src/HOL/List.thy
author wenzelm
Sun Jul 29 14:29:51 2007 +0200 (2007-07-29)
changeset 24037 0a41d2ebc0cd
parent 23983 79dc793bec43
child 24130 5ab8044b6d46
permissions -rw-r--r--
proper simproc_setup for "list_neq";
wenzelm@13462
     1
(*  Title:      HOL/List.thy
wenzelm@13462
     2
    ID:         $Id$
wenzelm@13462
     3
    Author:     Tobias Nipkow
clasohm@923
     4
*)
clasohm@923
     5
wenzelm@13114
     6
header {* The datatype of finite lists *}
wenzelm@13122
     7
nipkow@15131
     8
theory List
haftmann@22844
     9
imports PreList
wenzelm@21754
    10
uses "Tools/string_syntax.ML"
wenzelm@23554
    11
  ("Tools/function_package/lexicographic_order.ML")
wenzelm@23554
    12
  ("Tools/function_package/fundef_datatype.ML")
nipkow@15131
    13
begin
clasohm@923
    14
wenzelm@13142
    15
datatype 'a list =
wenzelm@13366
    16
    Nil    ("[]")
wenzelm@13366
    17
  | Cons 'a  "'a list"    (infixr "#" 65)
clasohm@923
    18
nipkow@15392
    19
subsection{*Basic list processing functions*}
nipkow@15302
    20
clasohm@923
    21
consts
wenzelm@13366
    22
  filter:: "('a => bool) => 'a list => 'a list"
wenzelm@13366
    23
  concat:: "'a list list => 'a list"
wenzelm@13366
    24
  foldl :: "('b => 'a => 'b) => 'b => 'a list => 'b"
wenzelm@13366
    25
  foldr :: "('a => 'b => 'b) => 'a list => 'b => 'b"
wenzelm@13366
    26
  hd:: "'a list => 'a"
wenzelm@13366
    27
  tl:: "'a list => 'a list"
wenzelm@13366
    28
  last:: "'a list => 'a"
wenzelm@13366
    29
  butlast :: "'a list => 'a list"
wenzelm@13366
    30
  set :: "'a list => 'a set"
wenzelm@13366
    31
  map :: "('a=>'b) => ('a list => 'b list)"
nipkow@23096
    32
  listsum ::  "'a list => 'a::monoid_add"
wenzelm@13366
    33
  nth :: "'a list => nat => 'a"    (infixl "!" 100)
wenzelm@13366
    34
  list_update :: "'a list => nat => 'a => 'a list"
wenzelm@13366
    35
  take:: "nat => 'a list => 'a list"
wenzelm@13366
    36
  drop:: "nat => 'a list => 'a list"
wenzelm@13366
    37
  takeWhile :: "('a => bool) => 'a list => 'a list"
wenzelm@13366
    38
  dropWhile :: "('a => bool) => 'a list => 'a list"
wenzelm@13366
    39
  rev :: "'a list => 'a list"
wenzelm@13366
    40
  zip :: "'a list => 'b list => ('a * 'b) list"
nipkow@15425
    41
  upt :: "nat => nat => nat list" ("(1[_..</_'])")
wenzelm@13366
    42
  remdups :: "'a list => 'a list"
nipkow@15110
    43
  remove1 :: "'a => 'a list => 'a list"
wenzelm@13366
    44
  "distinct":: "'a list => bool"
wenzelm@13366
    45
  replicate :: "nat => 'a => 'a list"
nipkow@19390
    46
  splice :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list"
nipkow@22830
    47
  allpairs :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'a list \<Rightarrow> 'b list \<Rightarrow> 'c list"
nipkow@15302
    48
wenzelm@19363
    49
abbreviation
wenzelm@21404
    50
  upto:: "nat => nat => nat list"  ("(1[_../_])") where
wenzelm@19363
    51
  "[i..j] == [i..<(Suc j)]"
wenzelm@19302
    52
clasohm@923
    53
nipkow@13146
    54
nonterminals lupdbinds lupdbind
nipkow@5077
    55
clasohm@923
    56
syntax
wenzelm@13366
    57
  -- {* list Enumeration *}
wenzelm@13366
    58
  "@list" :: "args => 'a list"    ("[(_)]")
clasohm@923
    59
wenzelm@13366
    60
  -- {* Special syntax for filter *}
nipkow@23279
    61
  "@filter" :: "[pttrn, 'a list, bool] => 'a list"    ("(1[_<-_./ _])")
clasohm@923
    62
wenzelm@13366
    63
  -- {* list update *}
wenzelm@13366
    64
  "_lupdbind":: "['a, 'a] => lupdbind"    ("(2_ :=/ _)")
wenzelm@13366
    65
  "" :: "lupdbind => lupdbinds"    ("_")
wenzelm@13366
    66
  "_lupdbinds" :: "[lupdbind, lupdbinds] => lupdbinds"    ("_,/ _")
wenzelm@13366
    67
  "_LUpdate" :: "['a, lupdbinds] => 'a"    ("_/[(_)]" [900,0] 900)
nipkow@5077
    68
clasohm@923
    69
translations
wenzelm@13366
    70
  "[x, xs]" == "x#[xs]"
wenzelm@13366
    71
  "[x]" == "x#[]"
nipkow@23279
    72
  "[x<-xs . P]"== "filter (%x. P) xs"
clasohm@923
    73
wenzelm@13366
    74
  "_LUpdate xs (_lupdbinds b bs)"== "_LUpdate (_LUpdate xs b) bs"
wenzelm@13366
    75
  "xs[i:=x]" == "list_update xs i x"
nipkow@5077
    76
nipkow@5427
    77
wenzelm@12114
    78
syntax (xsymbols)
nipkow@23279
    79
  "@filter" :: "[pttrn, 'a list, bool] => 'a list"("(1[_\<leftarrow>_ ./ _])")
kleing@14565
    80
syntax (HTML output)
nipkow@23279
    81
  "@filter" :: "[pttrn, 'a list, bool] => 'a list"("(1[_\<leftarrow>_ ./ _])")
paulson@3342
    82
paulson@3342
    83
wenzelm@13142
    84
text {*
wenzelm@14589
    85
  Function @{text size} is overloaded for all datatypes. Users may
wenzelm@13366
    86
  refer to the list version as @{text length}. *}
wenzelm@13142
    87
wenzelm@19363
    88
abbreviation
wenzelm@21404
    89
  length :: "'a list => nat" where
wenzelm@19363
    90
  "length == size"
nipkow@15302
    91
berghofe@5183
    92
primrec
paulson@15307
    93
  "hd(x#xs) = x"
paulson@15307
    94
berghofe@5183
    95
primrec
paulson@15307
    96
  "tl([]) = []"
paulson@15307
    97
  "tl(x#xs) = xs"
paulson@15307
    98
berghofe@5183
    99
primrec
paulson@15307
   100
  "last(x#xs) = (if xs=[] then x else last xs)"
paulson@15307
   101
berghofe@5183
   102
primrec
paulson@15307
   103
  "butlast []= []"
paulson@15307
   104
  "butlast(x#xs) = (if xs=[] then [] else x#butlast xs)"
paulson@15307
   105
berghofe@5183
   106
primrec
paulson@15307
   107
  "set [] = {}"
paulson@15307
   108
  "set (x#xs) = insert x (set xs)"
paulson@15307
   109
berghofe@5183
   110
primrec
paulson@15307
   111
  "map f [] = []"
paulson@15307
   112
  "map f (x#xs) = f(x)#map f xs"
paulson@15307
   113
haftmann@23235
   114
function (*authentic syntax for append -- revert to primrec
haftmann@23235
   115
  as soon as "authentic" primrec is available*)
haftmann@23235
   116
  append :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" (infixr "@" 65)
haftmann@23235
   117
where
haftmann@23235
   118
  append_Nil: "[] @ ys = ys"
haftmann@23235
   119
  | append_Cons: "(x # xs) @ ys = x # (xs @ ys)"
haftmann@23235
   120
by (auto, case_tac a, auto)
haftmann@23235
   121
termination by (relation "measure (size o fst)") auto
paulson@15307
   122
berghofe@5183
   123
primrec
paulson@15307
   124
  "rev([]) = []"
paulson@15307
   125
  "rev(x#xs) = rev(xs) @ [x]"
paulson@15307
   126
berghofe@5183
   127
primrec
paulson@15307
   128
  "filter P [] = []"
paulson@15307
   129
  "filter P (x#xs) = (if P x then x#filter P xs else filter P xs)"
paulson@15307
   130
berghofe@5183
   131
primrec
paulson@15307
   132
  foldl_Nil:"foldl f a [] = a"
paulson@15307
   133
  foldl_Cons: "foldl f a (x#xs) = foldl f (f a x) xs"
paulson@15307
   134
paulson@8000
   135
primrec
paulson@15307
   136
  "foldr f [] a = a"
paulson@15307
   137
  "foldr f (x#xs) a = f x (foldr f xs a)"
paulson@15307
   138
berghofe@5183
   139
primrec
paulson@15307
   140
  "concat([]) = []"
paulson@15307
   141
  "concat(x#xs) = x @ concat(xs)"
paulson@15307
   142
berghofe@5183
   143
primrec
nipkow@23096
   144
"listsum [] = 0"
nipkow@23096
   145
"listsum (x # xs) = x + listsum xs"
nipkow@23096
   146
nipkow@23096
   147
primrec
paulson@15307
   148
  drop_Nil:"drop n [] = []"
paulson@15307
   149
  drop_Cons: "drop n (x#xs) = (case n of 0 => x#xs | Suc(m) => drop m xs)"
paulson@15307
   150
  -- {*Warning: simpset does not contain this definition, but separate
paulson@15307
   151
       theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
paulson@15307
   152
berghofe@5183
   153
primrec
paulson@15307
   154
  take_Nil:"take n [] = []"
paulson@15307
   155
  take_Cons: "take n (x#xs) = (case n of 0 => [] | Suc(m) => x # take m xs)"
paulson@15307
   156
  -- {*Warning: simpset does not contain this definition, but separate
paulson@15307
   157
       theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
paulson@15307
   158
wenzelm@13142
   159
primrec
paulson@15307
   160
  nth_Cons:"(x#xs)!n = (case n of 0 => x | (Suc k) => xs!k)"
paulson@15307
   161
  -- {*Warning: simpset does not contain this definition, but separate
paulson@15307
   162
       theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
paulson@15307
   163
berghofe@5183
   164
primrec
paulson@15307
   165
  "[][i:=v] = []"
paulson@15307
   166
  "(x#xs)[i:=v] = (case i of 0 => v # xs | Suc j => x # xs[j:=v])"
paulson@15307
   167
paulson@15307
   168
primrec
paulson@15307
   169
  "takeWhile P [] = []"
paulson@15307
   170
  "takeWhile P (x#xs) = (if P x then x#takeWhile P xs else [])"
paulson@15307
   171
berghofe@5183
   172
primrec
paulson@15307
   173
  "dropWhile P [] = []"
paulson@15307
   174
  "dropWhile P (x#xs) = (if P x then dropWhile P xs else x#xs)"
paulson@15307
   175
berghofe@5183
   176
primrec
paulson@15307
   177
  "zip xs [] = []"
paulson@15307
   178
  zip_Cons: "zip xs (y#ys) = (case xs of [] => [] | z#zs => (z,y)#zip zs ys)"
paulson@15307
   179
  -- {*Warning: simpset does not contain this definition, but separate
paulson@15307
   180
       theorems for @{text "xs = []"} and @{text "xs = z # zs"} *}
paulson@15307
   181
nipkow@5427
   182
primrec
nipkow@15425
   183
  upt_0: "[i..<0] = []"
nipkow@15425
   184
  upt_Suc: "[i..<(Suc j)] = (if i <= j then [i..<j] @ [j] else [])"
paulson@15307
   185
berghofe@5183
   186
primrec
paulson@15307
   187
  "distinct [] = True"
paulson@15307
   188
  "distinct (x#xs) = (x ~: set xs \<and> distinct xs)"
paulson@15307
   189
berghofe@5183
   190
primrec
paulson@15307
   191
  "remdups [] = []"
paulson@15307
   192
  "remdups (x#xs) = (if x : set xs then remdups xs else x # remdups xs)"
paulson@15307
   193
berghofe@5183
   194
primrec
paulson@15307
   195
  "remove1 x [] = []"
paulson@15307
   196
  "remove1 x (y#xs) = (if x=y then xs else y # remove1 x xs)"
paulson@15307
   197
nipkow@15110
   198
primrec
paulson@15307
   199
  replicate_0: "replicate 0 x = []"
paulson@15307
   200
  replicate_Suc: "replicate (Suc n) x = x # replicate n x"
paulson@15307
   201
haftmann@21061
   202
definition
wenzelm@21404
   203
  rotate1 :: "'a list \<Rightarrow> 'a list" where
wenzelm@21404
   204
  "rotate1 xs = (case xs of [] \<Rightarrow> [] | x#xs \<Rightarrow> xs @ [x])"
wenzelm@21404
   205
wenzelm@21404
   206
definition
wenzelm@21404
   207
  rotate :: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list" where
wenzelm@21404
   208
  "rotate n = rotate1 ^ n"
wenzelm@21404
   209
wenzelm@21404
   210
definition
wenzelm@21404
   211
  list_all2 :: "('a => 'b => bool) => 'a list => 'b list => bool" where
wenzelm@21404
   212
  "list_all2 P xs ys =
haftmann@21061
   213
    (length xs = length ys \<and> (\<forall>(x, y) \<in> set (zip xs ys). P x y))"
wenzelm@21404
   214
wenzelm@21404
   215
definition
wenzelm@21404
   216
  sublist :: "'a list => nat set => 'a list" where
wenzelm@21404
   217
  "sublist xs A = map fst (filter (\<lambda>p. snd p \<in> A) (zip xs [0..<size xs]))"
nipkow@17086
   218
nipkow@17086
   219
primrec
haftmann@21061
   220
  "splice [] ys = ys"
haftmann@21061
   221
  "splice (x#xs) ys = (if ys=[] then x#xs else x # hd ys # splice xs (tl ys))"
haftmann@21061
   222
    -- {*Warning: simpset does not contain the second eqn but a derived one. *}
haftmann@21061
   223
nipkow@22828
   224
primrec
nipkow@22830
   225
"allpairs f [] ys = []"
nipkow@22830
   226
"allpairs f (x # xs) ys = map (f x) ys @ allpairs f xs ys"
haftmann@21061
   227
wenzelm@23388
   228
subsubsection {* List comprehension *}
nipkow@23192
   229
nipkow@23209
   230
text{* Input syntax for Haskell-like list comprehension
nipkow@23209
   231
notation. Typical example: @{text"[(x,y). x \<leftarrow> xs, y \<leftarrow> ys, x \<noteq> y]"}, the list of all pairs of distinct elements from @{text xs} and @{text ys}.
nipkow@23209
   232
nipkow@23240
   233
There are two differences to Haskell.  The general synatx is
nipkow@23240
   234
@{text"[e. p \<leftarrow> xs, \<dots>]"} rather than \verb![x| x <- xs, ...]!. Patterns in
nipkow@23240
   235
generators can only be tuples (at the moment).
nipkow@23240
   236
nipkow@23240
   237
To avoid misunderstandings, the translation is not reversed upon
nipkow@23240
   238
output. You can add the inverse translations in your own theory if you
nipkow@23240
   239
desire.
nipkow@23240
   240
nipkow@23240
   241
Hint: formulae containing complex list comprehensions may become quite
nipkow@23240
   242
unreadable after the simplifier has finished with them. It can be
nipkow@23240
   243
helpful to introduce definitions for such list comprehensions and
nipkow@23240
   244
treat them separately in suitable lemmas.
nipkow@23209
   245
*}
nipkow@23209
   246
(*
nipkow@23240
   247
Proper theorem proving support would be nice. For example, if
nipkow@23192
   248
@{text"set[f x y. x \<leftarrow> xs, y \<leftarrow> ys, P x y]"}
nipkow@23192
   249
produced something like
nipkow@23209
   250
@{term"{z. EX x: set xs. EX y:set ys. P x y \<and> z = f x y}"}.
nipkow@23209
   251
*)
nipkow@23209
   252
nipkow@23240
   253
nonterminals lc_qual lc_quals
nipkow@23192
   254
nipkow@23192
   255
syntax
nipkow@23240
   256
"_listcompr" :: "'a \<Rightarrow> lc_qual \<Rightarrow> lc_quals \<Rightarrow> 'a list"  ("[_ . __")
nipkow@23240
   257
"_lc_gen" :: "pttrn \<Rightarrow> 'a list \<Rightarrow> lc_qual" ("_ <- _")
nipkow@23240
   258
"_lc_test" :: "bool \<Rightarrow> lc_qual" ("_")
nipkow@23240
   259
"_lc_end" :: "lc_quals" ("]")
nipkow@23240
   260
"_lc_quals" :: "lc_qual \<Rightarrow> lc_quals \<Rightarrow> lc_quals" (", __")
nipkow@23192
   261
nipkow@23192
   262
translations
nipkow@23279
   263
"[e. p<-xs]" => "map (%p. e) xs"
nipkow@23240
   264
"_listcompr e (_lc_gen p xs) (_lc_quals Q Qs)"
nipkow@23240
   265
 => "concat (map (%p. _listcompr e Q Qs) xs)"
nipkow@23240
   266
"[e. P]" => "if P then [e] else []"
nipkow@23240
   267
"_listcompr e (_lc_test P) (_lc_quals Q Qs)"
nipkow@23240
   268
 => "if P then (_listcompr e Q Qs) else []"
nipkow@23240
   269
nipkow@23279
   270
syntax (xsymbols)
nipkow@23279
   271
"_lc_gen" :: "pttrn \<Rightarrow> 'a list \<Rightarrow> lc_qual" ("_ \<leftarrow> _")
nipkow@23279
   272
syntax (HTML output)
nipkow@23279
   273
"_lc_gen" :: "pttrn \<Rightarrow> 'a list \<Rightarrow> lc_qual" ("_ \<leftarrow> _")
nipkow@23279
   274
nipkow@23279
   275
nipkow@23240
   276
(*
nipkow@23240
   277
term "[(x,y,z). b]"
nipkow@23240
   278
term "[(x,y,z). x \<leftarrow> xs]"
nipkow@23240
   279
term "[(x,y,z). x<a, x>b]"
nipkow@23240
   280
term "[(x,y,z). x<a, x\<leftarrow>xs]"
nipkow@23240
   281
term "[(x,y,z). x\<leftarrow>xs, x>b]"
nipkow@23240
   282
term "[(x,y,z). x\<leftarrow>xs, y\<leftarrow>ys]"
nipkow@23240
   283
term "[(x,y,z). x<a, x>b, x=d]"
nipkow@23240
   284
term "[(x,y,z). x<a, x>b, y\<leftarrow>ys]"
nipkow@23240
   285
term "[(x,y,z). x<a, x\<leftarrow>xs,y>b]"
nipkow@23240
   286
term "[(x,y,z). x<a, x\<leftarrow>xs, y\<leftarrow>ys]"
nipkow@23240
   287
term "[(x,y,z). x\<leftarrow>xs, x>b, y<a]"
nipkow@23240
   288
term "[(x,y,z). x\<leftarrow>xs, x>b, y\<leftarrow>ys]"
nipkow@23240
   289
term "[(x,y,z). x\<leftarrow>xs, y\<leftarrow>ys,y>x]"
nipkow@23240
   290
term "[(x,y,z). x\<leftarrow>xs, y\<leftarrow>ys,z\<leftarrow>zs]"
nipkow@23192
   291
*)
nipkow@23192
   292
nipkow@23240
   293
haftmann@21061
   294
subsubsection {* @{const Nil} and @{const Cons} *}
haftmann@21061
   295
haftmann@21061
   296
lemma not_Cons_self [simp]:
haftmann@21061
   297
  "xs \<noteq> x # xs"
nipkow@13145
   298
by (induct xs) auto
wenzelm@13114
   299
wenzelm@13142
   300
lemmas not_Cons_self2 [simp] = not_Cons_self [symmetric]
wenzelm@13114
   301
wenzelm@13142
   302
lemma neq_Nil_conv: "(xs \<noteq> []) = (\<exists>y ys. xs = y # ys)"
nipkow@13145
   303
by (induct xs) auto
wenzelm@13114
   304
wenzelm@13142
   305
lemma length_induct:
haftmann@21061
   306
  "(\<And>xs. \<forall>ys. length ys < length xs \<longrightarrow> P ys \<Longrightarrow> P xs) \<Longrightarrow> P xs"
nipkow@17589
   307
by (rule measure_induct [of length]) iprover
wenzelm@13114
   308
wenzelm@13114
   309
haftmann@21061
   310
subsubsection {* @{const length} *}
wenzelm@13114
   311
wenzelm@13142
   312
text {*
haftmann@21061
   313
  Needs to come before @{text "@"} because of theorem @{text
haftmann@21061
   314
  append_eq_append_conv}.
wenzelm@13142
   315
*}
wenzelm@13114
   316
wenzelm@13142
   317
lemma length_append [simp]: "length (xs @ ys) = length xs + length ys"
nipkow@13145
   318
by (induct xs) auto
wenzelm@13114
   319
wenzelm@13142
   320
lemma length_map [simp]: "length (map f xs) = length xs"
nipkow@13145
   321
by (induct xs) auto
wenzelm@13114
   322
wenzelm@13142
   323
lemma length_rev [simp]: "length (rev xs) = length xs"
nipkow@13145
   324
by (induct xs) auto
wenzelm@13114
   325
wenzelm@13142
   326
lemma length_tl [simp]: "length (tl xs) = length xs - 1"
nipkow@13145
   327
by (cases xs) auto
wenzelm@13114
   328
nipkow@22828
   329
lemma length_allpairs[simp]:
nipkow@22830
   330
 "length(allpairs f xs ys) = length xs * length ys"
nipkow@22828
   331
by(induct xs) auto
nipkow@22828
   332
wenzelm@13142
   333
lemma length_0_conv [iff]: "(length xs = 0) = (xs = [])"
nipkow@13145
   334
by (induct xs) auto
wenzelm@13114
   335
wenzelm@13142
   336
lemma length_greater_0_conv [iff]: "(0 < length xs) = (xs \<noteq> [])"
nipkow@13145
   337
by (induct xs) auto
wenzelm@13114
   338
nipkow@23479
   339
lemma length_pos_if_in_set: "x : set xs \<Longrightarrow> length xs > 0"
nipkow@23479
   340
by auto
nipkow@23479
   341
wenzelm@13114
   342
lemma length_Suc_conv:
nipkow@13145
   343
"(length xs = Suc n) = (\<exists>y ys. xs = y # ys \<and> length ys = n)"
nipkow@13145
   344
by (induct xs) auto
wenzelm@13142
   345
nipkow@14025
   346
lemma Suc_length_conv:
nipkow@14025
   347
"(Suc n = length xs) = (\<exists>y ys. xs = y # ys \<and> length ys = n)"
paulson@14208
   348
apply (induct xs, simp, simp)
nipkow@14025
   349
apply blast
nipkow@14025
   350
done
nipkow@14025
   351
oheimb@14099
   352
lemma impossible_Cons [rule_format]: 
oheimb@14099
   353
  "length xs <= length ys --> xs = x # ys = False"
wenzelm@20503
   354
apply (induct xs)
wenzelm@20503
   355
apply auto
oheimb@14099
   356
done
oheimb@14099
   357
nipkow@14247
   358
lemma list_induct2[consumes 1]: "\<And>ys.
