_Eps _ [] = []
paulson@15347
   328
  | rm_Eps epss (thm::thms) = 
paulson@15347
   329
    let val (thm',epss') = rm_Eps_cls epss thm
paulson@15347
   330
    in
paulson@15347
   331
	thm' :: (rm_Eps epss' thms)
paulson@15347
   332
    end;
paulson@15347
   333
paulson@15347
   334
paulson@15347
   335
paulson@15347
   336
(* changed, now it also finds out the name of the theorem. *)
paulson@15390
   337
(* convert a theorem into CNF and then into Clause.clause format. *)
paulson@15347
   338
fun clausify_axiom thm =
paulson@15347
   339
    let val isa_clauses = cnf_axiom thm (*"isa_clauses" are already "standard"ed. *)
paulson@15347
   340
        val isa_clauses' = rm_Eps [] isa_clauses
paulson@15347
   341
        val thm_name = Thm.name_of_thm thm
paulson@15347
   342
	val clauses_n = length isa_clauses
paulson@15347
   343
	fun make_axiom_clauses _ [] = []
paulson@15347
   344
	  | make_axiom_clauses i (cls::clss) = (ResClause.make_axiom_clause cls (thm_name,i)) :: make_axiom_clauses (i+1) clss 
paulson@15347
   345
    in
paulson@15347
   346
	make_axiom_clauses 0 isa_clauses'
paulson@15347
   347
		
paulson@15347
   348
    end;
paulson@15347
   349
  
paulson@15347
   350
paulson@15347
   351
(******** Extracting and CNF/Clausify theorems from a classical reasoner and simpset of a given theory ******)
paulson@15347
   352
paulson@15347
   353
paulson@15347
   354
local
paulson@15347
   355
paulson@15347
   356
fun retr_thms ([]:MetaSimplifier.rrule list) = []
paulson@15347
   357
	  | retr_thms (r::rs) = (#thm r)::(retr_thms rs);
paulson@15347
   358
paulson@15347
   359
paulson@15347
   360
fun snds [] = []
paulson@15347
   361
  |   snds ((x,y)::l) = y::(snds l);
paulson@15347
   362
paulson@15347
   363
in
paulson@15347
   364
paulson@15347
   365
paulson@15347
   366
fun claset_rules_of_thy thy =
paulson@15347
   367
    let val clsset = rep_cs (claset_of thy)
paulson@15347
   368
	val safeEs = #safeEs clsset
paulson@15347
   369
	val safeIs = #safeIs clsset
paulson@15347
   370
	val hazEs = #hazEs clsset
paulson@15347
   371
	val hazIs = #hazIs clsset
paulson@15347
   372
    in
paulson@15347
   373
	safeEs @ safeIs @ hazEs @ hazIs
paulson@15347
   374
    end;
paulson@15347
   375
paulson@15347
   376
fun simpset_rules_of_thy thy =
paulson@15347
   377
    let val simpset = simpset_of thy
paulson@15347
   378
	val rules = #rules(fst (rep_ss simpset))
paulson@15347
   379
	val thms = retr_thms (snds(Net.dest rules))
paulson@15347
   380
    in
paulson@15347
   381
	thms
paulson@15347
   382
    end;
paulson@15347
   383
paulson@15347
   384
end;
paulson@15347
   385
paulson@15347
   386
paulson@15347
   387
(**** Translate a set of classical rules or simplifier rules into CNF (still as type "thm") from a given theory ****)
paulson@15347
   388
paulson@15347
   389
(* classical rules *)
paulson@15347
   390
fun cnf_classical_rules [] err_list = ([],err_list)
paulson@15347
   391
  | cnf_classical_rules (thm::thms) err_list = 
paulson@15347
   392
    let val (ts,es) = cnf_classical_rules thms err_list
paulson@15347
   393
    in
paulson@15347
   394
	((cnf_axiom thm)::ts,es) handle  _ => (ts,(thm::es))
paulson@15347
   395
    end;
paulson@15347
   396
paulson@15347
   397
paulson@15347
   398
(* CNF all rules from a given theory's classical reasoner *)
paulson@15347
   399
fun cnf_classical_rules_thy thy = 
paulson@15347
   400
    let val rules = claset_rules_of_thy thy
paulson@15347
   401
    in
paulson@15347
   402
        cnf_classical_rules rules []
paulson@15347
   403
    end;
paulson@15347
   404
paulson@15347
   405
paulson@15347
   406
(* simplifier rules *)
paulson@15347
   407
fun cnf_simpset_rules [] err_list = ([],err_list)
paulson@15347
   408
  | cnf_simpset_rules (thm::thms) err_list =
paulson@15347
   409
    let val (ts,es) = cnf_simpset_rules thms err_list
paulson@15347
   410
    in
paulson@15347
   411
	((cnf_axiom thm)::ts,es) handle _ => (ts,(thm::es))
paulson@15347
   412
    end;
paulson@15347
   413
paulson@15347
   414
paulson@15347
   415
(* CNF all simplifier rules from a given theory's simpset *)
paulson@15347
   416
fun cnf_simpset_rules_thy thy =
paulson@15347
   417
    let val thms = simpset_rules_of_thy thy
paulson@15347
   418
    in
paulson@15347
   419
	cnf_simpset_rules thms []
paulson@15347
   420
    end;
paulson@15347
   421
paulson@15347
   422
paulson@15347
   423
paulson@15347
   424
(**** Convert all theorems of a classical reason/simpset into clauses (ResClause.clause) ****)
paulson@15347
   425
paulson@15347
   426
(* classical rules *)
paulson@15347
   427
fun clausify_classical_rules [] err_list = ([],err_list)
paulson@15347
   428
  | clausify_classical_rules (thm::thms) err_list =
paulson@15347
   429
    let val (ts,es) = clausify_classical_rules thms err_list
paulson@15347
   430
    in
paulson@15347
   431
	((clausify_axiom thm)::ts,es) handle  _ => (ts,(thm::es))
paulson@15347
   432
    end;
paulson@15347
   433
paulson@15390
   434
paulson@15390
   435
paulson@15390
   436
(* convert all classical rules from a given theory's classical reasoner into Clause.clause format. *)
paulson@15347
   437
fun clausify_classical_rules_thy thy =
paulson@15347
   438
    let val rules = claset_rules_of_thy thy
paulson@15347
   439
    in
paulson@15347
   440
	clausify_classical_rules rules []
paulson@15347
   441
    end;
paulson@15347
   442
paulson@15347
   443
paulson@15347
   444
(* simplifier rules *)
paulson@15347
   445
fun clausify_simpset_rules [] err_list = ([],err_list)
paulson@15347
   446
  | clausify_simpset_rules (thm::thms) err_list =
paulson@15347
   447
    let val (ts,es) = clausify_simpset_rules thms err_list
paulson@15347
   448
    in
paulson@15347
   449
	((clausify_axiom thm)::ts,es) handle _ => (ts,(thm::es))
paulson@15347
   450
    end;
paulson@15347
   451
paulson@15347
   452
paulson@15390
   453
(* convert all simplifier rules from a given theory's simplifier into Clause.clause format. *)
paulson@15347
   454
fun clausify_simpset_rules_thy thy =
paulson@15347
   455
    let val thms = simpset_rules_of_thy thy
paulson@15347
   456
    in
paulson@15347
   457
	clausify_simpset_rules thms []
paulson@15347
   458
    end;
paulson@15347
   459
paulson@15347
   460
paulson@15347
   461
paulson@15347
   462
paulson@15347
   463
end;