src/ZF/arith_data.ML
author skalberg
Sun Feb 13 17:15:14 2005 +0100 (2005-02-13)
changeset 15531 08c8dad8e399
parent 14387 e96d5c42c4b0
child 15570 8d8c70b41bab
permissions -rw-r--r--
Deleted Library.option type.
paulson@9548
     1
(*  Title:      ZF/arith_data.ML
paulson@9548
     2
    ID:         $Id$
paulson@9548
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
paulson@9548
     4
    Copyright   2000  University of Cambridge
paulson@9548
     5
paulson@9548
     6
Arithmetic simplification: cancellation of common terms
paulson@9548
     7
*)
paulson@9548
     8
paulson@9548
     9
signature ARITH_DATA =
paulson@9548
    10
sig
paulson@9570
    11
  (*the main outcome*)
paulson@9548
    12
  val nat_cancel: simproc list
paulson@9570
    13
  (*tools for use in similar applications*)
paulson@9570
    14
  val gen_trans_tac: thm -> thm option -> tactic
wenzelm@13462
    15
  val prove_conv: string -> tactic list -> Sign.sg ->
wenzelm@13487
    16
                  thm list -> string list -> term * term -> thm option
paulson@9570
    17
  val simplify_meta_eq: thm list -> thm -> thm
paulson@9874
    18
  (*debugging*)
paulson@9874
    19
  structure EqCancelNumeralsData   : CANCEL_NUMERALS_DATA
paulson@9874
    20
  structure LessCancelNumeralsData : CANCEL_NUMERALS_DATA
paulson@9874
    21
  structure DiffCancelNumeralsData : CANCEL_NUMERALS_DATA
paulson@9548
    22
end;
paulson@9548
    23
paulson@9570
    24
paulson@9548
    25
structure ArithData: ARITH_DATA =
paulson@9548
    26
struct
paulson@9548
    27
paulson@9548
    28
val iT = Ind_Syntax.iT;
paulson@9548
    29
paulson@9548
    30
val zero = Const("0", iT);
paulson@9548
    31
val succ = Const("succ", iT --> iT);
paulson@9548
    32
fun mk_succ t = succ $ t;
paulson@9548
    33
val one = mk_succ zero;
paulson@9548
    34
paulson@9570
    35
val mk_plus = FOLogic.mk_binop "Arith.add";
paulson@9548
    36
paulson@9548
    37
(*Thus mk_sum[t] yields t+#0; longer sums don't have a trailing zero*)
paulson@9548
    38
fun mk_sum []        = zero
paulson@9548
    39
  | mk_sum [t,u]     = mk_plus (t, u)
paulson@9548
    40
  | mk_sum (t :: ts) = mk_plus (t, mk_sum ts);
paulson@9548
    41
paulson@9548
    42
(*this version ALWAYS includes a trailing zero*)
paulson@9548
    43
fun long_mk_sum []        = zero
paulson@9548
    44
  | long_mk_sum (t :: ts) = mk_plus (t, mk_sum ts);
paulson@9548
    45
paulson@9548
    46
val dest_plus = FOLogic.dest_bin "Arith.add" iT;
paulson@9548
    47
paulson@9548
    48
(* dest_sum *)
paulson@9548
    49
paulson@9548
    50
fun dest_sum (Const("0",_)) = []
paulson@9548
    51
  | dest_sum (Const("succ",_) $ t) = one :: dest_sum t
paulson@9548
    52
  | dest_sum (Const("Arith.add",_) $ t $ u) = dest_sum t @ dest_sum u
paulson@9548
    53
  | dest_sum tm = [tm];
paulson@9548
    54
paulson@9548
    55
(*Apply the given rewrite (if present) just once*)
skalberg@15531
    56
fun gen_trans_tac th2 NONE      = all_tac
skalberg@15531
    57
  | gen_trans_tac th2 (SOME th) = ALLGOALS (rtac (th RS th2));
paulson@9548
    58
paulson@9548
    59
(*Use <-> or = depending on the type of t*)
paulson@9548
    60
fun mk_eq_iff(t,u) =
paulson@9548
    61
  if fastype_of t = iT then FOLogic.mk_eq(t,u)
paulson@9548
    62
                       else FOLogic.mk_iff(t,u);
paulson@9548
    63
paulson@9874
    64
(*We remove equality assumptions because they confuse the simplifier and
paulson@9874
    65
  because only type-checking assumptions are necessary.*)
wenzelm@13462
    66
fun is_eq_thm th =
paulson@9874
    67
    can FOLogic.dest_eq (FOLogic.dest_Trueprop (#prop (rep_thm th)));
paulson@9649