nipkow@14247
   359
 \<lbrakk> length xs = length ys;
nipkow@14247
   360
   P [] [];
nipkow@14247
   361
   \<And>x xs y ys. \<lbrakk> length xs = length ys; P xs ys \<rbrakk> \<Longrightarrow> P (x#xs) (y#ys) \<rbrakk>
nipkow@14247
   362
 \<Longrightarrow> P xs ys"
nipkow@14247
   363
apply(induct xs)
nipkow@14247
   364
 apply simp
nipkow@14247
   365
apply(case_tac ys)
nipkow@14247
   366
 apply simp
nipkow@14247
   367
apply(simp)
nipkow@14247
   368
done
wenzelm@13114
   369
krauss@22493
   370
lemma list_induct2': 
krauss@22493
   371
  "\<lbrakk> P [] [];
krauss@22493
   372
  \<And>x xs. P (x#xs) [];
krauss@22493
   373
  \<And>y ys. P [] (y#ys);
krauss@22493
   374
   \<And>x xs y ys. P xs ys  \<Longrightarrow> P (x#xs) (y#ys) \<rbrakk>
krauss@22493
   375
 \<Longrightarrow> P xs ys"
krauss@22493
   376
by (induct xs arbitrary: ys) (case_tac x, auto)+
krauss@22493
   377
nipkow@22143
   378
lemma neq_if_length_neq: "length xs \<noteq> length ys \<Longrightarrow> (xs = ys) == False"
wenzelm@24037
   379
  by (rule Eq_FalseI) auto
wenzelm@24037
   380
wenzelm@24037
   381
simproc_setup list_neq ("(xs::'a list) = ys") = {*
nipkow@22143
   382
(*
nipkow@22143
   383
Reduces xs=ys to False if xs and ys cannot be of the same length.
nipkow@22143
   384
This is the case if the atomic sublists of one are a submultiset
nipkow@22143
   385
of those of the other list and there are fewer Cons's in one than the other.
nipkow@22143
   386
*)
wenzelm@24037
   387
wenzelm@24037
   388
let
nipkow@22143
   389
nipkow@22143
   390
fun len (Const("List.list.Nil",_)) acc = acc
nipkow@22143
   391
  | len (Const("List.list.Cons",_) $ _ $ xs) (ts,n) = len xs (ts,n+1)
haftmann@23029
   392
  | len (Const("List.append",_) $ xs $ ys) acc = len xs (len ys acc)
nipkow@22143
   393
  | len (Const("List.rev",_) $ xs) acc = len xs acc
nipkow@22143
   394
  | len (Const("List.map",_) $ _ $ xs) acc = len xs acc
nipkow@22143
   395
  | len t (ts,n) = (t::ts,n);
nipkow@22143
   396
wenzelm@24037
   397
fun list_neq _ ss ct =
nipkow@22143
   398
  let
wenzelm@24037
   399
    val (Const(_,eqT) $ lhs $ rhs) = Thm.term_of ct;
nipkow@22143
   400
    val (ls,m) = len lhs ([],0) and (rs,n) = len rhs ([],0);
nipkow@22143
   401
    fun prove_neq() =
nipkow@22143
   402
      let
nipkow@22143
   403
        val Type(_,listT::_) = eqT;
haftmann@22994
   404
        val size = HOLogic.size_const listT;
nipkow@22143
   405
        val eq_len = HOLogic.mk_eq (size $ lhs, size $ rhs);
nipkow@22143
   406
        val neq_len = HOLogic.mk_Trueprop (HOLogic.Not $ eq_len);
nipkow@22143
   407
        val thm = Goal.prove (Simplifier.the_context ss) [] [] neq_len
haftmann@22633
   408
          (K (simp_tac (Simplifier.inherit_context ss @{simpset}) 1));
haftmann@22633
   409
      in SOME (thm RS @{thm neq_if_length_neq}) end
nipkow@22143
   410
  in
wenzelm@23214
   411
    if m < n andalso submultiset (op aconv) (ls,rs) orelse
wenzelm@23214
   412
       n < m andalso submultiset (op aconv) (rs,ls)
nipkow@22143
   413
    then prove_neq() else NONE
nipkow@22143
   414
  end;
wenzelm@24037
   415
in list_neq end;
nipkow@22143
   416
*}
nipkow@22143
   417
nipkow@22143
   418
nipkow@15392
   419
subsubsection {* @{text "@"} -- append *}
wenzelm@13114
   420
wenzelm@13142
   421
lemma append_assoc [simp]: "(xs @ ys) @ zs = xs @ (ys @ zs)"
nipkow@13145
   422
by (induct xs) auto
wenzelm@13114
   423
wenzelm@13142
   424
lemma append_Nil2 [simp]: "xs @ [] = xs"
nipkow@13145
   425
by (induct xs) auto
nipkow@3507
   426
wenzelm@13142
   427
lemma append_is_Nil_conv [iff]: "(xs @ ys = []) = (xs = [] \<and> ys = [])"
nipkow@13145
   428
by (induct xs) auto
wenzelm@13114
   429
wenzelm@13142
   430
lemma Nil_is_append_conv [iff]: "([] = xs @ ys) = (xs = [] \<and> ys = [])"
nipkow@13145
   431
by (induct xs) auto
wenzelm@13114
   432
wenzelm@13142
   433
lemma append_self_conv [iff]: "(xs @ ys = xs) = (ys = [])"
nipkow@13145
   434
by (induct xs) auto
wenzelm@13114
   435
wenzelm@13142
   436
lemma self_append_conv [iff]: "(xs = xs @ ys) = (ys = [])"
nipkow@13145
   437
by (induct xs) auto
wenzelm@13114
   438
berghofe@13883
   439
lemma append_eq_append_conv [simp]:
berghofe@13883
   440
 "!!ys. length xs = length ys \<or> length us = length vs
berghofe@13883
   441
 ==> (xs@us = ys@vs) = (xs=ys \<and> us=vs)"
berghofe@13883
   442
apply (induct xs)
paulson@14208
   443
 apply (case_tac ys, simp, force)
paulson@14208
   444
apply (case_tac ys, force, simp)
nipkow@13145
   445
done
wenzelm@13142
   446
nipkow@14495
   447
lemma append_eq_append_conv2: "!!ys zs ts.
nipkow@14495
   448
 (xs @ ys = zs @ ts) =
nipkow@14495
   449
 (EX us. xs = zs @ us & us @ ys = ts | xs @ us = zs & ys = us@ ts)"
nipkow@14495
   450
apply (induct xs)
nipkow@14495
   451
 apply fastsimp
nipkow@14495
   452
apply(case_tac zs)
nipkow@14495
   453
 apply simp
nipkow@14495
   454
apply fastsimp
nipkow@14495
   455
done
nipkow@14495
   456
wenzelm@13142
   457
lemma same_append_eq [iff]: "(xs @ ys = xs @ zs) = (ys = zs)"
nipkow@13145
   458
by simp
wenzelm@13142
   459
wenzelm@13142
   460
lemma append1_eq_conv [iff]: "(xs @ [x] = ys @ [y]) = (xs = ys \<and> x = y)"
nipkow@13145
   461
by simp
wenzelm@13114
   462
wenzelm@13142
   463
lemma append_same_eq [iff]: "(ys @ xs = zs @ xs) = (ys = zs)"
nipkow@13145
   464
by simp
wenzelm@13114
   465
wenzelm@13142
   466
lemma append_self_conv2 [iff]: "(xs @ ys = ys) = (xs = [])"
nipkow@13145
   467
using append_same_eq [of _ _ "[]"] by auto
nipkow@3507
   468
wenzelm@13142
   469
lemma self_append_conv2 [iff]: "(ys = xs @ ys) = (xs = [])"
nipkow@13145
   470
using append_same_eq [of "[]"] by auto
wenzelm@13114
   471
wenzelm@13142
   472
lemma hd_Cons_tl [simp]: "xs \<noteq> [] ==> hd xs # tl xs = xs"
nipkow@13145
   473
by (induct xs) auto
wenzelm@13114
   474
wenzelm@13142
   475
lemma hd_append: "hd (xs @ ys) = (if xs = [] then hd ys else hd xs)"
nipkow@13145
   476
by (induct xs) auto
wenzelm@13114
   477
wenzelm@13142
   478
lemma hd_append2 [simp]: "xs \<noteq> [] ==> hd (xs @ ys) = hd xs"
nipkow@13145
   479
by (simp add: hd_append split: list.split)
wenzelm@13114
   480
wenzelm@13142
   481
lemma tl_append: "tl (xs @ ys) = (case xs of [] => tl ys | z#zs => zs @ ys)"
nipkow@13145
   482
by (simp split: list.split)
wenzelm@13114
   483
wenzelm@13142
   484
lemma tl_append2 [simp]: "xs \<noteq> [] ==> tl (xs @ ys) = tl xs @ ys"
nipkow@13145
   485
by (simp add: tl_append split: list.split)
wenzelm@13114
   486
wenzelm@13114
   487
nipkow@14300
   488
lemma Cons_eq_append_conv: "x#xs = ys@zs =
nipkow@14300
   489
 (ys = [] & x#xs = zs | (EX ys'. x#ys' = ys & xs = ys'@zs))"
nipkow@14300
   490
by(cases ys) auto
nipkow@14300
   491
nipkow@15281
   492
lemma append_eq_Cons_conv: "(ys@zs = x#xs) =
nipkow@15281
   493
 (ys = [] & zs = x#xs | (EX ys'. ys = x#ys' & ys'@zs = xs))"
nipkow@15281
   494
by(cases ys) auto
nipkow@15281
   495
nipkow@14300
   496
wenzelm@13142
   497
text {* Trivial rules for solving @{text "@"}-equations automatically. *}
wenzelm@13114
   498
wenzelm@13114
   499
lemma eq_Nil_appendI: "xs = ys ==> xs = [] @ ys"
nipkow@13145
   500
by simp
wenzelm@13114
   501
wenzelm@13142
   502
lemma Cons_eq_appendI:
nipkow@13145
   503
"[| x # xs1 = ys; xs = xs1 @ zs |] ==> x # xs = ys @ zs"
nipkow@13145
   504
by (drule sym) simp
wenzelm@13114
   505
wenzelm@13142
   506
lemma append_eq_appendI:
nipkow@13145
   507
"[| xs @ xs1 = zs; ys = xs1 @ us |] ==> xs @ ys = zs @ us"
nipkow@13145
   508
by (drule sym) simp
wenzelm@13114
   509
wenzelm@13114
   510
wenzelm@13142
   511
text {*
nipkow@13145
   512
Simplification procedure for all list equalities.
nipkow@13145
   513
Currently only tries to rearrange @{text "@"} to see if
nipkow@13145
   514
- both lists end in a singleton list,
nipkow@13145
   515
- or both lists end in the same list.
wenzelm@13142
   516
*}
wenzelm@13142
   517
wenzelm@13142
   518
ML_setup {*
nipkow@3507
   519
local
nipkow@3507
   520
wenzelm@13114
   521
fun last (cons as Const("List.list.Cons",_) $ _ $ xs) =
wenzelm@13462
   522
  (case xs of Const("List.list.Nil",_) => cons | _ => last xs)
haftmann@23029
   523
  | last (Const("List.append",_) $ _ $ ys) = last ys
wenzelm@13462
   524
  | last t = t;
wenzelm@13114
   525
wenzelm@13114
   526
fun list1 (Const("List.list.Cons",_) $ _ $ Const("List.list.Nil",_)) = true
wenzelm@13462
   527
  | list1 _ = false;
wenzelm@13114
   528
wenzelm@13114
   529
fun butlast ((cons as Const("List.list.Cons",_) $ x) $ xs) =
wenzelm@13462
   530
  (case xs of Const("List.list.Nil",_) => xs | _ => cons $ butlast xs)
haftmann@23029
   531
  | butlast ((app as Const("List.append",_) $ xs) $ ys) = app $ butlast ys
wenzelm@13462
   532
  | butlast xs = Const("List.list.Nil",fastype_of xs);
wenzelm@13114
   533
haftmann@22633
   534
val rearr_ss = HOL_basic_ss addsimps [@{thm append_assoc},
haftmann@22633
   535
  @{thm append_Nil}, @{thm append_Cons}];
wenzelm@16973
   536
wenzelm@20044
   537
fun list_eq ss (F as (eq as Const(_,eqT)) $ lhs $ rhs) =
wenzelm@13462
   538
  let
wenzelm@13462
   539
    val lastl = last lhs and lastr = last rhs;
wenzelm@13462
   540
    fun rearr conv =
wenzelm@13462
   541
      let
wenzelm@13462
   542
        val lhs1 = butlast lhs and rhs1 = butlast rhs;
wenzelm@13462
   543
        val Type(_,listT::_) = eqT
wenzelm@13462
   544
        val appT = [listT,listT] ---> listT
haftmann@23029
   545
        val app = Const("List.append",appT)
wenzelm@13462
   546
        val F2 = eq $ (app$lhs1$lastl) $ (app$rhs1$lastr)
wenzelm@13480
   547
        val eq = HOLogic.mk_Trueprop (HOLogic.mk_eq (F,F2));
wenzelm@20044
   548
        val thm = Goal.prove (Simplifier.the_context ss) [] [] eq
wenzelm@17877
   549
          (K (simp_tac (Simplifier.inherit_context ss rearr_ss) 1));
skalberg@15531
   550
      in SOME ((conv RS (thm RS trans)) RS eq_reflection) end;
wenzelm@13114
   551
wenzelm@13462
   552
  in
haftmann@22633
   553
    if list1 lastl andalso list1 lastr then rearr @{thm append1_eq_conv}
haftmann@22633
   554
    else if lastl aconv lastr then rearr @{thm append_same_eq}
skalberg@15531
   555
    else NONE
wenzelm@13462
   556
  end;
wenzelm@13462
   557
wenzelm@13114
   558
in
wenzelm@13462
   559
wenzelm@13462
   560
val list_eq_simproc =
haftmann@22633
   561
  Simplifier.simproc @{theory} "list_eq" ["(xs::'a list) = ys"] (K list_eq);
wenzelm@13462
   562
wenzelm@13114
   563
end;
wenzelm@13114
   564
wenzelm@13114
   565
Addsimprocs [list_eq_simproc];
wenzelm@13114
   566
*}
wenzelm@13114
   567
wenzelm@13114
   568
nipkow@15392
   569
subsubsection {* @{text map} *}
wenzelm@13114
   570
wenzelm@13142
   571
lemma map_ext: "(!!x. x : set xs --> f x = g x) ==> map f xs = map g xs"
nipkow@13145
   572
by (induct xs) simp_all
wenzelm@13114
   573
wenzelm@13142
   574
lemma map_ident [simp]: "map (\<lambda>x. x) = (\<lambda>xs. xs)"
nipkow@13145
   575
by (rule ext, induct_tac xs) auto
wenzelm@13114
   576
wenzelm@13142
   577
lemma map_append [simp]: "map f (xs @ ys) = map f xs @ map f ys"
nipkow@13145
   578
by (induct xs) auto
wenzelm@13114
   579
wenzelm@13142
   580
lemma map_compose: "map (f o g) xs = map f (map g xs)"
nipkow@13145
   581
by (induct xs) (auto simp add: o_def)
wenzelm@13114
   582
wenzelm@13142
   583
lemma rev_map: "rev (map f xs) = map f (rev xs)"
nipkow@13145
   584
by (induct xs) auto
wenzelm@13114
   585
nipkow@13737
   586
lemma map_eq_conv[simp]: "(map f xs = map g xs) = (!x : set xs. f x = g x)"
nipkow@13737
   587
by (induct xs) auto
nipkow@13737
   588
krauss@19770
   589
lemma map_cong [fundef_cong, recdef_cong]:
nipkow@13145
   590
"xs = ys ==> (!!x. x : set ys ==> f x = g x) ==> map f xs = map g ys"
nipkow@13145
   591
-- {* a congruence rule for @{text map} *}
nipkow@13737
   592
by simp
wenzelm@13114
   593
wenzelm@13142
   594
lemma map_is_Nil_conv [iff]: "(map f xs = []) = (xs = [])"
nipkow@13145
   595
by (cases xs) auto
wenzelm@13114
   596
wenzelm@13142
   597
lemma Nil_is_map_conv [iff]: "([] = map f xs) = (xs = [])"
nipkow@13145
   598
by (cases xs) auto
wenzelm@13114
   599
paulson@18447
   600
lemma map_eq_Cons_conv:
nipkow@14025
   601
 "(map f xs = y#ys) = (\<exists>z zs. xs = z#zs \<and> f z = y \<and> map f zs = ys)"
nipkow@13145
   602
by (cases xs) auto
wenzelm@13114
   603
paulson@18447
   604
lemma Cons_eq_map_conv:
nipkow@14025
   605
 "(x#xs = map f ys) = (\<exists>z zs. ys = z#zs \<and> x = f z \<and> xs = map f zs)"
nipkow@14025
   606
by (cases ys) auto
nipkow@14025
   607
paulson@18447
   608
lemmas map_eq_Cons_D = map_eq_Cons_conv [THEN iffD1]
paulson@18447
   609
lemmas Cons_eq_map_D = Cons_eq_map_conv [THEN iffD1]
paulson@18447
   610
declare map_eq_Cons_D [dest!]  Cons_eq_map_D [dest!]
paulson@18447
   611
nipkow@14111
   612
lemma ex_map_conv:
nipkow@14111
   613
  "(EX xs. ys = map f xs) = (ALL y : set ys. EX x. y = f x)"
paulson@18447
   614
by(induct ys, auto simp add: Cons_eq_map_conv)
nipkow@14111
   615
nipkow@15110
   616
lemma map_eq_imp_length_eq:
nipkow@15110
   617
  "!!xs. map f xs = map f ys ==> length xs = length ys"
nipkow@15110
   618
apply (induct ys)
nipkow@15110
   619
 apply simp
nipkow@15110
   620
apply(simp (no_asm_use))
nipkow@15110
   621
apply clarify
nipkow@15110
   622
apply(simp (no_asm_use))
nipkow@15110
   623
apply fast
nipkow@15110
   624
done
nipkow@15110
   625
nipkow@15110
   626
lemma map_inj_on:
nipkow@15110
   627
 "[| map f xs = map f ys; inj_on f (set xs Un set ys) |]
nipkow@15110
   628
  ==> xs = ys"
nipkow@15110
   629
apply(frule map_eq_imp_length_eq)
nipkow@15110
   630
apply(rotate_tac -1)
nipkow@15110
   631
apply(induct rule:list_induct2)
nipkow@15110
   632
 apply simp
nipkow@15110
   633
apply(simp)
nipkow@15110
   634
apply (blast intro:sym)
nipkow@15110
   635
done
nipkow@15110
   636
nipkow@15110
   637
lemma inj_on_map_eq_map:
nipkow@15110
   638
 "inj_on f (set xs Un set ys) \<Longrightarrow> (map f xs = map f ys) = (xs = ys)"
nipkow@15110
   639
by(blast dest:map_inj_on)
nipkow@15110
   640
wenzelm@13114
   641
lemma map_injective:
nipkow@14338
   642
 "!!xs. map f xs = map f ys ==> inj f ==> xs = ys"
nipkow@14338
   643
by (induct ys) (auto dest!:injD)
wenzelm@13114
   644
nipkow@14339
   645
lemma inj_map_eq_map[simp]: "inj f \<Longrightarrow> (map f xs = map f ys) = (xs = ys)"
nipkow@14339
   646
by(blast dest:map_injective)
nipkow@14339
   647
wenzelm@13114
   648
lemma inj_mapI: "inj f ==> inj (map f)"
nipkow@17589
   649
by (iprover dest: map_injective injD intro: inj_onI)
wenzelm@13114
   650
wenzelm@13114
   651
lemma inj_mapD: "inj (map f) ==> inj f"
paulson@14208
   652
apply (unfold inj_on_def, clarify)
nipkow@13145
   653
apply (erule_tac x = "[x]" in ballE)
paulson@14208
   654
 apply (erule_tac x = "[y]" in ballE, simp, blast)
nipkow@13145
   655
apply blast
nipkow@13145
   656
done
wenzelm@13114
   657
nipkow@14339
   658
lemma inj_map[iff]: "inj (map f) = inj f"
nipkow@13145
   659
by (blast dest: inj_mapD intro: inj_mapI)
wenzelm@13114
   660
nipkow@15303
   661
lemma inj_on_mapI: "inj_on f (\<Union>(set ` A)) \<Longrightarrow> inj_on (map f) A"
nipkow@15303
   662
apply(rule inj_onI)
nipkow@15303
   663
apply(erule map_inj_on)
nipkow@15303
   664
apply(blast intro:inj_onI dest:inj_onD)
nipkow@15303
   665
done
nipkow@15303
   666
kleing@14343
   667
lemma map_idI: "(\<And>x. x \<in> set xs \<Longrightarrow> f x = x) \<Longrightarrow> map f xs = xs"
kleing@14343
   668
by (induct xs, auto)
wenzelm@13114
   669
nipkow@14402
   670
lemma map_fun_upd [simp]: "y \<notin> set xs \<Longrightarrow> map (f(y:=v)) xs = map f xs"
nipkow@14402
   671
by (induct xs) auto
nipkow@14402
   672
nipkow@15110
   673
lemma map_fst_zip[simp]:
nipkow@15110
   674
  "length xs = length ys \<Longrightarrow> map fst (zip xs ys) = xs"
nipkow@15110
   675
by (induct rule:list_induct2, simp_all)
nipkow@15110
   676
nipkow@15110
   677
lemma map_snd_zip[simp]:
nipkow@15110
   678
  "length xs = length ys \<Longrightarrow> map snd (zip xs ys) = ys"
nipkow@15110
   679
by (induct rule:list_induct2, simp_all)
nipkow@15110
   680
nipkow@15110
   681
nipkow@15392
   682
subsubsection {* @{text rev} *}
wenzelm@13114
   683
wenzelm@13142
   684
lemma rev_append [simp]: "rev (xs @ ys) = rev ys @ rev xs"
nipkow@13145
   685
by (induct xs) auto
wenzelm@13114
   686
wenzelm@13142
   687
lemma rev_rev_ident [simp]: "rev (rev xs) = xs"
nipkow@13145
   688
by (induct xs) auto
wenzelm@13114
   689
kleing@15870
   690
lemma rev_swap: "(rev xs = ys) = (xs = rev ys)"
kleing@15870
   691
by auto
kleing@15870
   692
wenzelm@13142
   693
lemma rev_is_Nil_conv [iff]: "(rev xs = []) = (xs = [])"
nipkow@13145
   694
by (induct xs) auto
wenzelm@13114
   695
wenzelm@13142
   696
lemma Nil_is_rev_conv [iff]: "([] = rev xs) = (xs = [])"
nipkow@13145
   697
by (induct xs) auto
wenzelm@13114
   698
kleing@15870
   699
lemma rev_singleton_conv [simp]: "(rev xs = [x]) = (xs = [x])"
kleing@15870
   700
by (cases xs) auto
kleing@15870
   701
kleing@15870
   702
lemma singleton_rev_conv [simp]: "([x] = rev xs) = (xs = [x])"
kleing@15870
   703
by (cases xs) auto
kleing@15870
   704
haftmann@21061
   705
lemma rev_is_rev_conv [iff]: "(rev xs = rev ys) = (xs = ys)"
haftmann@21061
   706
apply (induct xs arbitrary: ys, force)
paulson@14208
   707
apply (case_tac ys, simp, force)
nipkow@13145
   708
done
wenzelm@13114
   709
nipkow@15439
   710
lemma inj_on_rev[iff]: "inj_on rev A"
nipkow@15439
   711
by(simp add:inj_on_def)
nipkow@15439
   712
wenzelm@13366
   713
lemma rev_induct [case_names Nil snoc]:
wenzelm@13366
   714
  "[| P []; !!x xs. P xs ==> P (xs @ [x]) |] ==> P xs"
berghofe@15489
   715
apply(simplesubst rev_rev_ident[symmetric])
nipkow@13145
   716
apply(rule_tac list = "rev xs" in list.induct, simp_all)
nipkow@13145
   717
done
wenzelm@13114
   718
nipkow@13145
   719
ML {* val rev_induct_tac = induct_thm_tac (thm "rev_induct") *}-- "compatibility"
wenzelm@13114
   720
wenzelm@13366
   721
lemma rev_exhaust [case_names Nil snoc]:
wenzelm@13366
   722
  "(xs = [] ==> P) ==>(!!ys y. xs = ys @ [y] ==> P) ==> P"
nipkow@13145
   723
by (induct xs rule: rev_induct) auto
wenzelm@13114
   724
wenzelm@13366
   725
lemmas rev_cases = rev_exhaust
wenzelm@13366
   726
nipkow@18423
   727
lemma rev_eq_Cons_iff[iff]: "(rev xs = y#ys) = (xs = rev ys @ [y])"
nipkow@18423
   728
by(rule rev_cases[of xs]) auto
nipkow@18423
   729
wenzelm@13114
   730
nipkow@15392
   731
subsubsection {* @{text set} *}
wenzelm@13114
   732
wenzelm@13142
   733
lemma finite_set [iff]: "finite (set xs)"
nipkow@13145
   734
by (induct xs) auto
wenzelm@13114
   735
wenzelm@13142
   736
lemma set_append [simp]: "set (xs @ ys) = (set xs \<union> set ys)"
nipkow@13145
   737
by (induct xs) auto
wenzelm@13114
   738
nipkow@17830
   739
lemma hd_in_set[simp]: "xs \<noteq> [] \<Longrightarrow> hd xs : set xs"
nipkow@17830
   740
by(cases xs) auto
oheimb@14099
   741
wenzelm@13142
   742
lemma set_subset_Cons: "set xs \<subseteq> set (x # xs)"
nipkow@13145
   743
by auto
wenzelm@13114
   744
oheimb@14099
   745
lemma set_ConsD: "y \<in> set (x # xs) \<Longrightarrow> y=x \<or> y \<in> set xs" 
oheimb@14099
   746
by auto
oheimb@14099
   747
wenzelm@13142
   748
lemma set_empty [iff]: "(set xs = {}) = (xs = [])"
nipkow@13145
   749
by (induct xs) auto
wenzelm@13114
   750
nipkow@15245
   751
lemma set_empty2[iff]: "({} = set xs) = (xs = [])"
nipkow@15245
   752
by(induct xs) auto
nipkow@15245
   753
wenzelm@13142
   754
lemma set_rev [simp]: "set (rev xs) = set xs"
nipkow@13145
   755
by (induct xs) auto
wenzelm@13114
   756
wenzelm@13142
   757
lemma set_map [simp]: "set (map f xs) = f`(set xs)"
nipkow@13145
   758
by (induct xs) auto
wenzelm@13114
   759
nipkow@22828
   760
lemma set_allpairs[simp]:
nipkow@22830
   761
 "set(allpairs f xs ys) = {z. EX x : set xs. EX y : set ys. z = f x y}"
nipkow@22828
   762
by(induct xs) auto
nipkow@22828
   763
wenzelm@13142
   764
lemma set_filter [simp]: "set (filter P xs) = {x. x : set xs \<and> P x}"
nipkow@13145
   765
by (induct xs) auto
wenzelm@13114
   766
nipkow@15425
   767
lemma set_upt [simp]: "set[i..<j] = {k. i \<le> k \<and> k < j}"
paulson@14208
   768
apply (induct j, simp_all)
paulson@14208
   769
apply (erule ssubst, auto)
nipkow@13145
   770
done
wenzelm@13114
   771
wenzelm@13142
   772
lemma in_set_conv_decomp: "(x : set xs) = (\<exists>ys zs. xs = ys @ x # zs)"
paulson@15113
   773
proof (induct xs)
paulson@15113
   774
  case Nil show ?case by simp
paulson@15113
   775
  case (Cons a xs)
paulson@15113
   776
  show ?case
paulson@15113
   777
  proof 
paulson@15113
   778
    assume "x \<in> set (a # xs)"
paulson@15113
   779
    with prems show "\<exists>ys zs. a # xs = ys @ x # zs"
paulson@15113
   780
      by (simp, blast intro: Cons_eq_appendI)
paulson@15113
   781
  next
paulson@15113
   782
    assume "\<exists>ys zs. a # xs = ys @ x # zs"
paulson@15113
   783
    then obtain ys zs where eq: "a # xs = ys @ x # zs" by blast
paulson@15113
   784
    show "x \<in> set (a # xs)" 
paulson@15113
   785
      by (cases ys, auto simp add: eq)
paulson@15113
   786
  qed
paulson@15113
   787
qed
wenzelm@13142
   788
nipkow@18049
   789
lemma in_set_conv_decomp_first:
nipkow@18049
   790
 "(x : set xs) = (\<exists>ys zs. xs = ys @ x # zs \<and> x \<notin> set ys)"
nipkow@18049
   791
proof (induct xs)
nipkow@18049
   792
  case Nil show ?case by simp
nipkow@18049
   793
next
nipkow@18049
   794
  case (Cons a xs)
nipkow@18049
   795
  show ?case
nipkow@18049
   796
  proof cases
nipkow@18049
   797
    assume "x = a" thus ?case using Cons by force
nipkow@18049
   798
  next
nipkow@18049
   799
    assume "x \<noteq> a"
nipkow@18049
   800
    show ?case
nipkow@18049
   801
    proof
nipkow@18049
   802
      assume "x \<in> set (a # xs)"
nipkow@18049
   803
      from prems show "\<exists>ys zs. a # xs = ys @ x # zs \<and> x \<notin> set ys"
nipkow@18049
   804
	by(fastsimp intro!: Cons_eq_appendI)
nipkow@18049
   805
    next
nipkow@18049
   806
      assume "\<exists>ys zs. a # xs = ys @ x # zs \<and> x \<notin> set ys"
nipkow@18049
   807
      then obtain ys zs where eq: "a # xs = ys @ x # zs" by blast
nipkow@18049
   808
      show "x \<in> set (a # xs)" by (cases ys, auto simp add: eq)
nipkow@18049
   809
    qed
nipkow@18049
   810
  qed
nipkow@18049
   811
qed
nipkow@18049
   812
nipkow@18049
   813
lemmas split_list       = in_set_conv_decomp[THEN iffD1, standard]
nipkow@18049
   814
lemmas split_list_first = in_set_conv_decomp_first[THEN iffD1, standard]
nipkow@18049
   815
nipkow@18049
   816
paulson@13508
   817
lemma finite_list: "finite A ==> EX l. set l = A"
paulson@13508
   818
apply (erule finite_induct, auto)
paulson@13508
   819
apply (rule_tac x="x#l" in exI, auto)
paulson@13508
   820
done
paulson@13508
   821
kleing@14388
   822
lemma card_length: "card (set xs) \<le> length xs"
kleing@14388
   823
by (induct xs) (auto simp add: card_insert_if)
wenzelm@13114
   824
paulson@15168
   825
nipkow@15392
   826
subsubsection {* @{text filter} *}
wenzelm@13114
   827
wenzelm@13142
   828
lemma filter_append [simp]: "filter P (xs @ ys) = filter P xs @ filter P ys"
nipkow@13145
   829
by (induct xs) auto
wenzelm@13114
   830
nipkow@15305
   831
lemma rev_filter: "rev (filter P xs) = filter P (rev xs)"
nipkow@15305
   832
by (induct xs) simp_all
nipkow@15305
   833
wenzelm@13142
   834
lemma filter_filter [simp]: "filter P (filter Q xs) = filter (\<lambda>x. Q x \<and> P x) xs"
nipkow@13145
   835
by (induct xs) auto
wenzelm@13114
   836
nipkow@16998
   837
lemma length_filter_le [simp]: "length (filter P xs) \<le> length xs"
nipkow@16998
   838
by (induct xs) (auto simp add: le_SucI)
nipkow@16998
   839
nipkow@18423
   840
lemma sum_length_filter_compl:
nipkow@18423
   841
  "length(filter P xs) + length(filter (%x. ~P x) xs) = length xs"
nipkow@18423
   842
by(induct xs) simp_all
nipkow@18423
   843
wenzelm@13142
   844
lemma filter_True [simp]: "\<forall>x \<in> set xs. P x ==> filter P xs = xs"
nipkow@13145
   845
by (induct xs) auto
wenzelm@13114
   846
wenzelm@13142
   847
lemma filter_False [simp]: "\<forall>x \<in> set xs. \<not> P x ==> filter P xs = []"
nipkow@13145
   848
by (induct xs) auto
wenzelm@13114
   849
nipkow@16998
   850
lemma filter_empty_conv: "(filter P xs = []) = (\<forall>x\<in>set xs. \<not> P x)" 
nipkow@16998
   851
  by (induct xs) simp_all
nipkow@16998
   852
nipkow@16998
   853
lemma filter_id_conv: "(filter P xs = xs) = (\<forall>x\<in>set xs. P x)"
nipkow@16998
   854
apply (induct xs)
nipkow@16998
   855
 apply auto
nipkow@16998
   856
apply(cut_tac P=P and xs=xs in length_filter_le)
nipkow@16998
   857
apply simp
nipkow@16998
   858
done
wenzelm@13114
   859
nipkow@16965
   860
lemma filter_map:
nipkow@16965
   861
  "filter P (map f xs) = map f (filter (P o f) xs)"
nipkow@16965
   862
by (induct xs) simp_all
nipkow@16965
   863
nipkow@16965
   864
lemma length_filter_map[simp]:
nipkow@16965
   865
  "length (filter P (map f xs)) = length(filter (P o f) xs)"
nipkow@16965
   866
by (simp add:filter_map)
nipkow@16965
   867
wenzelm@13142
   868
lemma filter_is_subset [simp]: "set (filter P xs) \<le> set xs"
nipkow@13145
   869
by auto
wenzelm@13114
   870
nipkow@15246
   871
lemma length_filter_less:
nipkow@15246
   872
  "\<lbrakk> x : set xs; ~ P x \<rbrakk> \<Longrightarrow> length(filter P xs) < length xs"
nipkow@15246
   873
proof (induct xs)
nipkow@15246
   874
  case Nil thus ?case by simp
nipkow@15246
   875
next
nipkow@15246
   876
  case (Cons x xs) thus ?case
nipkow@15246
   877
    apply (auto split:split_if_asm)
nipkow@15246
   878
    using length_filter_le[of P xs] apply arith
nipkow@15246
   879
  done
nipkow@15246
   880
qed
wenzelm@13114
   881
nipkow@15281
   882
lemma length_filter_conv_card:
nipkow@15281
   883
 "length(filter p xs) = card{i. i < length xs & p(xs!i)}"
nipkow@15281
   884
proof (induct xs)
nipkow@15281
   885
  case Nil thus ?case by simp
nipkow@15281
   886
next
nipkow@15281
   887
  case (Cons x xs)
nipkow@15281
   888
  let ?S = "{i. i < length xs & p(xs!i)}"
nipkow@15281
   889
  have fin: "finite ?S" by(fast intro: bounded_nat_set_is_finite)
nipkow@15281
   890
  show ?case (is "?l = card ?S'")
nipkow@15281
   891
  proof (cases)
nipkow@15281
   892
    assume "p x"
nipkow@15281
   893
    hence eq: "?S' = insert 0 (Suc ` ?S)"
nipkow@15281
   894
      by(auto simp add: nth_Cons image_def split:nat.split elim:lessE)
nipkow@15281
   895
    have "length (filter p (x # xs)) = Suc(card ?S)"
wenzelm@23388
   896
      using Cons `p x` by simp
nipkow@15281
   897
    also have "\<dots> = Suc(card(Suc ` ?S))" using fin
nipkow@15281
   898
      by (simp add: card_image inj_Suc)
nipkow@15281
   899
    also have "\<dots> = card ?S'" using eq fin
nipkow@15281
   900
      by (simp add:card_insert_if) (simp add:image_def)
nipkow@15281
   901
    finally show ?thesis .
nipkow@15281
   902
  next
nipkow@15281
   903
    assume "\<not> p x"
nipkow@15281
   904
    hence eq: "?S' = Suc ` ?S"
nipkow@15281
   905
      by(auto simp add: nth_Cons image_def split:nat.split elim:lessE)
nipkow@15281
   906
    have "length (filter p (x # xs)) = card ?S"
wenzelm@23388
   907
      using Cons `\<not> p x` by simp
nipkow@15281
   908
    also have "\<dots> = card(Suc ` ?S)" using fin
nipkow@15281
   909
      by (simp add: card_image inj_Suc)
nipkow@15281
   910
    also have "\<dots> = card ?S'" using eq fin
nipkow@15281
   911
      by (simp add:card_insert_if)
nipkow@15281
   912
    finally show ?thesis .
nipkow@15281
   913
  qed
nipkow@15281
   914
qed
nipkow@15281
   915
nipkow@17629
   916
lemma Cons_eq_filterD:
nipkow@17629
   917
 "x#xs = filter P ys \<Longrightarrow>
nipkow@17629
   918
  \<exists>us vs. ys = us @ x # vs \<and> (\<forall>u\<in>set us. \<not> P u) \<and> P x \<and> xs = filter P vs"
wenzelm@19585
   919
  (is "_ \<Longrightarrow> \<exists>us vs. ?P ys us vs")
nipkow@17629
   920
proof(induct ys)
nipkow@17629
   921
  case Nil thus ?case by simp
nipkow@17629
   922
next
nipkow@17629
   923
  case (Cons y ys)
nipkow@17629
   924
  show ?case (is "\<exists>x. ?Q x")
nipkow@17629
   925
  proof cases
nipkow@17629
   926
    assume Py: "P y"
nipkow@17629
   927
    show ?thesis
nipkow@17629
   928
    proof cases
nipkow@17629
   929
      assume xy: "x = y"
nipkow@17629
   930
      show ?thesis
nipkow@17629
   931
      proof from Py xy Cons(2) show "?Q []" by simp qed
nipkow@17629
   932
    next
nipkow@17629
   933
      assume "x \<noteq> y" with Py Cons(2) show ?thesis by simp
nipkow@17629
   934
    qed
nipkow@17629
   935
  next
nipkow@17629
   936
    assume Py: "\<not> P y"
nipkow@17629
   937
    with Cons obtain us vs where 1 : "?P (y#ys) (y#us) vs" by fastsimp
nipkow@17629
   938
    show ?thesis (is "? us. ?Q us")
nipkow@17629
   939
    proof show "?Q (y#us)" using 1 by simp qed
nipkow@17629
   940
  qed
nipkow@17629
   941
qed
nipkow@17629
   942
nipkow@17629
   943
lemma filter_eq_ConsD:
nipkow@17629
   944
 "filter P ys = x#xs \<Longrightarrow>
nipkow@17629
   945
  \<exists>us vs. ys = us @ x # vs \<and> (\<forall>u\<in>set us. \<not> P u) \<and> P x \<and> xs = filter P vs"
nipkow@17629
   946
by(rule Cons_eq_filterD) simp
nipkow@17629
   947
nipkow@17629
   948
lemma filter_eq_Cons_iff:
nipkow@17629
   949
 "(filter P ys = x#xs) =
nipkow@17629
   950
  (\<exists>us vs. ys = us @ x # vs \<and> (\<forall>u\<in>set us. \<not> P u) \<and> P x \<and> xs = filter P vs)"
nipkow@17629
   951
by(auto dest:filter_eq_ConsD)
nipkow@17629
   952
nipkow@17629
   953
lemma Cons_eq_filter_iff:
nipkow@17629
   954
 "(x#xs = filter P ys) =
nipkow@17629
   955
  (\<exists>us vs. ys = us @ x # vs \<and> (\<forall>u\<in>set us. \<not> P u) \<and> P x \<and> xs = filter P vs)"
nipkow@17629
   956
by(auto dest:Cons_eq_filterD)
nipkow@17629
   957
krauss@19770
   958
lemma filter_cong[fundef_cong, recdef_cong]:
nipkow@17501
   959
 "xs = ys \<Longrightarrow> (\<And>x. x \<in> set ys \<Longrightarrow> P x = Q x) \<Longrightarrow> filter P xs = filter Q ys"
nipkow@17501
   960
apply simp
nipkow@17501
   961
apply(erule thin_rl)
nipkow@17501
   962
by (induct ys) simp_all
nipkow@17501
   963
nipkow@15281
   964
nipkow@15392
   965
subsubsection {* @{text concat} *}
wenzelm@13114
   966
wenzelm@13142
   967
lemma concat_append [simp]: "concat (xs @ ys) = concat xs @ concat ys"
nipkow@13145
   968
by (induct xs) auto
wenzelm@13114
   969
paulson@18447
   970
lemma concat_eq_Nil_conv [simp]: "(concat xss = []) = (\<forall>xs \<in> set xss. xs = [])"
nipkow@13145
   971
by (induct xss) auto
wenzelm@13114
   972
paulson@18447
   973
lemma Nil_eq_concat_conv [simp]: "([] = concat xss) = (\<forall>xs \<in> set xss. xs = [])"
nipkow@13145
   974
by (induct xss) auto
wenzelm@13114
   975
wenzelm@13142
   976
lemma set_concat [simp]: "set (concat xs) = \<Union>(set ` set xs)"
nipkow@13145
   977
by (induct xs) auto
wenzelm@13114
   978
nipkow@23983
   979
lemma set_concat_map: "set(concat(map f xs)) = (UN x:set xs. set(f x))"
nipkow@23983
   980
by(auto)
nipkow@23983
   981
wenzelm@13142
   982
lemma map_concat: "map f (concat xs) = concat (map (map f) xs)"
nipkow@13145
   983
by (induct xs) auto
wenzelm@13114
   984
wenzelm@13142
   985
lemma filter_concat: "filter p (concat xs) = concat (map (filter p) xs)"
nipkow@13145
   986
by (induct xs) auto
wenzelm@13114
   987
wenzelm@13142
   988
lemma rev_concat: "rev (concat xs) = concat (map rev (rev xs))"
nipkow@13145
   989
by (induct xs) auto
wenzelm@13114
   990
wenzelm@13114
   991
nipkow@15392
   992
subsubsection {* @{text nth} *}
wenzelm@13114
   993
wenzelm@13142
   994
lemma nth_Cons_0 [simp]: "(x # xs)!0 = x"
nipkow@13145
   995
by auto
wenzelm@13114
   996
wenzelm@13142
   997
lemma nth_Cons_Suc [simp]: "(x # xs)!(Suc n) = xs!n"
nipkow@13145
   998
by auto
wenzelm@13114
   999
wenzelm@13142
  1000
declare nth.simps [simp del]