    68
paulson@9548
    69
fun add_chyps chyps ct = Drule.list_implies (map cprop_of chyps, ct);
paulson@9548
    70
wenzelm@13487
    71
fun prove_conv name tacs sg hyps xs (t,u) =
skalberg@15531
    72
  if t aconv u then NONE
paulson@9548
    73
  else
paulson@9874
    74
  let val hyps' = filter (not o is_eq_thm) hyps
wenzelm@12134
    75
      val goal = Logic.list_implies (map (#prop o Thm.rep_thm) hyps',
wenzelm@12134
    76
        FOLogic.mk_Trueprop (mk_eq_iff (t, u)));
skalberg@15531
    77
  in SOME (hyps' MRS Tactic.prove sg xs [] goal (K (EVERY tacs)))
wenzelm@13462
    78
      handle ERROR_MESSAGE msg =>
skalberg@15531
    79
        (warning (msg ^ "\nCancellation failed: no typing information? (" ^ name ^ ")"); NONE)
paulson@9548
    80
  end;
paulson@9548
    81
wenzelm@13462
    82
fun prep_simproc (name, pats, proc) =
wenzelm@13462
    83
  Simplifier.simproc (Theory.sign_of (the_context ())) name pats proc;
paulson@9548
    84
paulson@9548
    85
wenzelm@13462
    86
(*** Use CancelNumerals simproc without binary numerals,
paulson@9548
    87
     just for cancellation ***)
paulson@9548
    88
paulson@9570
    89
val mk_times = FOLogic.mk_binop "Arith.mult";
paulson@9548
    90
paulson@9548
    91
fun mk_prod [] = one
paulson@9548
    92
  | mk_prod [t] = t
paulson@9548
    93
  | mk_prod (t :: ts) = if t = one then mk_prod ts
paulson@9548
    94
                        else mk_times (t, mk_prod ts);
paulson@9548
    95
paulson@9548
    96
val dest_times = FOLogic.dest_bin "Arith.mult" iT;
paulson@9548
    97
paulson@9548
    98
fun dest_prod t =
paulson@9548
    99
      let val (t,u) = dest_times t
paulson@9548
   100
      in  dest_prod t @ dest_prod u  end
paulson@9548
   101
      handle TERM _ => [t];
paulson@9548
   102
paulson@9548
   103
(*Dummy version: the only arguments are 0 and 1*)
paulson@9548
   104
fun mk_coeff (0, t) = zero
paulson@9548
   105
  | mk_coeff (1, t) = t
paulson@9548
   106
  | mk_coeff _       = raise TERM("mk_coeff", []);
paulson@9548
   107
paulson@9548
   108
(*Dummy version: the "coefficient" is always 1.
paulson@9548
   109
  In the result, the factors are sorted terms*)
paulson@9548
   110
fun dest_coeff t = (1, mk_prod (sort Term.term_ord (dest_prod t)));
paulson@9548
   111
paulson@9548
   112
(*Find first coefficient-term THAT MATCHES u*)
paulson@9548
   113
fun find_first_coeff past u [] = raise TERM("find_first_coeff", [])
paulson@9548
   114
  | find_first_coeff past u (t::terms) =
paulson@9548
   115
        let val (n,u') = dest_coeff t
paulson@9548
   116
        in  if u aconv u' then (n, rev past @ terms)
paulson@9548
   117
                          else find_first_coeff (t::past) u terms
paulson@9548
   118
        end
paulson@9548
   119
        handle TERM _ => find_first_coeff (t::past) u terms;
paulson@9548
   120
paulson@9548
   121
paulson@9548
   122
(*Simplify #1*n and n*#1 to n*)
paulson@9548
   123
val add_0s = [add_0_natify, add_0_right_natify];
paulson@9548
   124
val add_succs = [add_succ, add_succ_right];
paulson@9548
   125
val mult_1s = [mult_1_natify, mult_1_right_natify];
paulson@9548
   126
val tc_rules = [natify_in_nat, add_type, diff_type, mult_type];
paulson@9548
   127
val natifys = [natify_0, natify_ident, add_natify1, add_natify2,
paulson@9570
   128
               diff_natify1, diff_natify2];
paulson@9548
   129
paulson@9548
   130
(*Final simplification: cancel + and **)
paulson@9548
   131
fun simplify_meta_eq rules =
paulson@9548
   132
    mk_meta_eq o
wenzelm@13462
   133
    simplify (FOL_ss addeqcongs[eq_cong2,iff_cong2]
paulson@9548
   134