wenzelm@13114
  1001
wenzelm@13114
  1002
lemma nth_append:
nipkow@13145
  1003
"!!n. (xs @ ys)!n = (if n < length xs then xs!n else ys!(n - length xs))"
paulson@14208
  1004
apply (induct "xs", simp)
paulson@14208
  1005
apply (case_tac n, auto)
nipkow@13145
  1006
done
wenzelm@13114
  1007
nipkow@14402
  1008
lemma nth_append_length [simp]: "(xs @ x # ys) ! length xs = x"
nipkow@14402
  1009
by (induct "xs") auto
nipkow@14402
  1010
nipkow@14402
  1011
lemma nth_append_length_plus[simp]: "(xs @ ys) ! (length xs + n) = ys ! n"
nipkow@14402
  1012
by (induct "xs") auto
nipkow@14402
  1013
wenzelm@13142
  1014
lemma nth_map [simp]: "!!n. n < length xs ==> (map f xs)!n = f(xs!n)"
paulson@14208
  1015
apply (induct xs, simp)
paulson@14208
  1016
apply (case_tac n, auto)
nipkow@13145
  1017
done
wenzelm@13114
  1018
nipkow@18423
  1019
lemma hd_conv_nth: "xs \<noteq> [] \<Longrightarrow> hd xs = xs!0"
nipkow@18423
  1020
by(cases xs) simp_all
nipkow@18423
  1021
nipkow@18049
  1022
nipkow@18049
  1023
lemma list_eq_iff_nth_eq:
nipkow@18049
  1024
 "!!ys. (xs = ys) = (length xs = length ys \<and> (ALL i<length xs. xs!i = ys!i))"
nipkow@18049
  1025
apply(induct xs)
nipkow@18049
  1026
 apply simp apply blast
nipkow@18049
  1027
apply(case_tac ys)
nipkow@18049
  1028
 apply simp
nipkow@18049
  1029
apply(simp add:nth_Cons split:nat.split)apply blast
nipkow@18049
  1030
done
nipkow@18049
  1031
wenzelm@13142
  1032
lemma set_conv_nth: "set xs = {xs!i | i. i < length xs}"
paulson@15251
  1033
apply (induct xs, simp, simp)
nipkow@13145
  1034
apply safe
paulson@14208
  1035
apply (rule_tac x = 0 in exI, simp)
paulson@14208
  1036
 apply (rule_tac x = "Suc i" in exI, simp)
paulson@14208
  1037
apply (case_tac i, simp)
nipkow@13145
  1038
apply (rename_tac j)
paulson@14208
  1039
apply (rule_tac x = j in exI, simp)
nipkow@13145
  1040
done
wenzelm@13114
  1041
nipkow@17501
  1042
lemma in_set_conv_nth: "(x \<in> set xs) = (\<exists>i < length xs. xs!i = x)"
nipkow@17501
  1043
by(auto simp:set_conv_nth)
nipkow@17501
  1044
nipkow@13145
  1045
lemma list_ball_nth: "[| n < length xs; !x : set xs. P x|] ==> P(xs!n)"
nipkow@13145
  1046
by (auto simp add: set_conv_nth)
wenzelm@13114
  1047
wenzelm@13142
  1048
lemma nth_mem [simp]: "n < length xs ==> xs!n : set xs"
nipkow@13145
  1049
by (auto simp add: set_conv_nth)
wenzelm@13114
  1050
wenzelm@13114
  1051
lemma all_nth_imp_all_set:
nipkow@13145
  1052
"[| !i < length xs. P(xs!i); x : set xs|] ==> P x"
nipkow@13145
  1053
by (auto simp add: set_conv_nth)
wenzelm@13114
  1054
wenzelm@13114
  1055
lemma all_set_conv_all_nth:
nipkow@13145
  1056
"(\<forall>x \<in> set xs. P x) = (\<forall>i. i < length xs --> P (xs ! i))"
nipkow@13145
  1057
by (auto simp add: set_conv_nth)
wenzelm@13114
  1058
wenzelm@13114
  1059
nipkow@15392
  1060
subsubsection {* @{text list_update} *}
wenzelm@13114
  1061
wenzelm@13142
  1062
lemma length_list_update [simp]: "!!i. length(xs[i:=x]) = length xs"
nipkow@13145
  1063
by (induct xs) (auto split: nat.split)
wenzelm@13114
  1064
wenzelm@13114
  1065
lemma nth_list_update:
nipkow@13145
  1066
"!!i j. i < length xs==> (xs[i:=x])!j = (if i = j then x else xs!j)"
nipkow@13145
  1067
by (induct xs) (auto simp add: nth_Cons split: nat.split)
wenzelm@13114
  1068
wenzelm@13142
  1069
lemma nth_list_update_eq [simp]: "i < length xs ==> (xs[i:=x])!i = x"
nipkow@13145
  1070
by (simp add: nth_list_update)
wenzelm@13114
  1071
wenzelm@13142
  1072
lemma nth_list_update_neq [simp]: "!!i j. i \<noteq> j ==> xs[i:=x]!j = xs!j"
nipkow@13145
  1073
by (induct xs) (auto simp add: nth_Cons split: nat.split)
wenzelm@13114
  1074
wenzelm@13142
  1075
lemma list_update_overwrite [simp]:
nipkow@13145
  1076
"!!i. i < size xs ==> xs[i:=x, i:=y] = xs[i:=y]"
nipkow@13145
  1077
by (induct xs) (auto split: nat.split)
wenzelm@13114
  1078
nipkow@14402
  1079
lemma list_update_id[simp]: "!!i. i < length xs ==> xs[i := xs!i] = xs"
paulson@14208
  1080
apply (induct xs, simp)
nipkow@14187
  1081
apply(simp split:nat.splits)
nipkow@14187
  1082
done
nipkow@14187
  1083
nipkow@17501
  1084
lemma list_update_beyond[simp]: "\<And>i. length xs \<le> i \<Longrightarrow> xs[i:=x] = xs"
nipkow@17501
  1085
apply (induct xs)
nipkow@17501
  1086
 apply simp
nipkow@17501
  1087
apply (case_tac i)
nipkow@17501
  1088
apply simp_all
nipkow@17501
  1089
done
nipkow@17501
  1090
wenzelm@13114
  1091
lemma list_update_same_conv:
nipkow@13145
  1092
"!!i. i < length xs ==> (xs[i := x] = xs) = (xs!i = x)"
nipkow@13145
  1093
by (induct xs) (auto split: nat.split)
wenzelm@13114
  1094
nipkow@14187
  1095
lemma list_update_append1:
nipkow@14187
  1096
 "!!i. i < size xs \<Longrightarrow> (xs @ ys)[i:=x] = xs[i:=x] @ ys"
paulson@14208
  1097
apply (induct xs, simp)
nipkow@14187
  1098
apply(simp split:nat.split)
nipkow@14187
  1099
done
nipkow@14187
  1100
kleing@15868
  1101
lemma list_update_append:
kleing@15868
  1102
  "!!n. (xs @ ys) [n:= x] = 
kleing@15868
  1103
  (if n < length xs then xs[n:= x] @ ys else xs @ (ys [n-length xs:= x]))"
kleing@15868
  1104
by (induct xs) (auto split:nat.splits)
kleing@15868
  1105
nipkow@14402
  1106
lemma list_update_length [simp]:
nipkow@14402
  1107
 "(xs @ x # ys)[length xs := y] = (xs @ y # ys)"
nipkow@14402
  1108
by (induct xs, auto)
nipkow@14402
  1109
wenzelm@13114
  1110
lemma update_zip:
nipkow@13145
  1111
"!!i xy xs. length xs = length ys ==>
nipkow@13145
  1112
(zip xs ys)[i:=xy] = zip (xs[i:=fst xy]) (ys[i:=snd xy])"
nipkow@13145
  1113
by (induct ys) (auto, case_tac xs, auto split: nat.split)
wenzelm@13114
  1114
wenzelm@13114
  1115
lemma set_update_subset_insert: "!!i. set(xs[i:=x]) <= insert x (set xs)"
nipkow@13145
  1116
by (induct xs) (auto split: nat.split)
wenzelm@13114
  1117
wenzelm@13114
  1118
lemma set_update_subsetI: "[| set xs <= A; x:A |] ==> set(xs[i := x]) <= A"
nipkow@13145
  1119
by (blast dest!: set_update_subset_insert [THEN subsetD])
wenzelm@13114
  1120
kleing@15868
  1121
lemma set_update_memI: "!!n. n < length xs \<Longrightarrow> x \<in> set (xs[n := x])"
kleing@15868
  1122
by (induct xs) (auto split:nat.splits)
kleing@15868
  1123
wenzelm@13114
  1124
nipkow@15392
  1125
subsubsection {* @{text last} and @{text butlast} *}
wenzelm@13114
  1126
wenzelm@13142
  1127
lemma last_snoc [simp]: "last (xs @ [x]) = x"
nipkow@13145
  1128
by (induct xs) auto
wenzelm@13114
  1129
wenzelm@13142
  1130
lemma butlast_snoc [simp]: "butlast (xs @ [x]) = xs"
nipkow@13145
  1131
by (induct xs) auto
wenzelm@13114
  1132
nipkow@14302
  1133
lemma last_ConsL: "xs = [] \<Longrightarrow> last(x#xs) = x"
nipkow@14302
  1134
by(simp add:last.simps)
nipkow@14302
  1135
nipkow@14302
  1136
lemma last_ConsR: "xs \<noteq> [] \<Longrightarrow> last(x#xs) = last xs"
nipkow@14302
  1137
by(simp add:last.simps)
nipkow@14302
  1138
nipkow@14302
  1139
lemma last_append: "last(xs @ ys) = (if ys = [] then last xs else last ys)"
nipkow@14302
  1140
by (induct xs) (auto)
nipkow@14302
  1141
nipkow@14302
  1142
lemma last_appendL[simp]: "ys = [] \<Longrightarrow> last(xs @ ys) = last xs"
nipkow@14302
  1143
by(simp add:last_append)
nipkow@14302
  1144
nipkow@14302
  1145
lemma last_appendR[simp]: "ys \<noteq> [] \<Longrightarrow> last(xs @ ys) = last ys"
nipkow@14302
  1146
by(simp add:last_append)
nipkow@14302
  1147
nipkow@17762
  1148
lemma hd_rev: "xs \<noteq> [] \<Longrightarrow> hd(rev xs) = last xs"
nipkow@17762
  1149
by(rule rev_exhaust[of xs]) simp_all
nipkow@17762
  1150
nipkow@17762
  1151
lemma last_rev: "xs \<noteq> [] \<Longrightarrow> last(rev xs) = hd xs"
nipkow@17762
  1152
by(cases xs) simp_all
nipkow@17762
  1153
nipkow@17765
  1154
lemma last_in_set[simp]: "as \<noteq> [] \<Longrightarrow> last as \<in> set as"
nipkow@17765
  1155
by (induct as) auto
nipkow@17762
  1156
wenzelm@13142
  1157
lemma length_butlast [simp]: "length (butlast xs) = length xs - 1"
nipkow@13145
  1158
by (induct xs rule: rev_induct) auto
wenzelm@13114
  1159
wenzelm@13114
  1160
lemma butlast_append:
nipkow@13145
  1161
"!!ys. butlast (xs @ ys) = (if ys = [] then butlast xs else xs @ butlast ys)"
nipkow@13145
  1162
by (induct xs) auto
wenzelm@13114
  1163
wenzelm@13142
  1164
lemma append_butlast_last_id [simp]:
nipkow@13145
  1165
"xs \<noteq> [] ==> butlast xs @ [last xs] = xs"
nipkow@13145
  1166
by (induct xs) auto
wenzelm@13114
  1167
wenzelm@13142
  1168
lemma in_set_butlastD: "x : set (butlast xs) ==> x : set xs"
nipkow@13145
  1169
by (induct xs) (auto split: split_if_asm)
wenzelm@13114
  1170
wenzelm@13114
  1171
lemma in_set_butlast_appendI:
nipkow@13145
  1172
"x : set (butlast xs) | x : set (butlast ys) ==> x : set (butlast (xs @ ys))"
nipkow@13145
  1173
by (auto dest: in_set_butlastD simp add: butlast_append)
wenzelm@13114
  1174
nipkow@17501
  1175
lemma last_drop[simp]: "!!n. n < length xs \<Longrightarrow> last (drop n xs) = last xs"
nipkow@17501
  1176
apply (induct xs)
nipkow@17501
  1177
 apply simp
nipkow@17501
  1178
apply (auto split:nat.split)
nipkow@17501
  1179
done
nipkow@17501
  1180
nipkow@17589
  1181
lemma last_conv_nth: "xs\<noteq>[] \<Longrightarrow> last xs = xs!(length xs - 1)"
nipkow@17589
  1182
by(induct xs)(auto simp:neq_Nil_conv)
nipkow@17589
  1183
nipkow@15392
  1184
subsubsection {* @{text take} and @{text drop} *}
wenzelm@13114
  1185
wenzelm@13142
  1186
lemma take_0 [simp]: "take 0 xs = []"
nipkow@13145
  1187
by (induct xs) auto
wenzelm@13114
  1188
wenzelm@13142
  1189
lemma drop_0 [simp]: "drop 0 xs = xs"
nipkow@13145
  1190
by (induct xs) auto
wenzelm@13114
  1191
wenzelm@13142
  1192
lemma take_Suc_Cons [simp]: "take (Suc n) (x # xs) = x # take n xs"
nipkow@13145
  1193
by simp
wenzelm@13114
  1194
wenzelm@13142
  1195
lemma drop_Suc_Cons [simp]: "drop (Suc n) (x # xs) = drop n xs"
nipkow@13145
  1196
by simp
wenzelm@13114
  1197
wenzelm@13142
  1198
declare take_Cons [simp del] and drop_Cons [simp del]
wenzelm@13114
  1199
nipkow@15110
  1200
lemma take_Suc: "xs ~= [] ==> take (Suc n) xs = hd xs # take n (tl xs)"
nipkow@15110
  1201
by(clarsimp simp add:neq_Nil_conv)
nipkow@15110
  1202
nipkow@14187
  1203
lemma drop_Suc: "drop (Suc n) xs = drop n (tl xs)"
nipkow@14187
  1204
by(cases xs, simp_all)
nipkow@14187
  1205
nipkow@14187
  1206
lemma drop_tl: "!!n. drop n (tl xs) = tl(drop n xs)"
nipkow@14187
  1207
by(induct xs, simp_all add:drop_Cons drop_Suc split:nat.split)
nipkow@14187
  1208
nipkow@14187
  1209
lemma nth_via_drop: "!!n. drop n xs = y#ys \<Longrightarrow> xs!n = y"
paulson@14208
  1210
apply (induct xs, simp)
nipkow@14187
  1211
apply(simp add:drop_Cons nth_Cons split:nat.splits)
nipkow@14187
  1212
done
nipkow@14187
  1213
nipkow@13913
  1214
lemma take_Suc_conv_app_nth:
nipkow@13913
  1215
 "!!i. i < length xs \<Longrightarrow> take (Suc i) xs = take i xs @ [xs!i]"
paulson@14208
  1216
apply (induct xs, simp)
paulson@14208
  1217
apply (case_tac i, auto)
nipkow@13913
  1218
done
nipkow@13913
  1219
mehta@14591
  1220
lemma drop_Suc_conv_tl:
mehta@14591
  1221
  "!!i. i < length xs \<Longrightarrow> (xs!i) # (drop (Suc i) xs) = drop i xs"
mehta@14591
  1222
apply (induct xs, simp)
mehta@14591
  1223
apply (case_tac i, auto)
mehta@14591
  1224
done
mehta@14591
  1225
wenzelm@13142
  1226
lemma length_take [simp]: "!!xs. length (take n xs) = min (length xs) n"
nipkow@13145
  1227
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
  1228
wenzelm@13142
  1229
lemma length_drop [simp]: "!!xs. length (drop n xs) = (length xs - n)"
nipkow@13145
  1230
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
  1231
wenzelm@13142
  1232
lemma take_all [simp]: "!!xs. length xs <= n ==> take n xs = xs"
nipkow@13145
  1233
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
  1234
wenzelm@13142
  1235
lemma drop_all [simp]: "!!xs. length xs <= n ==> drop n xs = []"
nipkow@13145
  1236
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
  1237
wenzelm@13142
  1238
lemma take_append [simp]:
nipkow@13145
  1239
"!!xs. take n (xs @ ys) = (take n xs @ take (n - length xs) ys)"
nipkow@13145
  1240
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
  1241
wenzelm@13142
  1242
lemma drop_append [simp]:
nipkow@13145
  1243
"!!xs. drop n (xs @ ys) = drop n xs @ drop (n - length xs) ys"
nipkow@13145
  1244
by (induct n) (auto, case_tac xs, auto)
wenzelm@13114
  1245
wenzelm@13142
  1246
lemma take_take [simp]: "!!xs n. take n (take m xs) = take (min n m) xs"
paulson@14208
  1247
apply (induct m, auto)
paulson@14208
  1248
apply (case_tac xs, auto)
nipkow@15236
  1249
apply (case_tac n, auto)
nipkow@13145
  1250
done
wenzelm@13114
  1251
wenzelm@13142
  1252
lemma drop_drop [simp]: "!!xs. drop n (drop m xs) = drop (n + m) xs"
paulson@14208
  1253
apply (induct m, auto)
paulson@14208
  1254
apply (case_tac xs, auto)
nipkow@13145
  1255
done
wenzelm@13114
  1256
wenzelm@13114
  1257
lemma take_drop: "!!xs n. take n (drop m xs) = drop m (take (n + m) xs)"
paulson@14208
  1258
apply (induct m, auto)
paulson@14208
  1259
apply (case_tac xs, auto)
nipkow@13145
  1260
done
wenzelm@13114
  1261
nipkow@14802
  1262
lemma drop_take: "!!m n. drop n (take m xs) = take (m-n) (drop n xs)"
nipkow@14802
  1263
apply(induct xs)
nipkow@14802
  1264
 apply simp
nipkow@14802
  1265
apply(simp add: take_Cons drop_Cons split:nat.split)
nipkow@14802
  1266
done
nipkow@14802
  1267
wenzelm@13142
  1268
lemma append_take_drop_id [simp]: "!!xs. take n xs @ drop n xs = xs"
paulson@14208
  1269
apply (induct n, auto)
paulson@14208
  1270
apply (case_tac xs, auto)
nipkow@13145
  1271
done
wenzelm@13114
  1272
nipkow@15110
  1273
lemma take_eq_Nil[simp]: "!!n. (take n xs = []) = (n = 0 \<or> xs = [])"
nipkow@15110
  1274
apply(induct xs)
nipkow@15110
  1275
 apply simp
nipkow@15110
  1276
apply(simp add:take_Cons split:nat.split)
nipkow@15110
  1277
done
nipkow@15110
  1278
nipkow@15110
  1279
lemma drop_eq_Nil[simp]: "!!n. (drop n xs = []) = (length xs <= n)"
nipkow@15110
  1280
apply(induct xs)
nipkow@15110
  1281
apply simp
nipkow@15110
  1282
apply(simp add:drop_Cons split:nat.split)
nipkow@15110
  1283
done
nipkow@15110
  1284
wenzelm@13114
  1285
lemma take_map: "!!xs. take n (map f xs) = map f (take n xs)"
paulson@14208
  1286
apply (induct n, auto)
paulson@14208
  1287
apply (case_tac xs, auto)
nipkow@13145
  1288
done
wenzelm@13114
  1289
wenzelm@13142
  1290
lemma drop_map: "!!xs. drop n (map f xs) = map f (drop n xs)"
paulson@14208
  1291
apply (induct n, auto)
paulson@14208
  1292
apply (case_tac xs, auto)
nipkow@13145
  1293
done
wenzelm@13114
  1294
wenzelm@13114
  1295
lemma rev_take: "!!i. rev (take i xs) = drop (length xs - i) (rev xs)"
paulson@14208
  1296
apply (induct xs, auto)
paulson@14208
  1297
apply (case_tac i, auto)
nipkow@13145
  1298
done
wenzelm@13114
  1299
wenzelm@13114
  1300
lemma rev_drop: "!!i. rev (drop i xs) = take (length xs - i) (rev xs)"
paulson@14208
  1301
apply (induct xs, auto)
paulson@14208
  1302
apply (case_tac i, auto)
nipkow@13145
  1303
done
wenzelm@13114
  1304
wenzelm@13142
  1305
lemma nth_take [simp]: "!!n i. i < n ==> (take n xs)!i = xs!i"
paulson@14208
  1306
apply (induct xs, auto)
paulson@14208
  1307
apply (case_tac n, blast)
paulson@14208
  1308
apply (case_tac i, auto)
nipkow@13145
  1309
done
wenzelm@13114
  1310
wenzelm@13142
  1311
lemma nth_drop [simp]:
nipkow@13145
  1312
"!!xs i. n + i <= length xs ==> (drop n xs)!i = xs!(n + i)"
paulson@14208
  1313
apply (induct n, auto)
paulson@14208
  1314
apply (case_tac xs, auto)
nipkow@13145
  1315
done
nipkow@3507
  1316
nipkow@18423
  1317
lemma hd_drop_conv_nth: "\<lbrakk> xs \<noteq> []; n < length xs \<rbrakk> \<Longrightarrow> hd(drop n xs) = xs!n"
nipkow@18423
  1318
by(simp add: hd_conv_nth)
nipkow@18423
  1319
nipkow@14025
  1320
lemma set_take_subset: "\<And>n. set(take n xs) \<subseteq> set xs"
nipkow@14025
  1321
by(induct xs)(auto simp:take_Cons split:nat.split)
nipkow@14025
  1322
nipkow@14025
  1323
lemma set_drop_subset: "\<And>n. set(drop n xs) \<subseteq> set xs"
nipkow@14025
  1324
by(induct xs)(auto simp:drop_Cons split:nat.split)
nipkow@14025
  1325
nipkow@14187
  1326
lemma in_set_takeD: "x : set(take n xs) \<Longrightarrow> x : set xs"
nipkow@14187
  1327
using set_take_subset by fast
nipkow@14187
  1328
nipkow@14187
  1329
lemma in_set_dropD: "x : set(drop n xs) \<Longrightarrow> x : set xs"
nipkow@14187
  1330
using set_drop_subset by fast
nipkow@14187
  1331
wenzelm@13114
  1332
lemma append_eq_conv_conj:
nipkow@13145
  1333
"!!zs. (xs @ ys = zs) = (xs = take (length xs) zs \<and> ys = drop (length xs) zs)"
paulson@14208
  1334
apply (induct xs, simp, clarsimp)
paulson@14208
  1335
apply (case_tac zs, auto)
nipkow@13145
  1336
done
wenzelm@13142
  1337
paulson@14050
  1338
lemma take_add [rule_format]: 
paulson@14050
  1339
    "\<forall>i. i+j \<le> length(xs) --> take (i+j) xs = take i xs @ take j (drop i xs)"
paulson@14050
  1340
apply (induct xs, auto) 
paulson@14050
  1341
apply (case_tac i, simp_all) 
paulson@14050
  1342
done
paulson@14050
  1343
nipkow@14300
  1344
lemma append_eq_append_conv_if:
nipkow@14300
  1345
 "!! ys\<^isub>1. (xs\<^isub>1 @ xs\<^isub>2 = ys\<^isub>1 @ ys\<^isub>2) =
nipkow@14300
  1346
  (if size xs\<^isub>1 \<le> size ys\<^isub>1
nipkow@14300
  1347
   then xs\<^isub>1 = take (size xs\<^isub>1) ys\<^isub>1 \<and> xs\<^isub>2 = drop (size xs\<^isub>1) ys\<^isub>1 @ ys\<^isub>2
nipkow@14300
  1348
   else take (size ys\<^isub>1) xs\<^isub>1 = ys\<^isub>1 \<and> drop (size ys\<^isub>1) xs\<^isub>1 @ xs\<^isub>2 = ys\<^isub>2)"
nipkow@14300
  1349
apply(induct xs\<^isub>1)
nipkow@14300
  1350
 apply simp
nipkow@14300
  1351
apply(case_tac ys\<^isub>1)
nipkow@14300
  1352
apply simp_all
nipkow@14300
  1353
done
nipkow@14300
  1354
nipkow@15110
  1355
lemma take_hd_drop:
nipkow@15110
  1356
  "!!n. n < length xs \<Longrightarrow> take n xs @ [hd (drop n xs)] = take (n+1) xs"
nipkow@15110
  1357
apply(induct xs)
nipkow@15110
  1358
apply simp
nipkow@15110
  1359
apply(simp add:drop_Cons split:nat.split)
nipkow@15110
  1360
done
nipkow@15110
  1361
nipkow@17501
  1362
lemma id_take_nth_drop:
nipkow@17501
  1363
 "i < length xs \<Longrightarrow> xs = take i xs @ xs!i # drop (Suc i) xs" 
nipkow@17501
  1364
proof -
nipkow@17501
  1365
  assume si: "i < length xs"
nipkow@17501
  1366
  hence "xs = take (Suc i) xs @ drop (Suc i) xs" by auto
nipkow@17501
  1367
  moreover
nipkow@17501
  1368
  from si have "take (Suc i) xs = take i xs @ [xs!i]"
nipkow@17501
  1369
    apply (rule_tac take_Suc_conv_app_nth) by arith
nipkow@17501
  1370
  ultimately show ?thesis by auto
nipkow@17501
  1371
qed
nipkow@17501
  1372
  
nipkow@17501
  1373
lemma upd_conv_take_nth_drop:
nipkow@17501
  1374
 "i < length xs \<Longrightarrow> xs[i:=a] = take i xs @ a # drop (Suc i) xs"
nipkow@17501
  1375
proof -
nipkow@17501
  1376
  assume i: "i < length xs"
nipkow@17501
  1377
  have "xs[i:=a] = (take i xs @ xs!i # drop (Suc i) xs)[i:=a]"
nipkow@17501
  1378
    by(rule arg_cong[OF id_take_nth_drop[OF i]])
nipkow@17501
  1379
  also have "\<dots> = take i xs @ a # drop (Suc i) xs"
nipkow@17501
  1380
    using i by (simp add: list_update_append)
nipkow@17501
  1381
  finally show ?thesis .
nipkow@17501
  1382
qed
nipkow@17501
  1383
wenzelm@13114
  1384
nipkow@15392
  1385
subsubsection {* @{text takeWhile} and @{text dropWhile} *}
wenzelm@13114
  1386
wenzelm@13142
  1387
lemma takeWhile_dropWhile_id [simp]: "takeWhile P xs @ dropWhile P xs = xs"
nipkow@13145
  1388
by (induct xs) auto
wenzelm@13114
  1389
wenzelm@13142
  1390
lemma takeWhile_append1 [simp]:
nipkow@13145
  1391
"[| x:set xs; ~P(x)|] ==> takeWhile P (xs @ ys) = takeWhile P xs"
nipkow@13145
  1392
by (induct xs) auto
wenzelm@13114
  1393
wenzelm@13142
  1394
lemma takeWhile_append2 [simp]:
nipkow@13145
  1395
"(!!x. x : set xs ==> P x) ==> takeWhile P (xs @ ys) = xs @ takeWhile P ys"
nipkow@13145
  1396
by (induct xs) auto
wenzelm@13114
  1397
wenzelm@13142
  1398
lemma takeWhile_tail: "\<not> P x ==> takeWhile P (xs @ (x#l)) = takeWhile P xs"
nipkow@13145
  1399
by (induct xs) auto
wenzelm@13114
  1400
wenzelm@13142
  1401
lemma dropWhile_append1 [simp]:
nipkow@13145
  1402
"[| x : set xs; ~P(x)|] ==> dropWhile P (xs @ ys) = (dropWhile P xs)@ys"
nipkow@13145
  1403
by (induct xs) auto
wenzelm@13114
  1404
wenzelm@13142
  1405
lemma dropWhile_append2 [simp]:
nipkow@13145
  1406
"(!!x. x:set xs ==> P(x)) ==> dropWhile P (xs @ ys) = dropWhile P ys"
nipkow@13145
  1407
by (induct xs) auto
wenzelm@13114
  1408
krauss@23971
  1409
lemma set_takeWhileD: "x : set (takeWhile P xs) ==> x : set xs \<and> P x"
nipkow@13145
  1410
by (induct xs) (auto split: split_if_asm)
wenzelm@13114
  1411
nipkow@13913
  1412
lemma takeWhile_eq_all_conv[simp]:
nipkow@13913
  1413
 "(takeWhile P xs = xs) = (\<forall>x \<in> set xs. P x)"
nipkow@13913
  1414
by(induct xs, auto)
nipkow@13913
  1415
nipkow@13913
  1416
lemma dropWhile_eq_Nil_conv[simp]:
nipkow@13913
  1417
 "(dropWhile P xs = []) = (\<forall>x \<in> set xs. P x)"
nipkow@13913
  1418
by(induct xs, auto)
nipkow@13913
  1419
nipkow@13913
  1420
lemma dropWhile_eq_Cons_conv:
nipkow@13913
  1421
 "(dropWhile P xs = y#ys) = (xs = takeWhile P xs @ y # ys & \<not> P y)"
nipkow@13913
  1422
by(induct xs, auto)
nipkow@13913
  1423
nipkow@17501
  1424
text{* The following two lemmmas could be generalized to an arbitrary
nipkow@17501
  1425
property. *}
nipkow@17501
  1426
nipkow@17501
  1427
lemma takeWhile_neq_rev: "\<lbrakk>distinct xs; x \<in> set xs\<rbrakk> \<Longrightarrow>
nipkow@17501
  1428
 takeWhile (\<lambda>y. y \<noteq> x) (rev xs) = rev (tl (dropWhile (\<lambda>y. y \<noteq> x) xs))"
nipkow@17501
  1429
by(induct xs) (auto simp: takeWhile_tail[where l="[]"])
nipkow@17501
  1430
nipkow@17501
  1431
lemma dropWhile_neq_rev: "\<lbrakk>distinct xs; x \<in> set xs\<rbrakk> \<Longrightarrow>
nipkow@17501
  1432
  dropWhile (\<lambda>y. y \<noteq> x) (rev xs) = x # rev (takeWhile (\<lambda>y. y \<noteq> x) xs)"
nipkow@17501
  1433
apply(induct xs)
nipkow@17501
  1434
 apply simp
nipkow@17501
  1435
apply auto
nipkow@17501
  1436
apply(subst dropWhile_append2)
nipkow@17501
  1437
apply auto
nipkow@17501
  1438
done
nipkow@17501
  1439
nipkow@18423
  1440
lemma takeWhile_not_last:
nipkow@18423
  1441
 "\<lbrakk> xs \<noteq> []; distinct xs\<rbrakk> \<Longrightarrow> takeWhile (\<lambda>y. y \<noteq> last xs) xs = butlast xs"
nipkow@18423
  1442
apply(induct xs)
nipkow@18423
  1443
 apply simp
nipkow@18423
  1444
apply(case_tac xs)
nipkow@18423
  1445
apply(auto)
nipkow@18423
  1446
done
nipkow@18423
  1447
krauss@19770
  1448
lemma takeWhile_cong [fundef_cong, recdef_cong]:
krauss@18336
  1449
  "[| l = k; !!x. x : set l ==> P x = Q x |] 
krauss@18336
  1450
  ==> takeWhile P l = takeWhile Q k"
wenzelm@20503
  1451
  by (induct k arbitrary: l) (simp_all)
krauss@18336
  1452
krauss@19770
  1453
lemma dropWhile_cong [fundef_cong, recdef_cong]:
krauss@18336
  1454
  "[| l = k; !!x. x : set l ==> P x = Q x |] 
krauss@18336
  1455
  ==> dropWhile P l = dropWhile Q k"
wenzelm@20503
  1456
  by (induct k arbitrary: l, simp_all)
krauss@18336
  1457
wenzelm@13114
  1458
nipkow@15392
  1459
subsubsection {* @{text zip} *}
wenzelm@13114
  1460
wenzelm@13142
  1461
lemma zip_Nil [simp]: "zip [] ys = []"
nipkow@13145
  1462
by (induct ys) auto
wenzelm@13114
  1463
wenzelm@13142
  1464
lemma zip_Cons_Cons [simp]: "zip (x # xs) (y # ys) = (x, y) # zip xs ys"
nipkow@13145
  1465
by simp
wenzelm@13114
  1466
wenzelm@13142
  1467
declare zip_Cons [simp del]
wenzelm@13114
  1468
nipkow@15281
  1469
lemma zip_Cons1:
nipkow@15281
  1470
 "zip (x#xs) ys = (case ys of [] \<Rightarrow> [] | y#ys \<Rightarrow> (x,y)#zip xs ys)"
nipkow@15281
  1471
by(auto split:list.split)
nipkow@15281
  1472
wenzelm@13142
  1473
lemma length_zip [simp]:
krauss@22493
  1474
"length (zip xs ys) = min (length xs) (length ys)"
krauss@22493
  1475
by (induct xs ys rule:list_induct2') auto
wenzelm@13114
  1476
wenzelm@13114
  1477
lemma zip_append1:
krauss@22493
  1478
"zip (xs @ ys) zs =
nipkow@13145
  1479
zip xs (take (length xs) zs) @ zip ys (drop (length xs) zs)"
krauss@22493
  1480
by (induct xs zs rule:list_induct2') auto
wenzelm@13114
  1481
wenzelm@13114
  1482
lemma zip_append2:
krauss@22493
  1483
"zip xs (ys @ zs) =
nipkow@13145
  1484
zip (take (length ys) xs) ys @ zip (drop (length ys) xs) zs"
krauss@22493
  1485
by (induct xs ys rule:list_induct2') auto
wenzelm@13114
  1486
wenzelm@13142
  1487
lemma zip_append [simp]:
wenzelm@13142
  1488
 "[| length xs = length us; length ys = length vs |] ==>
nipkow@13145
  1489
zip (xs@ys) (us@vs) = zip xs us @ zip ys vs"
nipkow@13145
  1490
by (simp add: zip_append1)
wenzelm@13114
  1491
wenzelm@13114
  1492
lemma zip_rev:
nipkow@14247
  1493
"length xs = length ys ==> zip (rev xs) (rev ys) = rev (zip xs ys)"
nipkow@14247
  1494
by (induct rule:list_induct2, simp_all)
wenzelm@13114
  1495
nipkow@23096
  1496
lemma map_zip_map:
nipkow@23096
  1497
 "map f (zip (map g xs) ys) = map (%(x,y). f(g x, y)) (zip xs ys)"
nipkow@23096
  1498
apply(induct xs arbitrary:ys) apply simp
nipkow@23096
  1499
apply(case_tac ys)
nipkow@23096
  1500
apply simp_all
nipkow@23096
  1501
done
nipkow@23096
  1502
nipkow@23096
  1503
lemma map_zip_map2:
nipkow@23096
  1504
 "map f (zip xs (map g ys)) = map (%(x,y). f(x, g y)) (zip xs ys)"
nipkow@23096
  1505
apply(induct xs arbitrary:ys) apply simp
nipkow@23096
  1506
apply(case_tac ys)
nipkow@23096
  1507
apply simp_all
nipkow@23096
  1508
done
nipkow@23096
  1509
wenzelm@13142
  1510
lemma nth_zip [simp]:
nipkow@13145
  1511
"!!i xs. [| i < length xs; i < length ys|] ==> (zip xs ys)!i = (xs!i, ys!i)"
paulson@14208
  1512
apply (induct ys, simp)
nipkow@13145
  1513
apply (case_tac xs)
nipkow@13145
  1514
 apply (simp_all add: nth.simps split: nat.split)
nipkow@13145
  1515
done
wenzelm@13114
  1516
wenzelm@13114
  1517
lemma set_zip:
nipkow@13145
  1518
"set (zip xs ys) = {(xs!i, ys!i) | i. i < min (length xs) (length ys)}"
nipkow@13145
  1519
by (simp add: set_conv_nth cong: rev_conj_cong)
wenzelm@13114
  1520
wenzelm@13114
  1521
lemma zip_update:
nipkow@13145
  1522
"length xs = length ys ==> zip (xs[i:=x]) (ys[i:=y]) = (zip xs ys)[i:=(x,y)]"
nipkow@13145
  1523
by (rule sym, simp add: update_zip)
wenzelm@13114
  1524
wenzelm@13142
  1525
lemma zip_replicate [simp]:
nipkow@13145
  1526
"!!j. zip (replicate i x) (replicate j y) = replicate (min i j) (x,y)"
paulson@14208
  1527
apply (induct i, auto)
paulson@14208
  1528
apply (case_tac j, auto)
nipkow@13145
  1529
done
wenzelm@13114
  1530
nipkow@19487
  1531
lemma take_zip:
nipkow@19487
  1532
 "!!xs ys. take n (zip xs ys) = zip (take n xs) (take n ys)"
nipkow@19487
  1533
apply (induct n)
nipkow@19487
  1534
 apply simp
nipkow@19487
  1535
apply (case_tac xs, simp)
nipkow@19487
  1536
apply (case_tac ys, simp_all)
nipkow@19487
  1537
done
nipkow@19487
  1538
nipkow@19487
  1539
lemma drop_zip:
nipkow@19487
  1540
 "!!xs ys. drop n (zip xs ys) = zip (drop n xs) (drop n ys)"
nipkow@19487
  1541
apply (induct n)
nipkow@19487
  1542
 apply simp
nipkow@19487
  1543
apply (case_tac xs, simp)
nipkow@19487
  1544
apply (case_tac ys, simp_all)
nipkow@19487
  1545
done
nipkow@19487
  1546
krauss@22493
  1547
lemma set_zip_leftD:
krauss@22493
  1548
  "(x,y)\<in> set (zip xs ys) \<Longrightarrow> x \<in> set xs"
krauss@22493
  1549
by (induct xs ys rule:list_induct2') auto
krauss@22493
  1550
krauss@22493
  1551
lemma set_zip_rightD:
krauss@22493
  1552
  "(x,y)\<in> set (zip xs ys) \<Longrightarrow> y \<in> set ys"
krauss@22493
  1553
by (induct xs ys rule:list_induct2') auto
wenzelm@13142
  1554
nipkow@23983
  1555
lemma in_set_zipE:
nipkow@23983
  1556
  "(x,y) : set(zip xs ys) \<Longrightarrow> (\<lbrakk> x : set xs; y : set ys \<rbrakk> \<Longrightarrow> R) \<Longrightarrow> R"
nipkow@23983
  1557
by(blast dest: set_zip_leftD set_zip_rightD)
nipkow@23983
  1558
nipkow@15392
  1559
subsubsection {* @{text list_all2} *}
wenzelm@13114
  1560
kleing@14316
  1561
lemma list_all2_lengthD [intro?]: 
kleing@14316
  1562
  "list_all2 P xs ys ==> length xs = length ys"
haftmann@19607
  1563
  by (simp add: list_all2_def)
haftmann@19607
  1564
haftmann@19787
  1565
lemma list_all2_Nil [iff, code]: "list_all2 P [] ys = (ys = [])"
haftmann@19607
  1566
  by (simp add: list_all2_def)
haftmann@19607
  1567
haftmann@19787
  1568
lemma list_all2_Nil2 [iff, code]: "list_all2 P xs [] = (xs = [])"
haftmann@19787
  1569
  by (simp add: list_all2_def)
haftmann@19607
  1570
haftmann@19607
  1571
lemma list_all2_Cons [iff, code]:
haftmann@19607
  1572
  "list_all2 P (x # xs) (y # ys) = (P x y \<and> list_all2 P xs ys)"
haftmann@19607
  1573
  by (auto simp add: list_all2_def)
wenzelm@13114
  1574
wenzelm@13114
  1575
lemma list_all2_Cons1:
nipkow@13145
  1576
"list_all2 P (x # xs) ys = (\<exists>z zs. ys = z # zs \<and> P x z \<and> list_all2 P xs zs)"
nipkow@13145
  1577
by (cases ys) auto
wenzelm@13114
  1578
wenzelm@13114
  1579
lemma list_all2_Cons2:
nipkow@13145
  1580
"list_all2 P xs (y # ys) = (\<exists>z zs. xs = z # zs \<and> P z y \<and> list_all2 P zs ys)"
nipkow@13145
  1581
by (cases xs) auto
wenzelm@13114
  1582
wenzelm@13142
  1583
lemma list_all2_rev [iff]:
nipkow@13145
  1584
"list_all2 P (rev xs) (rev ys) = list_all2 P xs ys"
nipkow@13145
  1585
by (simp add: list_all2_def zip_rev cong: conj_cong)
wenzelm@13114
  1586
kleing@13863
  1587
lemma list_all2_rev1:
kleing@13863
  1588
"list_all2 P (rev xs) ys = list_all2 P xs (rev ys)"
kleing@13863
  1589
by (subst list_all2_rev [symmetric]) simp
kleing@13863
  1590
wenzelm@13114
  1591
lemma list_all2_append1:
nipkow@13145
  1592
"list_all2 P (xs @ ys) zs =
nipkow@13145
  1593
(EX us vs. zs = us @ vs \<and> length us = length xs \<and> length vs = length ys \<and>
nipkow@13145
  1594
list_all2 P xs us \<and> list_all2 P ys vs)"
nipkow@13145
  1595
apply (simp add: list_all2_def zip_append1)
nipkow@13145
  1596
apply (rule iffI)
nipkow@13145
  1597
 apply (rule_tac x = "take (length xs) zs" in exI)
nipkow@13145
  1598
 apply (rule_tac x = "drop (length xs) zs" in exI)
paulson@14208
  1599
 apply (force split: nat_diff_split simp add: min_def, clarify)
nipkow@13145
  1600
apply (simp add: ball_Un)
nipkow@13145
  1601
done
wenzelm@13114
  1602
wenzelm@13114
  1603
lemma list_all2_append2:
nipkow@13145
  1604
"list_all2 P xs (ys @ zs) =
nipkow@13145
  1605
(EX us vs. xs = us @ vs \<and> length us = length ys \<and> length vs = length zs \<and>
nipkow@13145
  1606
list_all2 P us ys \<and> list_all2 P vs zs)"
nipkow@13145
  1607
apply (simp add: list_all2_def zip_append2)
nipkow@13145
  1608
apply (rule iffI)
nipkow@13145
  1609
 apply (rule_tac x = "take (length ys) xs" in exI)
nipkow@13145
  1610
 apply (rule_tac x = "drop (length ys) xs" in exI)
paulson@14208
  1611
 apply (force split: nat_diff_split simp add: min_def, clarify)
nipkow@13145
  1612
apply (simp add: ball_Un)
nipkow@13145
  1613
done
wenzelm@13114
  1614
kleing@13863
  1615
lemma list_all2_append:
nipkow@14247
  1616
  "length xs = length ys \<Longrightarrow>
nipkow@14247
  1617
  list_all2 P (xs@us) (ys@vs) = (list_all2 P xs ys \<and> list_all2 P us vs)"
nipkow@14247
  1618
by (induct rule:list_induct2, simp_all)
kleing@13863
  1619
kleing@13863
  1620
lemma list_all2_appendI [intro?, trans]:
kleing@13863
  1621
  "\<lbrakk> list_all2 P a b; list_all2 P c d \<rbrakk> \<Longrightarrow> list_all2 P (a@c) (b@d)"
kleing@13863
  1622
  by (simp add: list_all2_append list_all2_lengthD)
kleing@13863
  1623
wenzelm@13114
  1624
lemma list_all2_conv_all_nth:
nipkow@13145
  1625
"list_all2 P xs ys =
nipkow@13145
  1626
(length xs = length ys \<and> (\<forall>i < length xs. P (xs!i) (ys!i)))"
nipkow@13145
  1627
by (force simp add: list_all2_def set_zip)
wenzelm@13114
  1628
berghofe@13883
  1629
lemma list_all2_trans:
berghofe@13883
  1630
  assumes tr: "!!a b c. P1 a b ==> P2 b c ==> P3 a c"
berghofe@13883
  1631
  shows "!!bs cs. list_all2 P1 as bs ==> list_all2 P2 bs cs ==> list_all2 P3 as cs"
berghofe@13883
  1632
        (is "!!bs cs. PROP ?Q as bs cs")
berghofe@13883
  1633
proof (induct as)
berghofe@13883
  1634
  fix x xs bs assume I1: "!!bs cs. PROP ?Q xs bs cs"
berghofe@13883
  1635
  show "!!cs. PROP ?Q (x # xs) bs cs"
berghofe@13883
  1636
  proof (induct bs)
berghofe@13883
  1637
    fix y ys cs assume I2: "!!cs. PROP ?Q (x # xs) ys cs"
berghofe@13883
  1638
    show "PROP ?Q (x # xs) (y # ys) cs"
berghofe@13883
  1639
      by (induct cs) (auto intro: tr I1 I2)
berghofe@13883
  1640
  qed simp
berghofe@13883
  1641
qed simp
berghofe@13883
  1642
kleing@13863
  1643
lemma list_all2_all_nthI [intro?]:
kleing@13863
  1644
  "length a = length b \<Longrightarrow> (\<And>n. n < length a \<Longrightarrow> P (a!n) (b!n)) \<Longrightarrow> list_all2 P a b"
kleing@13863
  1645
  by (simp add: list_all2_conv_all_nth)
kleing@13863
  1646
paulson@14395
  1647
lemma list_all2I:
paulson@14395
  1648
  "\<forall>x \<in> set (zip a b). split P x \<Longrightarrow> length a = length b \<Longrightarrow> list_all2 P a b"
paulson@14395
  1649
  by (simp add: list_all2_def)
paulson@14395
  1650
kleing@14328
  1651
lemma list_all2_nthD:
kleing@13863
  1652
  "\<lbrakk> list_all2 P xs ys; p < size xs \<rbrakk> \<Longrightarrow> P (xs!p) (ys!p)"
kleing@13863
  1653
  by (simp add: list_all2_conv_all_nth)
kleing@13863
  1654
nipkow@14302
  1655
lemma list_all2_nthD2:
nipkow@14302
  1656
  "\<lbrakk>list_all2 P xs ys; p < size ys\<rbrakk> \<Longrightarrow> P (xs!p) (ys!p)"
nipkow@14302
  1657
  by (frule list_all2_lengthD) (auto intro: list_all2_nthD)
nipkow@14302
  1658
kleing@13863
  1659
lemma list_all2_map1: 
kleing@13863
  1660
  "list_all2 P (map f as) bs = list_all2 (\<lambda>x y. P (f x) y) as bs"
kleing@13863
  1661
  by (simp add: list_all2_conv_all_nth)
kleing@13863
  1662
kleing@13863
  1663
lemma list_all2_map2: 
kleing@13863
  1664
  "list_all2 P as (map f bs) = list_all2 (\<lambda>x y. P x (f y)) as bs"
kleing@13863
  1665
  by (auto simp add: list_all2_conv_all_nth)
kleing@13863
  1666
kleing@14316
  1667
lemma list_all2_refl [intro?]:
kleing@13863
  1668
  "(\<And>x. P x x) \<Longrightarrow> list_all2 P xs xs"
kleing@13863
  1669
  by (simp add: list_all2_conv_all_nth)
kleing@13863
  1670
kleing@13863
  1671
lemma list_all2_update_cong:
kleing@13863
  1672
  "\<lbrakk> i<size xs; list_all2 P xs ys; P x y \<rbrakk> \<Longrightarrow> list_all2 P (xs[i:=x]) (ys[i:=y])"
kleing@13863
  1673
  by (simp add: list_all2_conv_all_nth nth_list_update)
kleing@13863
  1674
kleing@13863
  1675
lemma list_all2_update_cong2:
kleing@13863
  1676
  "\<lbrakk>list_all2 P xs ys; P x y; i < length ys\<rbrakk> \<Longrightarrow> list_all2 P (xs[i:=x]) (ys[i:=y])"
kleing@13863
  1677
  by (simp add: list_all2_lengthD list_all2_update_cong)
kleing@13863
  1678
nipkow@14302
  1679
lemma list_all2_takeI [simp,intro?]:
nipkow@14302
  1680
  "\<And>n ys. list_all2 P xs ys \<Longrightarrow> list_all2 P (take n xs) (take n ys)"
nipkow@14302
  1681
  apply (induct xs)
nipkow@14302
  1682
   apply simp
nipkow@14302
  1683
  apply (clarsimp simp add: list_all2_Cons1)
nipkow@14302
  1684
  apply (case_tac n)
nipkow@14302
  1685
  apply auto
nipkow@14302
  1686
  done
nipkow@14302
  1687
nipkow@14302
  1688
lemma list_all2_dropI [simp,intro?]:
kleing@13863
  1689
  "\<And>n bs. list_all2 P as bs \<Longrightarrow> list_all2 P (drop n as) (drop n bs)"
paulson@14208
  1690
  apply (induct as, simp)
kleing@13863
  1691
  apply (clarsimp simp add: list_all2_Cons1)
paulson@14208
  1692
  apply (case_tac n, simp, simp)
kleing@13863
  1693
  done
kleing@13863
  1694
kleing@14327
  1695
lemma list_all2_mono [intro?]:
kleing@13863
  1696
  "\<And>y. list_all2 P x y \<Longrightarrow> (\<And>x y. P x y \<Longrightarrow> Q x y) \<Longrightarrow> list_all2 Q x y"
paulson@14208
  1697
  apply (induct x, simp)
paulson@14208
  1698
  apply (case_tac y, auto)
kleing@13863
  1699
  done
kleing@13863
  1700
haftmann@22551
  1701
lemma list_all2_eq:
haftmann@22551
  1702
  "xs = ys \<longleftrightarrow> list_all2 (op =) xs ys"
haftmann@22551
  1703
  by (induct xs ys rule: list_induct2') auto
haftmann@22551
  1704
wenzelm@13142
  1705
nipkow@15392
  1706
subsubsection {* @{text foldl} and @{text foldr} *}
wenzelm@13142
  1707
wenzelm@13142
  1708
lemma foldl_append [simp]:
nipkow@13145
  1709
"!!a. foldl f a (xs @ ys) = foldl f (foldl f a xs) ys"
nipkow@13145
  1710
by (induct xs) auto
wenzelm@13142
  1711
nipkow@14402
  1712
lemma foldr_append[simp]: "foldr f (xs @ ys) a = foldr f xs (foldr f ys a)"
nipkow@14402
  1713
by (induct xs) auto
nipkow@14402
  1714
nipkow@23096
  1715
lemma foldr_map: "foldr g (map f xs) a = foldr (g o f) xs a"
nipkow@23096
  1716
by(induct xs) simp_all
nipkow@23096
  1717
nipkow@23096
  1718
lemma foldl_map: "foldl g a (map f xs) = foldl (%a x. g a (f x)) a xs"
nipkow@23096
  1719
by(induct xs arbitrary:a) simp_all
nipkow@23096
  1720
krauss@19770
  1721
lemma foldl_cong [fundef_cong, recdef_cong]:
krauss@18336
  1722
  "[| a = b; l = k; !!a x. x : set l ==> f a x = g a x |] 
krauss@18336
  1723
  ==> foldl f a l = foldl g b k"
wenzelm@20503
  1724
  by (induct k arbitrary: a b l) simp_all
krauss@18336
  1725
krauss@19770
  1726
lemma foldr_cong [fundef_cong, recdef_cong]:
krauss@18336
  1727
  "[| a = b; l = k; !!a x. x : set l ==> f x a = g x a |] 
krauss@18336
  1728
  ==> foldr f l a = foldr g k b"
wenzelm@20503
  1729
  by (induct k arbitrary: a b l) simp_all
krauss@18336
  1730
nipkow@23096
  1731
text{* The ``First Duality Theorem'' in Bird \& Wadler: *}
nipkow@23096
  1732
nipkow@23096
  1733
lemma foldl_foldr1_lemma:
nipkow@23096
  1734
 "foldl op + a xs = a + foldr op + xs (0\<Colon>'a::monoid_add)"
nipkow@23096
  1735
by (induct xs arbitrary: a) (auto simp:add_assoc)
nipkow@23096
  1736
nipkow@23096
  1737
corollary foldl_foldr1:
nipkow@23096
  1738
 "foldl op + 0 xs = foldr op + xs (0\<Colon>'a::monoid_add)"
nipkow@23096
  1739
by (simp add:foldl_foldr1_lemma)
nipkow@23096
  1740
nipkow@23096
  1741
nipkow@23096
  1742
text{* The ``Third Duality Theorem'' in Bird \& Wadler: *}
nipkow@23096
  1743
nipkow@14402
  1744
lemma foldr_foldl: "foldr f xs a = foldl (%x y. f y x) a (rev xs)"
nipkow@14402
  1745
by (induct xs) auto
nipkow@14402
  1746
nipkow@14402
  1747
lemma foldl_foldr: "foldl f a xs = foldr (%x y. f y x) (rev xs) a"
nipkow@14402
  1748
by (simp add: foldr_foldl [of "%x y. f y x" "rev xs"])
nipkow@14402
  1749
wenzelm@13142
  1750
text {*
nipkow@13145
  1751
Note: @{text "n \<le> foldl (op +) n ns"} looks simpler, but is more
nipkow@13145
  1752
difficult to use because it requires an additional transitivity step.