                     delsimps iff_simps (*these could erase the whole rule!*)
wenzelm@13462
   135
                     addsimps rules);
paulson@9548
   136
paulson@9548
   137
val final_rules = add_0s @ mult_1s @ [mult_0, mult_0_right];
paulson@9548
   138
paulson@9548
   139
structure CancelNumeralsCommon =
paulson@9548
   140
  struct
paulson@14387
   141
  val mk_sum            = (fn T:typ => mk_sum)
paulson@9548
   142
  val dest_sum          = dest_sum
paulson@9548
   143
  val mk_coeff          = mk_coeff
paulson@9548
   144
  val dest_coeff        = dest_coeff
paulson@9548
   145
  val find_first_coeff  = find_first_coeff []
paulson@9548
   146
  val norm_tac_ss1 = ZF_ss addsimps add_0s@add_succs@mult_1s@add_ac
paulson@13126
   147
  val norm_tac_ss2 = ZF_ss addsimps add_0s@mult_1s@
paulson@13126
   148
                                    add_ac@mult_ac@tc_rules@natifys
paulson@9548
   149
  val norm_tac = ALLGOALS (asm_simp_tac norm_tac_ss1)
paulson@9548
   150
                 THEN ALLGOALS (asm_simp_tac norm_tac_ss2)
paulson@9548
   151
  val numeral_simp_tac_ss = ZF_ss addsimps add_0s@tc_rules@natifys
paulson@9548
   152
  val numeral_simp_tac  = ALLGOALS (asm_simp_tac numeral_simp_tac_ss)
paulson@9548
   153
  val simplify_meta_eq  = simplify_meta_eq final_rules
paulson@9548
   154
  end;
paulson@9548
   155
paulson@9874
   156
(** The functor argumnets are declared as separate structures
paulson@9874
   157
    so that they can be exported to ease debugging. **)
paulson@9548
   158
wenzelm@13462
   159
structure EqCancelNumeralsData =
paulson@9874
   160
  struct
paulson@9874
   161
  open CancelNumeralsCommon
paulson@9548
   162
  val prove_conv = prove_conv "nateq_cancel_numerals"
paulson@9548
   163
  val mk_bal   = FOLogic.mk_eq
paulson@9649
   164
  val dest_bal = FOLogic.dest_eq
paulson@9548
   165
  val bal_add1 = eq_add_iff RS iff_trans
paulson@9548
   166
  val bal_add2 = eq_add_iff RS iff_trans
paulson@9548
   167
  val trans_tac = gen_trans_tac iff_trans
paulson@9874
   168
  end;
paulson@9874
   169
paulson@9874
   170
structure EqCancelNumerals = CancelNumeralsFun(EqCancelNumeralsData);
paulson@9548
   171
wenzelm@13462
   172
structure LessCancelNumeralsData =
paulson@9874
   173
  struct
paulson@9874
   174
  open CancelNumeralsCommon
paulson@9548
   175
  val prove_conv = prove_conv "natless_cancel_numerals"
paulson@13155
   176
  val mk_bal   = FOLogic.mk_binrel "Ordinal.lt"
paulson@13155
   177
  val dest_bal = FOLogic.dest_bin "Ordinal.lt" iT
paulson@9548
   178
  val bal_add1 = less_add_iff RS iff_trans
paulson@9548
   179
  val bal_add2 = less_add_iff RS iff_trans
paulson@9548
   180
  val trans_tac = gen_trans_tac iff_trans
paulson@9874
   181
  end;
paulson@9874
   182
paulson@9874
   183
structure LessCancelNumerals = CancelNumeralsFun(LessCancelNumeralsData);
paulson@9548
   184
wenzelm@13462
   185
structure DiffCancelNumeralsData =
paulson@9874
   186
  struct
paulson@9874
   187
  open CancelNumeralsCommon
paulson@9548
   188
  val prove_conv = prove_conv "natdiff_cancel_numerals"
paulson@9570
   189
  val mk_bal   = FOLogic.mk_binop "Arith.diff"
paulson@9548
   190
  val dest_bal = FOLogic.dest_bin "Arith.diff" iT
paulson@9548
   191
  val bal_add1 = diff_add_eq RS trans
paulson@9548
   192
  val bal_add2 = diff_add_eq RS trans
paulson@9548
   193
  val trans_tac = gen_trans_tac trans
paulson@9874
   194
  end;
paulson@9874
   195
paulson@9874
   196
structure DiffCancelNumerals = CancelNumeralsFun(DiffCancelNumeralsData);
paulson@9548
   197
paulson@9548
   198
paulson@9548
   199
val nat_cancel =
wenzelm@13462
   200
  map prep_simproc
wenzelm@13462
   201