wenzelm@13142
  1753
*}
wenzelm@13142
  1754
wenzelm@13142
  1755
lemma start_le_sum: "!!n::nat. m <= n ==> m <= foldl (op +) n ns"
nipkow@13145
  1756
by (induct ns) auto
wenzelm@13142
  1757
wenzelm@13142
  1758
lemma elem_le_sum: "!!n::nat. n : set ns ==> n <= foldl (op +) 0 ns"
nipkow@13145
  1759
by (force intro: start_le_sum simp add: in_set_conv_decomp)
wenzelm@13142
  1760
wenzelm@13142
  1761
lemma sum_eq_0_conv [iff]:
nipkow@13145
  1762
"!!m::nat. (foldl (op +) m ns = 0) = (m = 0 \<and> (\<forall>n \<in> set ns. n = 0))"
nipkow@13145
  1763
by (induct ns) auto
wenzelm@13114
  1764
nipkow@23096
  1765
subsubsection {* List summation: @{const listsum} and @{text"\<Sum>"}*}
nipkow@23096
  1766
nipkow@23096
  1767
lemma listsum_foldr:
nipkow@23096
  1768
 "listsum xs = foldr (op +) xs 0"
nipkow@23096
  1769
by(induct xs) auto
nipkow@23096
  1770
nipkow@23096
  1771
(* for efficient code generation *)
nipkow@23096
  1772
lemma listsum[code]: "listsum xs = foldl (op +) 0 xs"
nipkow@23096
  1773
by(simp add:listsum_foldr foldl_foldr1)
nipkow@23096
  1774
nipkow@23096
  1775
text{* Some syntactic sugar for summing a function over a list: *}
nipkow@23096
  1776
nipkow@23096
  1777
syntax
nipkow@23096
  1778
  "_listsum" :: "pttrn => 'a list => 'b => 'b"    ("(3SUM _<-_. _)" [0, 51, 10] 10)
nipkow@23096
  1779
syntax (xsymbols)
nipkow@23096
  1780
  "_listsum" :: "pttrn => 'a list => 'b => 'b"    ("(3\<Sum>_\<leftarrow>_. _)" [0, 51, 10] 10)
nipkow@23096
  1781
syntax (HTML output)
nipkow@23096
  1782
  "_listsum" :: "pttrn => 'a list => 'b => 'b"    ("(3\<Sum>_\<leftarrow>_. _)" [0, 51, 10] 10)
nipkow@23096
  1783
nipkow@23096
  1784
translations -- {* Beware of argument permutation! *}
nipkow@23096
  1785
  "SUM x<-xs. b" == "CONST listsum (map (%x. b) xs)"
nipkow@23096
  1786
  "\<Sum>x\<leftarrow>xs. b" == "CONST listsum (map (%x. b) xs)"
nipkow@23096
  1787
nipkow@23096
  1788
lemma listsum_0 [simp]: "(\<Sum>x\<leftarrow>xs. 0) = 0"
nipkow@23096
  1789
by (induct xs) simp_all
nipkow@23096
  1790
nipkow@23096
  1791
text{* For non-Abelian groups @{text xs} needs to be reversed on one side: *}
nipkow@23096
  1792
lemma uminus_listsum_map:
nipkow@23096
  1793
 "- listsum (map f xs) = (listsum (map (uminus o f) xs) :: 'a::ab_group_add)"
nipkow@23096
  1794
by(induct xs) simp_all
nipkow@23096
  1795
wenzelm@13114
  1796
nipkow@15392
  1797
subsubsection {* @{text upto} *}
wenzelm@13114
  1798
nipkow@17090
  1799
lemma upt_rec[code]: "[i..<j] = (if i<j then i#[Suc i..<j] else [])"
nipkow@17090
  1800
-- {* simp does not terminate! *}
nipkow@13145
  1801
by (induct j) auto
wenzelm@13142
  1802
nipkow@15425
  1803
lemma upt_conv_Nil [simp]: "j <= i ==> [i..<j] = []"
nipkow@13145
  1804
by (subst upt_rec) simp
wenzelm@13114
  1805
nipkow@15425
  1806
lemma upt_eq_Nil_conv[simp]: "([i..<j] = []) = (j = 0 \<or> j <= i)"
nipkow@15281
  1807
by(induct j)simp_all
nipkow@15281
  1808
nipkow@15281
  1809
lemma upt_eq_Cons_conv:
nipkow@15425
  1810
 "!!x xs. ([i..<j] = x#xs) = (i < j & i = x & [i+1..<j] = xs)"
nipkow@15281
  1811
apply(induct j)
nipkow@15281
  1812
 apply simp
nipkow@15281
  1813
apply(clarsimp simp add: append_eq_Cons_conv)
nipkow@15281
  1814
apply arith
nipkow@15281
  1815
done
nipkow@15281
  1816
nipkow@15425
  1817
lemma upt_Suc_append: "i <= j ==> [i..<(Suc j)] = [i..<j]@[j]"
nipkow@13145
  1818
-- {* Only needed if @{text upt_Suc} is deleted from the simpset. *}
nipkow@13145
  1819
by simp
wenzelm@13114
  1820
nipkow@15425
  1821
lemma upt_conv_Cons: "i < j ==> [i..<j] = i # [Suc i..<j]"
nipkow@13145
  1822
apply(rule trans)
nipkow@13145
  1823
apply(subst upt_rec)
paulson@14208
  1824
 prefer 2 apply (rule refl, simp)
nipkow@13145
  1825
done
wenzelm@13114
  1826
nipkow@15425
  1827
lemma upt_add_eq_append: "i<=j ==> [i..<j+k] = [i..<j]@[j..<j+k]"
nipkow@13145
  1828
-- {* LOOPS as a simprule, since @{text "j <= j"}. *}
nipkow@13145
  1829
by (induct k) auto
wenzelm@13114
  1830
nipkow@15425
  1831
lemma length_upt [simp]: "length [i..<j] = j - i"
nipkow@13145
  1832
by (induct j) (auto simp add: Suc_diff_le)
wenzelm@13114
  1833
nipkow@15425
  1834
lemma nth_upt [simp]: "i + k < j ==> [i..<j] ! k = i + k"
nipkow@13145
  1835
apply (induct j)
nipkow@13145
  1836
apply (auto simp add: less_Suc_eq nth_append split: nat_diff_split)
nipkow@13145
  1837
done
wenzelm@13114
  1838
nipkow@17906
  1839
nipkow@17906
  1840
lemma hd_upt[simp]: "i < j \<Longrightarrow> hd[i..<j] = i"
nipkow@17906
  1841
by(simp add:upt_conv_Cons)
nipkow@17906
  1842
nipkow@17906
  1843
lemma last_upt[simp]: "i < j \<Longrightarrow> last[i..<j] = j - 1"
nipkow@17906
  1844
apply(cases j)
nipkow@17906
  1845
 apply simp
nipkow@17906
  1846
by(simp add:upt_Suc_append)
nipkow@17906
  1847
nipkow@15425
  1848
lemma take_upt [simp]: "!!i. i+m <= n ==> take m [i..<n] = [i..<i+m]"
paulson@14208
  1849
apply (induct m, simp)
nipkow@13145
  1850
apply (subst upt_rec)
nipkow@13145
  1851
apply (rule sym)
nipkow@13145
  1852
apply (subst upt_rec)
nipkow@13145
  1853
apply (simp del: upt.simps)
nipkow@13145
  1854
done
nipkow@3507
  1855
nipkow@17501
  1856
lemma drop_upt[simp]: "drop m [i..<j] = [i+m..<j]"
nipkow@17501
  1857
apply(induct j)
nipkow@17501
  1858
apply auto
nipkow@17501
  1859
done
nipkow@17501
  1860
nipkow@15425
  1861
lemma map_Suc_upt: "map Suc [m..<n] = [Suc m..n]"
nipkow@13145
  1862
by (induct n) auto
wenzelm@13114
  1863
nipkow@15425
  1864
lemma nth_map_upt: "!!i. i < n-m ==> (map f [m..<n]) ! i = f(m+i)"
nipkow@13145
  1865
apply (induct n m rule: diff_induct)
nipkow@13145
  1866
prefer 3 apply (subst map_Suc_upt[symmetric])
nipkow@13145
  1867
apply (auto simp add: less_diff_conv nth_upt)
nipkow@13145
  1868
done
wenzelm@13114
  1869
berghofe@13883
  1870
lemma nth_take_lemma:
berghofe@13883
  1871
  "!!xs ys. k <= length xs ==> k <= length ys ==>
berghofe@13883
  1872
     (!!i. i < k --> xs!i = ys!i) ==> take k xs = take k ys"
berghofe@13883
  1873
apply (atomize, induct k)
paulson@14208
  1874
apply (simp_all add: less_Suc_eq_0_disj all_conj_distrib, clarify)
nipkow@13145
  1875
txt {* Both lists must be non-empty *}
paulson@14208
  1876
apply (case_tac xs, simp)
paulson@14208
  1877
apply (case_tac ys, clarify)
nipkow@13145
  1878
 apply (simp (no_asm_use))
nipkow@13145
  1879
apply clarify
nipkow@13145
  1880
txt {* prenexing's needed, not miniscoping *}
nipkow@13145
  1881
apply (simp (no_asm_use) add: all_simps [symmetric] del: all_simps)
nipkow@13145
  1882
apply blast
nipkow@13145
  1883
done
wenzelm@13114
  1884
wenzelm@13114
  1885
lemma nth_equalityI:
wenzelm@13114
  1886
 "[| length xs = length ys; ALL i < length xs. xs!i = ys!i |] ==> xs = ys"
nipkow@13145
  1887
apply (frule nth_take_lemma [OF le_refl eq_imp_le])
nipkow@13145
  1888
apply (simp_all add: take_all)
nipkow@13145
  1889
done
wenzelm@13142
  1890
kleing@13863
  1891
(* needs nth_equalityI *)
kleing@13863
  1892
lemma list_all2_antisym:
kleing@13863
  1893
  "\<lbrakk> (\<And>x y. \<lbrakk>P x y; Q y x\<rbrakk> \<Longrightarrow> x = y); list_all2 P xs ys; list_all2 Q ys xs \<rbrakk> 
kleing@13863
  1894
  \<Longrightarrow> xs = ys"
kleing@13863
  1895
  apply (simp add: list_all2_conv_all_nth) 
paulson@14208
  1896
  apply (rule nth_equalityI, blast, simp)
kleing@13863
  1897
  done
kleing@13863
  1898
wenzelm@13142
  1899
lemma take_equalityI: "(\<forall>i. take i xs = take i ys) ==> xs = ys"
nipkow@13145
  1900
-- {* The famous take-lemma. *}
nipkow@13145
  1901
apply (drule_tac x = "max (length xs) (length ys)" in spec)
nipkow@13145
  1902
apply (simp add: le_max_iff_disj take_all)
nipkow@13145
  1903
done
wenzelm@13142
  1904
wenzelm@13142
  1905
nipkow@15302
  1906
lemma take_Cons':
nipkow@15302
  1907
     "take n (x # xs) = (if n = 0 then [] else x # take (n - 1) xs)"
nipkow@15302
  1908
by (cases n) simp_all
nipkow@15302
  1909
nipkow@15302
  1910
lemma drop_Cons':
nipkow@15302
  1911
     "drop n (x # xs) = (if n = 0 then x # xs else drop (n - 1) xs)"
nipkow@15302
  1912
by (cases n) simp_all
nipkow@15302
  1913
nipkow@15302
  1914
lemma nth_Cons': "(x # xs)!n = (if n = 0 then x else xs!(n - 1))"
nipkow@15302
  1915
by (cases n) simp_all
nipkow@15302
  1916
paulson@18622
  1917
lemmas take_Cons_number_of = take_Cons'[of "number_of v",standard]
paulson@18622
  1918
lemmas drop_Cons_number_of = drop_Cons'[of "number_of v",standard]
paulson@18622
  1919
lemmas nth_Cons_number_of = nth_Cons'[of _ _ "number_of v",standard]
paulson@18622
  1920
paulson@18622
  1921
declare take_Cons_number_of [simp] 
paulson@18622
  1922
        drop_Cons_number_of [simp] 
paulson@18622
  1923
        nth_Cons_number_of [simp] 
nipkow@15302
  1924
nipkow@15302
  1925
nipkow@15392
  1926
subsubsection {* @{text "distinct"} and @{text remdups} *}
wenzelm@13142
  1927
wenzelm@13142
  1928
lemma distinct_append [simp]:
nipkow@13145
  1929
"distinct (xs @ ys) = (distinct xs \<and> distinct ys \<and> set xs \<inter> set ys = {})"
nipkow@13145
  1930
by (induct xs) auto
wenzelm@13142
  1931
nipkow@15305
  1932
lemma distinct_rev[simp]: "distinct(rev xs) = distinct xs"
nipkow@15305
  1933
by(induct xs) auto
nipkow@15305
  1934
wenzelm@13142
  1935
lemma set_remdups [simp]: "set (remdups xs) = set xs"
nipkow@13145
  1936
by (induct xs) (auto simp add: insert_absorb)
wenzelm@13142
  1937
wenzelm@13142
  1938
lemma distinct_remdups [iff]: "distinct (remdups xs)"
nipkow@13145
  1939
by (induct xs) auto
wenzelm@13142
  1940
paulson@15072
  1941
lemma remdups_eq_nil_iff [simp]: "(remdups x = []) = (x = [])"
paulson@15251
  1942
  by (induct x, auto) 
paulson@15072
  1943
paulson@15072
  1944
lemma remdups_eq_nil_right_iff [simp]: "([] = remdups x) = (x = [])"
paulson@15251
  1945
  by (induct x, auto)
paulson@15072
  1946
nipkow@15245
  1947
lemma length_remdups_leq[iff]: "length(remdups xs) <= length xs"
nipkow@15245
  1948
by (induct xs) auto
nipkow@15245
  1949
nipkow@15245
  1950
lemma length_remdups_eq[iff]:
nipkow@15245
  1951
  "(length (remdups xs) = length xs) = (remdups xs = xs)"
nipkow@15245
  1952
apply(induct xs)
nipkow@15245
  1953
 apply auto
nipkow@15245
  1954
apply(subgoal_tac "length (remdups xs) <= length xs")
nipkow@15245
  1955
 apply arith
nipkow@15245
  1956
apply(rule length_remdups_leq)
nipkow@15245
  1957
done
nipkow@15245
  1958
nipkow@18490
  1959
nipkow@18490
  1960
lemma distinct_map:
nipkow@18490
  1961
  "distinct(map f xs) = (distinct xs & inj_on f (set xs))"
nipkow@18490
  1962
by (induct xs) auto
nipkow@18490
  1963
nipkow@18490
  1964
wenzelm@13142
  1965
lemma distinct_filter [simp]: "distinct xs ==> distinct (filter P xs)"
nipkow@13145
  1966
by (induct xs) auto
wenzelm@13114
  1967
nipkow@17501
  1968
lemma distinct_upt[simp]: "distinct[i..<j]"
nipkow@17501
  1969
by (induct j) auto
nipkow@17501
  1970
nipkow@17501
  1971
lemma distinct_take[simp]: "\<And>i. distinct xs \<Longrightarrow> distinct (take i xs)"
nipkow@17501
  1972
apply(induct xs)
nipkow@17501
  1973
 apply simp
nipkow@17501
  1974
apply (case_tac i)
nipkow@17501
  1975
 apply simp_all
nipkow@17501
  1976
apply(blast dest:in_set_takeD)
nipkow@17501
  1977
done
nipkow@17501
  1978
nipkow@17501
  1979
lemma distinct_drop[simp]: "\<And>i. distinct xs \<Longrightarrow> distinct (drop i xs)"
nipkow@17501
  1980
apply(induct xs)
nipkow@17501
  1981
 apply simp
nipkow@17501
  1982
apply (case_tac i)
nipkow@17501
  1983
 apply simp_all
nipkow@17501
  1984
done
nipkow@17501
  1985
nipkow@17501
  1986
lemma distinct_list_update:
nipkow@17501
  1987
assumes d: "distinct xs" and a: "a \<notin> set xs - {xs!i}"
nipkow@17501
  1988
shows "distinct (xs[i:=a])"
nipkow@17501
  1989
proof (cases "i < length xs")
nipkow@17501
  1990
  case True
nipkow@17501
  1991
  with a have "a \<notin> set (take i xs @ xs ! i # drop (Suc i) xs) - {xs!i}"
nipkow@17501
  1992
    apply (drule_tac id_take_nth_drop) by simp
nipkow@17501
  1993
  with d True show ?thesis
nipkow@17501
  1994
    apply (simp add: upd_conv_take_nth_drop)
nipkow@17501
  1995
    apply (drule subst [OF id_take_nth_drop]) apply assumption
nipkow@17501
  1996
    apply simp apply (cases "a = xs!i") apply simp by blast
nipkow@17501
  1997
next
nipkow@17501
  1998
  case False with d show ?thesis by auto
nipkow@17501
  1999
qed
nipkow@17501
  2000
nipkow@17501
  2001
nipkow@17501
  2002
text {* It is best to avoid this indexed version of distinct, but
nipkow@17501
  2003
sometimes it is useful. *}
nipkow@17501
  2004
wenzelm@13142
  2005
lemma distinct_conv_nth:
nipkow@17501
  2006
"distinct xs = (\<forall>i < size xs. \<forall>j < size xs. i \<noteq> j --> xs!i \<noteq> xs!j)"
paulson@15251
  2007
apply (induct xs, simp, simp)
paulson@14208
  2008
apply (rule iffI, clarsimp)
nipkow@13145
  2009
 apply (case_tac i)
paulson@14208
  2010
apply (case_tac j, simp)
nipkow@13145
  2011
apply (simp add: set_conv_nth)
nipkow@13145
  2012
 apply (case_tac j)
paulson@14208
  2013
apply (clarsimp simp add: set_conv_nth, simp)
nipkow@13145
  2014
apply (rule conjI)
nipkow@13145
  2015
 apply (clarsimp simp add: set_conv_nth)
nipkow@17501
  2016
 apply (erule_tac x = 0 in allE, simp)
paulson@14208
  2017
 apply (erule_tac x = "Suc i" in allE, simp, clarsimp)
nipkow@17501
  2018
apply (erule_tac x = "Suc i" in allE, simp)
paulson@14208
  2019
apply (erule_tac x = "Suc j" in allE, simp)
nipkow@13145
  2020
done
wenzelm@13114
  2021
nipkow@18490
  2022
lemma nth_eq_iff_index_eq:
nipkow@18490
  2023
 "\<lbrakk> distinct xs; i < length xs; j < length xs \<rbrakk> \<Longrightarrow> (xs!i = xs!j) = (i = j)"
nipkow@18490
  2024
by(auto simp: distinct_conv_nth)
nipkow@18490
  2025
nipkow@15110
  2026
lemma distinct_card: "distinct xs ==> card (set xs) = size xs"
kleing@14388
  2027
  by (induct xs) auto
kleing@14388
  2028
nipkow@15110
  2029
lemma card_distinct: "card (set xs) = size xs ==> distinct xs"
kleing@14388
  2030
proof (induct xs)
kleing@14388
  2031
  case Nil thus ?case by simp
kleing@14388
  2032
next
kleing@14388
  2033
  case (Cons x xs)
kleing@14388
  2034
  show ?case
kleing@14388
  2035
  proof (cases "x \<in> set xs")
kleing@14388
  2036
    case False with Cons show ?thesis by simp
kleing@14388
  2037
  next
kleing@14388
  2038
    case True with Cons.prems
kleing@14388
  2039
    have "card (set xs) = Suc (length xs)" 
kleing@14388
  2040
      by (simp add: card_insert_if split: split_if_asm)
kleing@14388
  2041
    moreover have "card (set xs) \<le> length xs" by (rule card_length)
kleing@14388
  2042
    ultimately have False by simp
kleing@14388
  2043
    thus ?thesis ..
kleing@14388
  2044
  qed
kleing@14388
  2045
qed
kleing@14388
  2046
nipkow@18490
  2047
nipkow@18490
  2048
lemma length_remdups_concat:
nipkow@18490
  2049
 "length(remdups(concat xss)) = card(\<Union>xs \<in> set xss. set xs)"
nipkow@18490
  2050
by(simp add: distinct_card[symmetric])
nipkow@17906
  2051
nipkow@17906
  2052
nipkow@15392
  2053
subsubsection {* @{text remove1} *}
nipkow@15110
  2054
nipkow@18049
  2055
lemma remove1_append:
nipkow@18049
  2056
  "remove1 x (xs @ ys) =
nipkow@18049
  2057
  (if x \<in> set xs then remove1 x xs @ ys else xs @ remove1 x ys)"
nipkow@18049
  2058
by (induct xs) auto
nipkow@18049
  2059
nipkow@23479
  2060
lemma in_set_remove1[simp]:
nipkow@23479
  2061
  "a \<noteq> b \<Longrightarrow> a : set(remove1 b xs) = (a : set xs)"
nipkow@23479
  2062
apply (induct xs)
nipkow@23479
  2063
apply auto
nipkow@23479
  2064
done
nipkow@23479
  2065
nipkow@15110
  2066
lemma set_remove1_subset: "set(remove1 x xs) <= set xs"
nipkow@15110
  2067
apply(induct xs)
nipkow@15110
  2068
 apply simp
nipkow@15110
  2069
apply simp
nipkow@15110
  2070
apply blast
nipkow@15110
  2071
done
nipkow@15110
  2072
paulson@17724
  2073
lemma set_remove1_eq [simp]: "distinct xs ==> set(remove1 x xs) = set xs - {x}"
nipkow@15110
  2074
apply(induct xs)
nipkow@15110
  2075
 apply simp
nipkow@15110
  2076
apply simp
nipkow@15110
  2077
apply blast
nipkow@15110
  2078
done
nipkow@15110
  2079
nipkow@23479
  2080
lemma length_remove1:
nipkow@23479
  2081
  "length(remove1 x xs) = (if x : set xs then length xs - 1 else length xs)"
nipkow@23479
  2082
apply (induct xs)
nipkow@23479
  2083
 apply (auto dest!:length_pos_if_in_set)
nipkow@23479
  2084
done
nipkow@23479
  2085
nipkow@18049
  2086
lemma remove1_filter_not[simp]:
nipkow@18049
  2087
  "\<not> P x \<Longrightarrow> remove1 x (filter P xs) = filter P xs"
nipkow@18049
  2088
by(induct xs) auto
nipkow@18049
  2089
nipkow@15110
  2090
lemma notin_set_remove1[simp]: "x ~: set xs ==> x ~: set(remove1 y xs)"
nipkow@15110
  2091
apply(insert set_remove1_subset)
nipkow@15110
  2092
apply fast
nipkow@15110
  2093
done
nipkow@15110
  2094
nipkow@15110
  2095
lemma distinct_remove1[simp]: "distinct xs ==> distinct(remove1 x xs)"
nipkow@15110
  2096
by (induct xs) simp_all
nipkow@15110
  2097
wenzelm@13114
  2098
nipkow@15392
  2099
subsubsection {* @{text replicate} *}
wenzelm@13114
  2100
wenzelm@13142
  2101
lemma length_replicate [simp]: "length (replicate n x) = n"
nipkow@13145
  2102
by (induct n) auto
nipkow@13124
  2103
wenzelm@13142
  2104
lemma map_replicate [simp]: "map f (replicate n x) = replicate n (f x)"
nipkow@13145
  2105
by (induct n) auto
wenzelm@13114
  2106
wenzelm@13114
  2107
lemma replicate_app_Cons_same:
nipkow@13145
  2108
"(replicate n x) @ (x # xs) = x # replicate n x @ xs"
nipkow@13145
  2109
by (induct n) auto
wenzelm@13114
  2110
wenzelm@13142
  2111
lemma rev_replicate [simp]: "rev (replicate n x) = replicate n x"
paulson@14208
  2112
apply (induct n, simp)
nipkow@13145
  2113
apply (simp add: replicate_app_Cons_same)
nipkow@13145
  2114
done
wenzelm@13114
  2115
wenzelm@13142
  2116
lemma replicate_add: "replicate (n + m) x = replicate n x @ replicate m x"
nipkow@13145
  2117
by (induct n) auto
wenzelm@13114
  2118
nipkow@16397
  2119
text{* Courtesy of Matthias Daum: *}
nipkow@16397
  2120
lemma append_replicate_commute:
nipkow@16397
  2121
  "replicate n x @ replicate k x = replicate k x @ replicate n x"
nipkow@16397
  2122
apply (simp add: replicate_add [THEN sym])
nipkow@16397
  2123
apply (simp add: add_commute)
nipkow@16397
  2124
done
nipkow@16397
  2125
wenzelm@13142
  2126
lemma hd_replicate [simp]: "n \<noteq> 0 ==> hd (replicate n x) = x"
nipkow@13145
  2127
by (induct n) auto
wenzelm@13114
  2128
wenzelm@13142
  2129
lemma tl_replicate [simp]: "n \<noteq> 0 ==> tl (replicate n x) = replicate (n - 1) x"
nipkow@13145
  2130
by (induct n) auto
wenzelm@13114
  2131
wenzelm@13142
  2132
lemma last_replicate [simp]: "n \<noteq> 0 ==> last (replicate n x) = x"
nipkow@13145
  2133
by (atomize (full), induct n) auto
wenzelm@13114
  2134
wenzelm@13142
  2135
lemma nth_replicate[simp]: "!!i. i < n ==> (replicate n x)!i = x"
paulson@14208
  2136
apply (induct n, simp)
nipkow@13145
  2137
apply (simp add: nth_Cons split: nat.split)
nipkow@13145
  2138
done
wenzelm@13114
  2139
nipkow@16397
  2140
text{* Courtesy of Matthias Daum (2 lemmas): *}
nipkow@16397
  2141
lemma take_replicate[simp]: "take i (replicate k x) = replicate (min i k) x"
nipkow@16397
  2142
apply (case_tac "k \<le> i")
nipkow@16397
  2143
 apply  (simp add: min_def)
nipkow@16397
  2144
apply (drule not_leE)
nipkow@16397
  2145
apply (simp add: min_def)
nipkow@16397
  2146
apply (subgoal_tac "replicate k x = replicate i x @ replicate (k - i) x")
nipkow@16397
  2147
 apply  simp
nipkow@16397
  2148
apply (simp add: replicate_add [symmetric])
nipkow@16397
  2149
done
nipkow@16397
  2150
nipkow@16397
  2151
lemma drop_replicate[simp]: "!!i. drop i (replicate k x) = replicate (k-i) x"
nipkow@16397
  2152
apply (induct k)
nipkow@16397
  2153
 apply simp
nipkow@16397
  2154
apply clarsimp
nipkow@16397
  2155
apply (case_tac i)
nipkow@16397
  2156
 apply simp
nipkow@16397
  2157
apply clarsimp
nipkow@16397
  2158
done
nipkow@16397
  2159
nipkow@16397
  2160
wenzelm@13142
  2161
lemma set_replicate_Suc: "set (replicate (Suc n) x) = {x}"
nipkow@13145
  2162
by (induct n) auto
wenzelm@13114
  2163
wenzelm@13142
  2164
lemma set_replicate [simp]: "n \<noteq> 0 ==> set (replicate n x) = {x}"
nipkow@13145
  2165
by (fast dest!: not0_implies_Suc intro!: set_replicate_Suc)
wenzelm@13114
  2166
wenzelm@13142
  2167
lemma set_replicate_conv_if: "set (replicate n x) = (if n = 0 then {} else {x})"
nipkow@13145
  2168
by auto
wenzelm@13114
  2169
wenzelm@13142
  2170
lemma in_set_replicateD: "x : set (replicate n y) ==> x = y"
nipkow@13145
  2171
by (simp add: set_replicate_conv_if split: split_if_asm)
wenzelm@13114
  2172
wenzelm@13114
  2173
nipkow@15392
  2174
subsubsection{*@{text rotate1} and @{text rotate}*}
nipkow@15302
  2175
nipkow@15302
  2176
lemma rotate_simps[simp]: "rotate1 [] = [] \<and> rotate1 (x#xs) = xs @ [x]"
nipkow@15302
  2177
by(simp add:rotate1_def)
nipkow@15302
  2178
nipkow@15302
  2179
lemma rotate0[simp]: "rotate 0 = id"
nipkow@15302
  2180
by(simp add:rotate_def)
nipkow@15302
  2181
nipkow@15302
  2182
lemma rotate_Suc[simp]: "rotate (Suc n) xs = rotate1(rotate n xs)"
nipkow@15302
  2183
by(simp add:rotate_def)
nipkow@15302
  2184
nipkow@15302
  2185
lemma rotate_add:
nipkow@15302
  2186
  "rotate (m+n) = rotate m o rotate n"
nipkow@15302
  2187
by(simp add:rotate_def funpow_add)
nipkow@15302
  2188
nipkow@15302
  2189
lemma rotate_rotate: "rotate m (rotate n xs) = rotate (m+n) xs"
nipkow@15302
  2190
by(simp add:rotate_add)
nipkow@15302
  2191
nipkow@18049
  2192
lemma rotate1_rotate_swap: "rotate1 (rotate n xs) = rotate n (rotate1 xs)"
nipkow@18049
  2193
by(simp add:rotate_def funpow_swap1)
nipkow@18049
  2194
nipkow@15302
  2195
lemma rotate1_length01[simp]: "length xs <= 1 \<Longrightarrow> rotate1 xs = xs"
nipkow@15302
  2196
by(cases xs) simp_all
nipkow@15302
  2197
nipkow@15302
  2198
lemma rotate_length01[simp]: "length xs <= 1 \<Longrightarrow> rotate n xs = xs"
nipkow@15302
  2199
apply(induct n)
nipkow@15302
  2200
 apply simp
nipkow@15302
  2201
apply (simp add:rotate_def)
nipkow@13145
  2202
done
wenzelm@13114
  2203
nipkow@15302
  2204
lemma rotate1_hd_tl: "xs \<noteq> [] \<Longrightarrow> rotate1 xs = tl xs @ [hd xs]"
nipkow@15302
  2205
by(simp add:rotate1_def split:list.split)
nipkow@15302
  2206
nipkow@15302
  2207
lemma rotate_drop_take:
nipkow@15302
  2208
  "rotate n xs = drop (n mod length xs) xs @ take (n mod length xs) xs"
nipkow@15302
  2209
apply(induct n)
nipkow@15302
  2210
 apply simp
nipkow@15302
  2211
apply(simp add:rotate_def)
nipkow@15302
  2212
apply(cases "xs = []")
nipkow@15302
  2213
 apply (simp)
nipkow@15302
  2214
apply(case_tac "n mod length xs = 0")
nipkow@15302
  2215
 apply(simp add:mod_Suc)
nipkow@15302
  2216
 apply(simp add: rotate1_hd_tl drop_Suc take_Suc)
nipkow@15302
  2217
apply(simp add:mod_Suc rotate1_hd_tl drop_Suc[symmetric] drop_tl[symmetric]
nipkow@15302
  2218
                take_hd_drop linorder_not_le)
nipkow@13145
  2219
done
wenzelm@13114
  2220
nipkow@15302
  2221
lemma rotate_conv_mod: "rotate n xs = rotate (n mod length xs) xs"
nipkow@15302
  2222
by(simp add:rotate_drop_take)
nipkow@15302
  2223
nipkow@15302
  2224
lemma rotate_id[simp]: "n mod length xs = 0 \<Longrightarrow> rotate n xs = xs"
nipkow@15302
  2225
by(simp add:rotate_drop_take)
nipkow@15302
  2226
nipkow@15302
  2227
lemma length_rotate1[simp]: "length(rotate1 xs) = length xs"
nipkow@15302
  2228
by(simp add:rotate1_def split:list.split)
nipkow@15302
  2229
nipkow@15302
  2230
lemma length_rotate[simp]: "!!xs. length(rotate n xs) = length xs"
nipkow@15302
  2231
by (induct n) (simp_all add:rotate_def)
nipkow@15302
  2232
nipkow@15302
  2233
lemma distinct1_rotate[simp]: "distinct(rotate1 xs) = distinct xs"
nipkow@15302
  2234
by(simp add:rotate1_def split:list.split) blast
nipkow@15302
  2235
nipkow@15302
  2236
lemma distinct_rotate[simp]: "distinct(rotate n xs) = distinct xs"
nipkow@15302
  2237
by (induct n) (simp_all add:rotate_def)
nipkow@15302
  2238
nipkow@15302
  2239
lemma rotate_map: "rotate n (map f xs) = map f (rotate n xs)"
nipkow@15302
  2240
by(simp add:rotate_drop_take take_map drop_map)
nipkow@15302
  2241
nipkow@15302
  2242
lemma set_rotate1[simp]: "set(rotate1 xs) = set xs"
nipkow@15302
  2243
by(simp add:rotate1_def split:list.split)
nipkow@15302
  2244
nipkow@15302
  2245
lemma set_rotate[simp]: "set(rotate n xs) = set xs"
nipkow@15302
  2246
by (induct n) (simp_all add:rotate_def)
nipkow@15302
  2247
nipkow@15302
  2248
lemma rotate1_is_Nil_conv[simp]: "(rotate1 xs = []) = (xs = [])"
nipkow@15302
  2249
by(simp add:rotate1_def split:list.split)
nipkow@15302
  2250
nipkow@15302
  2251
lemma rotate_is_Nil_conv[simp]: "(rotate n xs = []) = (xs = [])"
nipkow@15302
  2252
by (induct n) (simp_all add:rotate_def)
wenzelm@13114
  2253
nipkow@15439
  2254
lemma rotate_rev:
nipkow@15439
  2255
  "rotate n (rev xs) = rev(rotate (length xs - (n mod length xs)) xs)"
nipkow@15439
  2256
apply(simp add:rotate_drop_take rev_drop rev_take)
nipkow@15439
  2257
apply(cases "length xs = 0")
nipkow@15439
  2258
 apply simp
nipkow@15439
  2259
apply(cases "n mod length xs = 0")
nipkow@15439
  2260
 apply simp
nipkow@15439
  2261
apply(simp add:rotate_drop_take rev_drop rev_take)
nipkow@15439
  2262
done
nipkow@15439
  2263
nipkow@18423
  2264
lemma hd_rotate_conv_nth: "xs \<noteq> [] \<Longrightarrow> hd(rotate n xs) = xs!(n mod length xs)"
nipkow@18423
  2265
apply(simp add:rotate_drop_take hd_append hd_drop_conv_nth hd_conv_nth)
nipkow@18423
  2266
apply(subgoal_tac "length xs \<noteq> 0")
nipkow@18423
  2267
 prefer 2 apply simp
nipkow@18423
  2268
using mod_less_divisor[of "length xs" n] by arith
nipkow@18423
  2269
wenzelm@13114
  2270
nipkow@15392
  2271
subsubsection {* @{text sublist} --- a generalization of @{text nth} to sets *}
wenzelm@13114
  2272
wenzelm@13142
  2273
lemma sublist_empty [simp]: "sublist xs {} = []"
nipkow@13145
  2274
by (auto simp add: sublist_def)
wenzelm@13114
  2275
wenzelm@13142
  2276
lemma sublist_nil [simp]: "sublist [] A = []"
nipkow@13145
  2277
by (auto simp add: sublist_def)
wenzelm@13114
  2278
nipkow@15281
  2279
lemma length_sublist:
nipkow@15281
  2280
  "length(sublist xs I) = card{i. i < length xs \<and> i : I}"
nipkow@15281
  2281
by(simp add: sublist_def length_filter_conv_card cong:conj_cong)
nipkow@15281
  2282
nipkow@15281
  2283
lemma sublist_shift_lemma_Suc:
nipkow@15281
  2284
  "!!is. map fst (filter (%p. P(Suc(snd p))) (zip xs is)) =
nipkow@15281
  2285
         map fst (filter (%p. P(snd p)) (zip xs (map Suc is)))"
nipkow@15281
  2286
apply(induct xs)
nipkow@15281
  2287
 apply simp
nipkow@15281
  2288
apply (case_tac "is")
nipkow@15281
  2289
 apply simp
nipkow@15281
  2290
apply simp
nipkow@15281
  2291
done
nipkow@15281
  2292
wenzelm@13114
  2293
lemma sublist_shift_lemma:
nipkow@23279
  2294
     "map fst [p<-zip xs [i..<i + length xs] . snd p : A] =
nipkow@23279
  2295
      map fst [p<-zip xs [0..<length xs] . snd p + i : A]"
nipkow@13145
  2296
by (induct xs rule: rev_induct) (simp_all add: add_commute)
wenzelm@13114
  2297
wenzelm@13114
  2298
lemma sublist_append:
paulson@15168
  2299
     "sublist (l @ l') A = sublist l A @ sublist l' {j. j + length l : A}"
nipkow@13145
  2300
apply (unfold sublist_def)
paulson@14208
  2301
apply (induct l' rule: rev_induct, simp)
nipkow@13145
  2302
apply (simp add: upt_add_eq_append[of 0] zip_append sublist_shift_lemma)
nipkow@13145
  2303
apply (simp add: add_commute)
nipkow@13145
  2304
done
wenzelm@13114
  2305
wenzelm@13114
  2306
lemma sublist_Cons:
nipkow@13145
  2307
"sublist (x # l) A = (if 0:A then [x] else []) @ sublist l {j. Suc j : A}"
nipkow@13145
  2308
apply (induct l rule: rev_induct)
nipkow@13145
  2309
 apply (simp add: sublist_def)
nipkow@13145
  2310
apply (simp del: append_Cons add: append_Cons[symmetric] sublist_append)
nipkow@13145
  2311
done
wenzelm@13114
  2312
nipkow@15281
  2313
lemma set_sublist: "!!I. set(sublist xs I) = {xs!i|i. i<size xs \<and> i \<in> I}"
nipkow@15281
  2314
apply(induct xs)
nipkow@15281
  2315
 apply simp
nipkow@15281
  2316
apply(auto simp add:sublist_Cons nth_Cons split:nat.split elim: lessE)
nipkow@15281
  2317
 apply(erule lessE)
nipkow@15281
  2318
  apply auto
nipkow@15281
  2319
apply(erule lessE)
nipkow@15281
  2320
apply auto
nipkow@15281
  2321
done
nipkow@15281
  2322
nipkow@15281
  2323
lemma set_sublist_subset: "set(sublist xs I) \<subseteq> set xs"
nipkow@15281
  2324
by(auto simp add:set_sublist)
nipkow@15281
  2325
nipkow@15281
  2326
lemma notin_set_sublistI[simp]: "x \<notin> set xs \<Longrightarrow> x \<notin> set(sublist xs I)"
nipkow@15281
  2327
by(auto simp add:set_sublist)
nipkow@15281
  2328
nipkow@15281
  2329
lemma in_set_sublistD: "x \<in> set(sublist xs I) \<Longrightarrow> x \<in> set xs"
nipkow@15281
  2330
by(auto simp add:set_sublist)
nipkow@15281
  2331
wenzelm@13142
  2332
lemma sublist_singleton [simp]: "sublist [x] A = (if 0 : A then [x] else [])"
nipkow@13145
  2333
by (simp add: sublist_Cons)
wenzelm@13114
  2334
nipkow@15281
  2335
nipkow@15281
  2336
lemma distinct_sublistI[simp]: "!!I. distinct xs \<Longrightarrow> distinct(sublist xs I)"
nipkow@15281
  2337
apply(induct xs)
nipkow@15281
  2338
 apply simp
nipkow@15281
  2339
apply(auto simp add:sublist_Cons)
nipkow@15281
  2340
done
nipkow@15281
  2341
nipkow@15281
  2342
nipkow@15045
  2343
lemma sublist_upt_eq_take [simp]: "sublist l {..<n} = take n l"
paulson@14208
  2344
apply (induct l rule: rev_induct, simp)
nipkow@13145
  2345
apply (simp split: nat_diff_split add: sublist_append)
nipkow@13145
  2346
done
wenzelm@13114
  2347
nipkow@17501
  2348
lemma filter_in_sublist: "\<And>s. distinct xs \<Longrightarrow>
nipkow@17501
  2349
  filter (%x. x \<in> set(sublist xs s)) xs = sublist xs s"
nipkow@17501
  2350
proof (induct xs)
nipkow@17501
  2351
  case Nil thus ?case by simp
nipkow@17501
  2352
next
nipkow@17501
  2353
  case (Cons a xs)
nipkow@17501
  2354
  moreover hence "!x. x: set xs \<longrightarrow> x \<noteq> a" by auto
nipkow@17501
  2355
  ultimately show ?case by(simp add: sublist_Cons cong:filter_cong)
nipkow@17501
  2356
qed
nipkow@17501
  2357
wenzelm@13114
  2358
nipkow@19390
  2359
subsubsection {* @{const splice} *}
nipkow@19390
  2360
haftmann@19607
  2361
lemma splice_Nil2 [simp, code]:
nipkow@19390
  2362
 "splice xs [] = xs"
nipkow@19390
  2363
by (cases xs) simp_all
nipkow@19390
  2364
haftmann@19607
  2365
lemma splice_Cons_Cons [simp, code]:
nipkow@19390
  2366
 "splice (x#xs) (y#ys) = x # y # splice xs ys"
nipkow@19390
  2367
by simp
nipkow@19390
  2368
haftmann@19607
  2369
declare splice.simps(2) [simp del, code del]
nipkow@19390
  2370
nipkow@22793
  2371
lemma length_splice[simp]: "!!ys. length(splice xs ys) = length xs + length ys"
nipkow@22793
  2372
apply(induct xs) apply simp
nipkow@22793
  2373
apply(case_tac ys)
nipkow@22793
  2374
 apply auto
nipkow@22793
  2375
done
nipkow@22793
  2376
nipkow@22828
  2377
subsubsection {* @{const allpairs} *}
nipkow@22828
  2378
nipkow@22940
  2379
lemma allpairs_conv_concat:
nipkow@22940
  2380
 "allpairs f xs ys = concat(map (%x. map (f x) ys) xs)"
nipkow@22940
  2381
by(induct xs) auto
nipkow@22940
  2382
nipkow@22828
  2383
lemma allpairs_append:
nipkow@22830
  2384
 "allpairs f (xs @ ys) zs = allpairs f xs zs @ allpairs f ys zs"
nipkow@22828
  2385
by(induct xs) auto
nipkow@22828
  2386
nipkow@15392
  2387
subsubsection {* @{text lists}: the list-forming operator over sets *}
nipkow@15302
  2388
berghofe@23740
  2389
inductive_set
berghofe@22262
  2390
  lists :: "'a set => 'a list set"
berghofe@23740
  2391
  for A :: "'a set"
berghofe@23740
  2392
where
berghofe@23740
  2393
    Nil [intro!]: "[]: lists A"
berghofe@23740
  2394
  | Cons [intro!]: "[| a: A;l: lists A|] ==> a#l : lists A"
berghofe@23740
  2395
berghofe@23740
  2396
inductive_cases listsE [elim!]: "x#l : lists A"
berghofe@23740
  2397
inductive_cases listspE [elim!]: "listsp A (x # l)"
berghofe@23740
  2398
berghofe@23740
  2399
lemma listsp_mono [mono]: "A \<le> B ==> listsp A \<le> listsp B"
berghofe@22262
  2400
  by (clarify, erule listsp.induct, blast+)
berghofe@22262
  2401
berghofe@23740
  2402
lemmas lists_mono = listsp_mono [to_set]
berghofe@22262
  2403
haftmann@22422
  2404
lemma listsp_infI:
haftmann@22422
  2405
  assumes l: "listsp A l" shows "listsp B l ==> listsp (inf A B) l" using l
nipkow@15302
  2406
  by induct blast+
nipkow@15302
  2407
haftmann@22422
  2408
lemmas lists_IntI = listsp_infI [to_set]
haftmann@22422
  2409
haftmann@22422
  2410
lemma listsp_inf_eq [simp]: "listsp (inf A B) = inf (listsp A) (listsp B)"
haftmann@22422
  2411
proof (rule mono_inf [where f=listsp, THEN order_antisym])
berghofe@22262
  2412
  show "mono listsp" by (simp add: mono_def listsp_mono)
haftmann@22422
  2413
  show "inf (listsp A) (listsp B) \<le> listsp (inf A B)" by (blast intro: listsp_infI)
kleing@14388
  2414
qed
kleing@14388
  2415
haftmann@22422
  2416
lemmas listsp_conj_eq [simp] = listsp_inf_eq [simplified inf_fun_eq inf_bool_eq]
haftmann@22422
  2417
haftmann@22422