   [("nateq_cancel_numerals",
wenzelm@13462
   202
     ["l #+ m = n", "l = m #+ n",
wenzelm@13462
   203
      "l #* m = n", "l = m #* n",
wenzelm@13462
   204
      "succ(m) = n", "m = succ(n)"],
wenzelm@13462
   205
     EqCancelNumerals.proc),
wenzelm@13462
   206
    ("natless_cancel_numerals",
wenzelm@13462
   207
     ["l #+ m < n", "l < m #+ n",
wenzelm@13462
   208
      "l #* m < n", "l < m #* n",
wenzelm@13462
   209
      "succ(m) < n", "m < succ(n)"],
wenzelm@13462
   210
     LessCancelNumerals.proc),
wenzelm@13462
   211
    ("natdiff_cancel_numerals",
wenzelm@13462
   212
     ["(l #+ m) #- n", "l #- (m #+ n)",
wenzelm@13462
   213
      "(l #* m) #- n", "l #- (m #* n)",
wenzelm@13462
   214
      "succ(m) #- n", "m #- succ(n)"],
wenzelm@13462
   215
     DiffCancelNumerals.proc)];
paulson@9548
   216
paulson@9548
   217
end;
paulson@9548
   218
paulson@13259
   219
Addsimprocs ArithData.nat_cancel;
paulson@13259
   220
paulson@13259
   221
paulson@9548
   222
(*examples:
paulson@9548
   223
print_depth 22;
paulson@9548
   224
set timing;
paulson@9548
   225
set trace_simp;
paulson@9548
   226
fun test s = (Goal s; by (Asm_simp_tac 1));
paulson@9548
   227
paulson@9548
   228
test "x #+ y = x #+ z";
paulson@9548
   229
test "y #+ x = x #+ z";
paulson@9548
   230
test "x #+ y #+ z = x #+ z";
paulson@9548
   231
test "y #+ (z #+ x) = z #+ x";
paulson@9548
   232
test "x #+ y #+ z = (z #+ y) #+ (x #+ w)";
paulson@9548
   233
test "x#*y #+ z = (z #+ y) #+ (y#*x #+ w)";
paulson@9548
   234
paulson@9548
   235
test "x #+ succ(y) = x #+ z";
paulson@9548
   236
test "x #+ succ(y) = succ(z #+ x)";
paulson@9548
   237
test "succ(x) #+ succ(y) #+ z = succ(z #+ y) #+ succ(x #+ w)";
paulson@9548
   238
paulson@9548
   239
test "(x #+ y) #- (x #+ z) = w";
paulson@9548
   240
test "(y #+ x) #- (x #+ z) = dd";
paulson@9548
   241
test "(x #+ y #+ z) #- (x #+ z) = dd";
paulson@9548
   242
test "(y #+ (z #+ x)) #- (z #+ x) = dd";
paulson@9548
   243
test "(x #+ y #+ z) #- ((z #+ y) #+ (x #+ w)) = dd";
paulson@9548
   244
test "(x#*y #+ z) #- ((z #+ y) #+ (y#*x #+ w)) = dd";
paulson@9548
   245
paulson@9548
   246
(*BAD occurrence of natify*)
paulson@9548
   247
test "(x #+ succ(y)) #- (x #+ z) = dd";
paulson@9548
   248
paulson@9548
   249
test "x #* y2 #+ y #* x2 = y #* x2 #+ x #* y2";
paulson@9548
   250
paulson@9548
   251
test "(x #+ succ(y)) #- (succ(z #+ x)) = dd";
paulson@9548
   252
test "(succ(x) #+ succ(y) #+ z) #- (succ(z #+ y) #+ succ(x #+ w)) = dd";
paulson@9548
   253
paulson@9548
   254
(*use of typing information*)
paulson@9548
   255
test "x : nat ==> x #+ y = x";
paulson@9548
   256
test "x : nat --> x #+ y = x";
paulson@9548
   257
test "x : nat ==> x #+ y < x";
paulson@9548
   258
test "x : nat ==> x < y#+x";
paulson@13126
   259
test "x : nat ==> x le succ(x)";
paulson@9548
   260
paulson@9548
   261
(*fails: no typing information isn't visible*)
paulson@9548
   262
test "x #+ y = x";
paulson@9548
   263
paulson@9548
   264
test "x #+ y < x #+ z";
paulson@9548
   265
test "y #+ x < x #+ z";
paulson@9548
   266
test "x #+ y #+ z < x #+ z";
paulson@9548
   267
test "y #+ z #+ x < x #+ z";
paulson@9548
   268
test "y #+ (z #+ x) < z #+ x";
paulson@9548
   269
test "x #+ y #+ z < (z #+ y) #+ (x #+ w)";
paulson@9548
   270
test "x#*y #+ z < (z #+ y) #+ (y#*x #+ w)";
paulson@9548
   271
paulson@9548
   272
test "x #+ succ(y) < x #+ z";
paulson@9548
   273
test "x #+ succ(y) < succ(z #+ x)";
paulson@9548
   274
test "succ(x) #+ succ(y) #+ z < succ(z #+ y) #+ succ(x #+ w)";
paulson@9548
   275
paulson@9548
   276
test "x #+ succ(y) le succ(z #+ x)";
paulson@9548
   277
*)