  2418
lemmas lists_Int_eq [simp] = listsp_inf_eq [to_set]
berghofe@22262
  2419
berghofe@22262
  2420
lemma append_in_listsp_conv [iff]:
berghofe@22262
  2421
     "(listsp A (xs @ ys)) = (listsp A xs \<and> listsp A ys)"
nipkow@15302
  2422
by (induct xs) auto
nipkow@15302
  2423
berghofe@22262
  2424
lemmas append_in_lists_conv [iff] = append_in_listsp_conv [to_set]
berghofe@22262
  2425
berghofe@22262
  2426
lemma in_listsp_conv_set: "(listsp A xs) = (\<forall>x \<in> set xs. A x)"
berghofe@22262
  2427
-- {* eliminate @{text listsp} in favour of @{text set} *}
nipkow@15302
  2428
by (induct xs) auto
nipkow@15302
  2429
berghofe@22262
  2430
lemmas in_lists_conv_set = in_listsp_conv_set [to_set]
berghofe@22262
  2431
berghofe@22262
  2432
lemma in_listspD [dest!]: "listsp A xs ==> \<forall>x\<in>set xs. A x"
berghofe@22262
  2433
by (rule in_listsp_conv_set [THEN iffD1])
berghofe@22262
  2434
berghofe@22262
  2435
lemmas in_listsD [dest!] = in_listspD [to_set]
berghofe@22262
  2436
berghofe@22262
  2437
lemma in_listspI [intro!]: "\<forall>x\<in>set xs. A x ==> listsp A xs"
berghofe@22262
  2438
by (rule in_listsp_conv_set [THEN iffD2])
berghofe@22262
  2439
berghofe@22262
  2440
lemmas in_listsI [intro!] = in_listspI [to_set]
nipkow@15302
  2441
nipkow@15302
  2442
lemma lists_UNIV [simp]: "lists UNIV = UNIV"
nipkow@15302
  2443
by auto
nipkow@15302
  2444
nipkow@17086
  2445
nipkow@17086
  2446
nipkow@17086
  2447
subsubsection{* Inductive definition for membership *}
nipkow@17086
  2448
berghofe@23740
  2449
inductive ListMem :: "'a \<Rightarrow> 'a list \<Rightarrow> bool"
berghofe@22262
  2450
where
berghofe@22262
  2451
    elem:  "ListMem x (x # xs)"
berghofe@22262
  2452
  | insert:  "ListMem x xs \<Longrightarrow> ListMem x (y # xs)"
berghofe@22262
  2453
berghofe@22262
  2454
lemma ListMem_iff: "(ListMem x xs) = (x \<in> set xs)"
nipkow@17086
  2455
apply (rule iffI)
nipkow@17086
  2456
 apply (induct set: ListMem)
nipkow@17086
  2457
  apply auto
nipkow@17086
  2458
apply (induct xs)
nipkow@17086
  2459
 apply (auto intro: ListMem.intros)
nipkow@17086
  2460
done
nipkow@17086
  2461
nipkow@17086
  2462
nipkow@17086
  2463
nipkow@15392
  2464
subsubsection{*Lists as Cartesian products*}
nipkow@15302
  2465
nipkow@15302
  2466
text{*@{text"set_Cons A Xs"}: the set of lists with head drawn from
nipkow@15302
  2467
@{term A} and tail drawn from @{term Xs}.*}
nipkow@15302
  2468
nipkow@15302
  2469
constdefs
nipkow@15302
  2470
  set_Cons :: "'a set \<Rightarrow> 'a list set \<Rightarrow> 'a list set"
nipkow@15302
  2471
  "set_Cons A XS == {z. \<exists>x xs. z = x#xs & x \<in> A & xs \<in> XS}"
nipkow@15302
  2472
paulson@17724
  2473
lemma set_Cons_sing_Nil [simp]: "set_Cons A {[]} = (%x. [x])`A"
nipkow@15302
  2474
by (auto simp add: set_Cons_def)
nipkow@15302
  2475
nipkow@15302
  2476
text{*Yields the set of lists, all of the same length as the argument and
nipkow@15302
  2477
with elements drawn from the corresponding element of the argument.*}
nipkow@15302
  2478
nipkow@15302
  2479
consts  listset :: "'a set list \<Rightarrow> 'a list set"
nipkow@15302
  2480
primrec
nipkow@15302
  2481
   "listset []    = {[]}"
nipkow@15302
  2482
   "listset(A#As) = set_Cons A (listset As)"
nipkow@15302
  2483
nipkow@15302
  2484
paulson@15656
  2485
subsection{*Relations on Lists*}
paulson@15656
  2486
paulson@15656
  2487
subsubsection {* Length Lexicographic Ordering *}
paulson@15656
  2488
paulson@15656
  2489
text{*These orderings preserve well-foundedness: shorter lists 
paulson@15656
  2490
  precede longer lists. These ordering are not used in dictionaries.*}
paulson@15656
  2491
paulson@15656
  2492
consts lexn :: "('a * 'a)set => nat => ('a list * 'a list)set"
paulson@15656
  2493
        --{*The lexicographic ordering for lists of the specified length*}
nipkow@15302
  2494
primrec
paulson@15656
  2495
  "lexn r 0 = {}"
paulson@15656
  2496
  "lexn r (Suc n) =
paulson@15656
  2497
    (prod_fun (%(x,xs). x#xs) (%(x,xs). x#xs) ` (r <*lex*> lexn r n)) Int
paulson@15656
  2498
    {(xs,ys). length xs = Suc n \<and> length ys = Suc n}"
nipkow@15302
  2499
nipkow@15302
  2500
constdefs
paulson@15656
  2501
  lex :: "('a \<times> 'a) set => ('a list \<times> 'a list) set"
paulson@15656
  2502
    "lex r == \<Union>n. lexn r n"
paulson@15656
  2503
        --{*Holds only between lists of the same length*}
paulson@15656
  2504
nipkow@15693
  2505
  lenlex :: "('a \<times> 'a) set => ('a list \<times> 'a list) set"
nipkow@15693
  2506
    "lenlex r == inv_image (less_than <*lex*> lex r) (%xs. (length xs, xs))"
paulson@15656
  2507
        --{*Compares lists by their length and then lexicographically*}
nipkow@15302
  2508
nipkow@15302
  2509
nipkow@15302
  2510
lemma wf_lexn: "wf r ==> wf (lexn r n)"
nipkow@15302
  2511
apply (induct n, simp, simp)
nipkow@15302
  2512
apply(rule wf_subset)
nipkow@15302
  2513
 prefer 2 apply (rule Int_lower1)
nipkow@15302
  2514
apply(rule wf_prod_fun_image)
nipkow@15302
  2515
 prefer 2 apply (rule inj_onI, auto)
nipkow@15302
  2516
done
nipkow@15302
  2517
nipkow@15302
  2518
lemma lexn_length:
nipkow@15302
  2519
     "!!xs ys. (xs, ys) : lexn r n ==> length xs = n \<and> length ys = n"
nipkow@15302
  2520
by (induct n) auto
nipkow@15302
  2521
nipkow@15302
  2522
lemma wf_lex [intro!]: "wf r ==> wf (lex r)"
nipkow@15302
  2523
apply (unfold lex_def)
nipkow@15302
  2524
apply (rule wf_UN)
nipkow@15302
  2525
apply (blast intro: wf_lexn, clarify)
nipkow@15302
  2526
apply (rename_tac m n)
nipkow@15302
  2527
apply (subgoal_tac "m \<noteq> n")
nipkow@15302
  2528
 prefer 2 apply blast
nipkow@15302
  2529
apply (blast dest: lexn_length not_sym)
nipkow@15302
  2530
done
nipkow@15302
  2531
nipkow@15302
  2532
lemma lexn_conv:
paulson@15656
  2533
  "lexn r n =
paulson@15656
  2534
    {(xs,ys). length xs = n \<and> length ys = n \<and>
paulson@15656
  2535
    (\<exists>xys x y xs' ys'. xs= xys @ x#xs' \<and> ys= xys @ y # ys' \<and> (x, y):r)}"
nipkow@18423
  2536
apply (induct n, simp)
nipkow@15302
  2537
apply (simp add: image_Collect lex_prod_def, safe, blast)
nipkow@15302
  2538
 apply (rule_tac x = "ab # xys" in exI, simp)
nipkow@15302
  2539
apply (case_tac xys, simp_all, blast)
nipkow@15302
  2540
done
nipkow@15302
  2541
nipkow@15302
  2542
lemma lex_conv:
paulson@15656
  2543
  "lex r =
paulson@15656
  2544
    {(xs,ys). length xs = length ys \<and>
paulson@15656
  2545
    (\<exists>xys x y xs' ys'. xs = xys @ x # xs' \<and> ys = xys @ y # ys' \<and> (x, y):r)}"
nipkow@15302
  2546
by (force simp add: lex_def lexn_conv)
nipkow@15302
  2547
nipkow@15693
  2548
lemma wf_lenlex [intro!]: "wf r ==> wf (lenlex r)"
nipkow@15693
  2549
by (unfold lenlex_def) blast
nipkow@15693
  2550
nipkow@15693
  2551
lemma lenlex_conv:
nipkow@15693
  2552
    "lenlex r = {(xs,ys). length xs < length ys |
paulson@15656
  2553
                 length xs = length ys \<and> (xs, ys) : lex r}"
nipkow@19623
  2554
by (simp add: lenlex_def diag_def lex_prod_def inv_image_def)
nipkow@15302
  2555
nipkow@15302
  2556
lemma Nil_notin_lex [iff]: "([], ys) \<notin> lex r"
nipkow@15302
  2557
by (simp add: lex_conv)
nipkow@15302
  2558
nipkow@15302
  2559
lemma Nil2_notin_lex [iff]: "(xs, []) \<notin> lex r"
nipkow@15302
  2560
by (simp add:lex_conv)
nipkow@15302
  2561
paulson@18447
  2562
lemma Cons_in_lex [simp]:
paulson@15656
  2563
    "((x # xs, y # ys) : lex r) =
paulson@15656
  2564
      ((x, y) : r \<and> length xs = length ys | x = y \<and> (xs, ys) : lex r)"
nipkow@15302
  2565
apply (simp add: lex_conv)
nipkow@15302
  2566
apply (rule iffI)
nipkow@15302
  2567
 prefer 2 apply (blast intro: Cons_eq_appendI, clarify)
nipkow@15302
  2568
apply (case_tac xys, simp, simp)
nipkow@15302
  2569
apply blast
nipkow@15302
  2570
done
nipkow@15302
  2571
nipkow@15302
  2572
paulson@15656
  2573
subsubsection {* Lexicographic Ordering *}
paulson@15656
  2574
paulson@15656
  2575
text {* Classical lexicographic ordering on lists, ie. "a" < "ab" < "b".
paulson@15656
  2576
    This ordering does \emph{not} preserve well-foundedness.
nipkow@17090
  2577
     Author: N. Voelker, March 2005. *} 
paulson@15656
  2578
paulson@15656
  2579
constdefs 
paulson@15656
  2580
  lexord :: "('a * 'a)set \<Rightarrow> ('a list * 'a list) set" 
paulson@15656
  2581
  "lexord  r == {(x,y). \<exists> a v. y = x @ a # v \<or> 
paulson@15656
  2582
            (\<exists> u a b v w. (a,b) \<in> r \<and> x = u @ (a # v) \<and> y = u @ (b # w))}"
paulson@15656
  2583
paulson@15656
  2584
lemma lexord_Nil_left[simp]:  "([],y) \<in> lexord r = (\<exists> a x. y = a # x)"
paulson@15656
  2585
  by (unfold lexord_def, induct_tac y, auto) 
paulson@15656
  2586
paulson@15656
  2587
lemma lexord_Nil_right[simp]: "(x,[]) \<notin> lexord r"
paulson@15656
  2588
  by (unfold lexord_def, induct_tac x, auto)
paulson@15656
  2589
paulson@15656
  2590
lemma lexord_cons_cons[simp]:
paulson@15656
  2591
     "((a # x, b # y) \<in> lexord r) = ((a,b)\<in> r | (a = b & (x,y)\<in> lexord r))"
paulson@15656
  2592
  apply (unfold lexord_def, safe, simp_all)
paulson@15656
  2593
  apply (case_tac u, simp, simp)
paulson@15656
  2594
  apply (case_tac u, simp, clarsimp, blast, blast, clarsimp)
paulson@15656
  2595
  apply (erule_tac x="b # u" in allE)
paulson@15656
  2596
  by force
paulson@15656
  2597
paulson@15656
  2598
lemmas lexord_simps = lexord_Nil_left lexord_Nil_right lexord_cons_cons
paulson@15656
  2599
paulson@15656
  2600
lemma lexord_append_rightI: "\<exists> b z. y = b # z \<Longrightarrow> (x, x @ y) \<in> lexord r"
paulson@15656
  2601
  by (induct_tac x, auto)  
paulson@15656
  2602
paulson@15656
  2603
lemma lexord_append_left_rightI:
paulson@15656
  2604
     "(a,b) \<in> r \<Longrightarrow> (u @ a # x, u @ b # y) \<in> lexord r"
paulson@15656
  2605
  by (induct_tac u, auto)
paulson@15656
  2606
paulson@15656
  2607
lemma lexord_append_leftI: " (u,v) \<in> lexord r \<Longrightarrow> (x @ u, x @ v) \<in> lexord r"
paulson@15656
  2608
  by (induct x, auto)
paulson@15656
  2609
paulson@15656
  2610
lemma lexord_append_leftD:
paulson@15656
  2611
     "\<lbrakk> (x @ u, x @ v) \<in> lexord r; (! a. (a,a) \<notin> r) \<rbrakk> \<Longrightarrow> (u,v) \<in> lexord r"
paulson@15656
  2612
  by (erule rev_mp, induct_tac x, auto)
paulson@15656
  2613
paulson@15656
  2614
lemma lexord_take_index_conv: 
paulson@15656
  2615
   "((x,y) : lexord r) = 
paulson@15656
  2616
    ((length x < length y \<and> take (length x) y = x) \<or> 
paulson@15656
  2617
     (\<exists>i. i < min(length x)(length y) & take i x = take i y & (x!i,y!i) \<in> r))"
paulson@15656
  2618
  apply (unfold lexord_def Let_def, clarsimp) 
paulson@15656
  2619
  apply (rule_tac f = "(% a b. a \<or> b)" in arg_cong2)
paulson@15656
  2620
  apply auto 
paulson@15656
  2621
  apply (rule_tac x="hd (drop (length x) y)" in exI)
paulson@15656
  2622
  apply (rule_tac x="tl (drop (length x) y)" in exI)
paulson@15656
  2623
  apply (erule subst, simp add: min_def) 
paulson@15656
  2624
  apply (rule_tac x ="length u" in exI, simp) 
paulson@15656
  2625
  apply (rule_tac x ="take i x" in exI) 
paulson@15656
  2626
  apply (rule_tac x ="x ! i" in exI) 
paulson@15656
  2627
  apply (rule_tac x ="y ! i" in exI, safe) 
paulson@15656
  2628
  apply (rule_tac x="drop (Suc i) x" in exI)
paulson@15656
  2629
  apply (drule sym, simp add: drop_Suc_conv_tl) 
paulson@15656
  2630
  apply (rule_tac x="drop (Suc i) y" in exI)
paulson@15656
  2631
  by (simp add: drop_Suc_conv_tl) 
paulson@15656
  2632
paulson@15656
  2633
-- {* lexord is extension of partial ordering List.lex *} 
paulson@15656
  2634
lemma lexord_lex: " (x,y) \<in> lex r = ((x,y) \<in> lexord r \<and> length x = length y)"
paulson@15656
  2635
  apply (rule_tac x = y in spec) 
paulson@15656
  2636
  apply (induct_tac x, clarsimp) 
paulson@15656
  2637
  by (clarify, case_tac x, simp, force)
paulson@15656
  2638
paulson@15656
  2639
lemma lexord_irreflexive: "(! x. (x,x) \<notin> r) \<Longrightarrow> (y,y) \<notin> lexord r"
paulson@15656
  2640
  by (induct y, auto)
paulson@15656
  2641
paulson@15656
  2642
lemma lexord_trans: 
paulson@15656
  2643
    "\<lbrakk> (x, y) \<in> lexord r; (y, z) \<in> lexord r; trans r \<rbrakk> \<Longrightarrow> (x, z) \<in> lexord r"
paulson@15656
  2644
   apply (erule rev_mp)+
paulson@15656
  2645
   apply (rule_tac x = x in spec) 
paulson@15656
  2646
  apply (rule_tac x = z in spec) 
paulson@15656
  2647
  apply ( induct_tac y, simp, clarify)
paulson@15656
  2648
  apply (case_tac xa, erule ssubst) 
paulson@15656
  2649
  apply (erule allE, erule allE) -- {* avoid simp recursion *} 
paulson@15656
  2650
  apply (case_tac x, simp, simp) 
paulson@15656
  2651
  apply (case_tac x, erule allE, erule allE, simp) 
paulson@15656
  2652
  apply (erule_tac x = listb in allE) 
paulson@15656
  2653
  apply (erule_tac x = lista in allE, simp)
paulson@15656
  2654
  apply (unfold trans_def)
paulson@15656
  2655
  by blast
paulson@15656
  2656
paulson@15656
  2657
lemma lexord_transI:  "trans r \<Longrightarrow> trans (lexord r)"
paulson@15656
  2658
  by (rule transI, drule lexord_trans, blast) 
paulson@15656
  2659
paulson@15656
  2660
lemma lexord_linear: "(! a b. (a,b)\<in> r | a = b | (b,a) \<in> r) \<Longrightarrow> (x,y) : lexord r | x = y | (y,x) : lexord r"
paulson@15656
  2661
  apply (rule_tac x = y in spec) 
paulson@15656
  2662
  apply (induct_tac x, rule allI) 
paulson@15656
  2663
  apply (case_tac x, simp, simp) 
paulson@15656
  2664
  apply (rule allI, case_tac x, simp, simp) 
paulson@15656
  2665
  by blast
paulson@15656
  2666
paulson@15656
  2667
krauss@21103
  2668
subsection {* Lexicographic combination of measure functions *}
krauss@21103
  2669
krauss@21103
  2670
text {* These are useful for termination proofs *}
krauss@21103
  2671
krauss@21103
  2672
definition
krauss@21103
  2673
  "measures fs = inv_image (lex less_than) (%a. map (%f. f a) fs)"
krauss@21103
  2674
krauss@21106
  2675
lemma wf_measures[recdef_wf, simp]: "wf (measures fs)"
krauss@21103
  2676
  unfolding measures_def
krauss@21103
  2677
  by blast
krauss@21103
  2678
krauss@21103
  2679
lemma in_measures[simp]: 
krauss@21103
  2680
  "(x, y) \<in> measures [] = False"
krauss@21103
  2681
  "(x, y) \<in> measures (f # fs)
krauss@21103
  2682
         = (f x < f y \<or> (f x = f y \<and> (x, y) \<in> measures fs))"  
krauss@21103
  2683
  unfolding measures_def
krauss@21103
  2684
  by auto
krauss@21103
  2685
krauss@21103
  2686
lemma measures_less: "f x < f y ==> (x, y) \<in> measures (f#fs)"
krauss@21103
  2687
  by simp
krauss@21103
  2688
krauss@21103
  2689
lemma measures_lesseq: "f x <= f y ==> (x, y) \<in> measures fs ==> (x, y) \<in> measures (f#fs)"
krauss@21103
  2690
  by auto
krauss@21103
  2691
krauss@21211
  2692
(* install the lexicographic_order method and the "fun" command *)
bulwahn@21131
  2693
use "Tools/function_package/lexicographic_order.ML"
krauss@21211
  2694
use "Tools/function_package/fundef_datatype.ML"
krauss@21211
  2695
setup LexicographicOrder.setup
krauss@21211
  2696
setup FundefDatatype.setup
krauss@21211
  2697
krauss@21103
  2698
nipkow@15392
  2699
subsubsection{*Lifting a Relation on List Elements to the Lists*}
nipkow@15302
  2700
berghofe@23740
  2701
inductive_set
berghofe@23740
  2702
  listrel :: "('a * 'a)set => ('a list * 'a list)set"
berghofe@23740
  2703
  for r :: "('a * 'a)set"
berghofe@22262
  2704
where
berghofe@23740
  2705
    Nil:  "([],[]) \<in> listrel r"
berghofe@23740
  2706
  | Cons: "[| (x,y) \<in> r; (xs,ys) \<in> listrel r |] ==> (x#xs, y#ys) \<in> listrel r"
berghofe@23740
  2707
berghofe@23740
  2708
inductive_cases listrel_Nil1 [elim!]: "([],xs) \<in> listrel r"
berghofe@23740
  2709
inductive_cases listrel_Nil2 [elim!]: "(xs,[]) \<in> listrel r"
berghofe@23740
  2710
inductive_cases listrel_Cons1 [elim!]: "(y#ys,xs) \<in> listrel r"
berghofe@23740
  2711
inductive_cases listrel_Cons2 [elim!]: "(xs,y#ys) \<in> listrel r"
nipkow@15302
  2712
nipkow@15302
  2713
nipkow@15302
  2714
lemma listrel_mono: "r \<subseteq> s \<Longrightarrow> listrel r \<subseteq> listrel s"
nipkow@15302
  2715
apply clarify  
berghofe@23740
  2716
apply (erule listrel.induct)
berghofe@23740
  2717
apply (blast intro: listrel.intros)+
nipkow@15302
  2718
done
nipkow@15302
  2719
nipkow@15302
  2720
lemma listrel_subset: "r \<subseteq> A \<times> A \<Longrightarrow> listrel r \<subseteq> lists A \<times> lists A"
nipkow@15302
  2721
apply clarify 
berghofe@23740
  2722
apply (erule listrel.induct, auto) 
nipkow@15302
  2723
done
nipkow@15302
  2724
nipkow@15302
  2725
lemma listrel_refl: "refl A r \<Longrightarrow> refl (lists A) (listrel r)" 
nipkow@15302
  2726
apply (simp add: refl_def listrel_subset Ball_def)
nipkow@15302
  2727
apply (rule allI) 
nipkow@15302
  2728
apply (induct_tac x) 
berghofe@23740
  2729
apply (auto intro: listrel.intros)
nipkow@15302
  2730
done
nipkow@15302
  2731
nipkow@15302
  2732
lemma listrel_sym: "sym r \<Longrightarrow> sym (listrel r)" 
nipkow@15302
  2733
apply (auto simp add: sym_def)
berghofe@23740
  2734
apply (erule listrel.induct) 
berghofe@23740
  2735
apply (blast intro: listrel.intros)+
nipkow@15302
  2736
done
nipkow@15302
  2737
nipkow@15302
  2738
lemma listrel_trans: "trans r \<Longrightarrow> trans (listrel r)" 
nipkow@15302
  2739
apply (simp add: trans_def)
nipkow@15302
  2740
apply (intro allI) 
nipkow@15302
  2741
apply (rule impI) 
berghofe@23740
  2742
apply (erule listrel.induct) 
berghofe@23740
  2743
apply (blast intro: listrel.intros)+
nipkow@15302
  2744
done
nipkow@15302
  2745
nipkow@15302
  2746
theorem equiv_listrel: "equiv A r \<Longrightarrow> equiv (lists A) (listrel r)"
nipkow@15302
  2747
by (simp add: equiv_def listrel_refl listrel_sym listrel_trans) 
nipkow@15302
  2748
nipkow@15302
  2749
lemma listrel_Nil [simp]: "listrel r `` {[]} = {[]}"
berghofe@23740
  2750
by (blast intro: listrel.intros)
nipkow@15302
  2751
nipkow@15302
  2752
lemma listrel_Cons:
nipkow@15302
  2753
     "listrel r `` {x#xs} = set_Cons (r``{x}) (listrel r `` {xs})";
berghofe@23740
  2754
by (auto simp add: set_Cons_def intro: listrel.intros) 
nipkow@15302
  2755
nipkow@15302
  2756
nipkow@15392
  2757
subsection{*Miscellany*}
nipkow@15392
  2758
nipkow@15392
  2759
subsubsection {* Characters and strings *}
wenzelm@13366
  2760
wenzelm@13366
  2761
datatype nibble =