src/HOL/Algebra/Group.thy
author ballarin
Wed Dec 10 14:29:05 2003 +0100 (2003-12-10)
changeset 14286 0ae66ffb9784
parent 14254 342634f38451
child 14551 2cb6ff394bfb
permissions -rw-r--r--
New structure "partial_object" as common root for lattices and magmas.
ballarin@13813
     1
(*
ballarin@13813
     2
  Title:  HOL/Algebra/Group.thy
ballarin@13813
     3
  Id:     $Id$
ballarin@13813
     4
  Author: Clemens Ballarin, started 4 February 2003
ballarin@13813
     5
ballarin@13813
     6
Based on work by Florian Kammueller, L C Paulson and Markus Wenzel.
ballarin@13813
     7
*)
ballarin@13813
     8
ballarin@13949
     9
header {* Groups *}
ballarin@13813
    10
ballarin@13835
    11
theory Group = FuncSet:
ballarin@13813
    12
ballarin@13936
    13
section {* From Magmas to Groups *}
ballarin@13936
    14
ballarin@13813
    15
text {*
ballarin@13813
    16
  Definitions follow Jacobson, Basic Algebra I, Freeman, 1985; with
ballarin@13813
    17
  the exception of \emph{magma} which, following Bourbaki, is a set
ballarin@13813
    18
  together with a binary, closed operation.
ballarin@13813
    19
*}
ballarin@13813
    20
ballarin@13813
    21
subsection {* Definitions *}
ballarin@13813
    22
ballarin@14286
    23
(* Object with a carrier set. *)
ballarin@14286
    24
ballarin@14286
    25
record 'a partial_object =
ballarin@13813
    26
  carrier :: "'a set"
ballarin@14286
    27
ballarin@14286
    28
record 'a semigroup = "'a partial_object" +
ballarin@13813
    29
  mult :: "['a, 'a] => 'a" (infixl "\<otimes>\<index>" 70)
ballarin@13813
    30
ballarin@13817
    31
record 'a monoid = "'a semigroup" +
ballarin@13813
    32
  one :: 'a ("\<one>\<index>")
ballarin@13817
    33
ballarin@13936
    34
constdefs
ballarin@13936
    35
  m_inv :: "[('a, 'm) monoid_scheme, 'a] => 'a" ("inv\<index> _" [81] 80)
ballarin@13936
    36
  "m_inv G x == (THE y. y \<in> carrier G &
ballarin@13936
    37
                  mult G x y = one G & mult G y x = one G)"
ballarin@13936
    38
ballarin@13936
    39
  Units :: "('a, 'm) monoid_scheme => 'a set"
ballarin@13936
    40
  "Units G == {y. y \<in> carrier G &
ballarin@13936
    41
                  (EX x : carrier G. mult G x y = one G & mult G y x = one G)}"
ballarin@13936
    42
ballarin@13936
    43
consts
ballarin@13936
    44
  pow :: "[('a, 'm) monoid_scheme, 'a, 'b::number] => 'a" (infixr "'(^')\<index>" 75)
ballarin@13936
    45
ballarin@13936
    46
defs (overloaded)
ballarin@13936
    47
  nat_pow_def: "pow G a n == nat_rec (one G) (%u b. mult G b a) n"
ballarin@13936
    48
  int_pow_def: "pow G a z ==
ballarin@13936
    49
    let p = nat_rec (one G) (%u b. mult G b a)
ballarin@13936
    50
    in if neg z then m_inv G (p (nat (-z))) else p (nat z)"
ballarin@13813
    51
ballarin@13813
    52
locale magma = struct G +
ballarin@13813
    53
  assumes m_closed [intro, simp]:
ballarin@13813
    54
    "[| x \<in> carrier G; y \<in> carrier G |] ==> x \<otimes> y \<in> carrier G"
ballarin@13813
    55
ballarin@13813
    56
locale semigroup = magma +
ballarin@13813
    57
  assumes m_assoc:
ballarin@13813
    58
    "[| x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |] ==>
ballarin@13936
    59
    (x \<otimes> y) \<otimes> z = x \<otimes> (y \<otimes> z)"
ballarin@13813
    60
ballarin@13936
    61
locale monoid = semigroup +
ballarin@13813
    62
  assumes one_closed [intro, simp]: "\<one> \<in> carrier G"
ballarin@13813
    63
    and l_one [simp]: "x \<in> carrier G ==> \<one> \<otimes> x = x"
ballarin@13936
    64
    and r_one [simp]: "x \<in> carrier G ==> x \<otimes> \<one> = x"
ballarin@13817
    65
ballarin@13936
    66
lemma monoidI:
ballarin@13936
    67
  assumes m_closed:
ballarin@13936
    68
      "!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==> mult G x y \<in> carrier G"
ballarin@13936
    69
    and one_closed: "one G \<in> carrier G"
ballarin@13936
    70
    and m_assoc:
ballarin@13936
    71
      "!!x y z. [| x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |] ==>
ballarin@13936
    72
      mult G (mult G x y) z = mult G x (mult G y z)"
ballarin@13936
    73
    and l_one: "!!x. x \<in> carrier G ==> mult G (one G) x = x"
ballarin@13936
    74
    and r_one: "!!x. x \<in> carrier G ==> mult G x (one G) = x"
ballarin@13936
    75
  shows "monoid G"
ballarin@13936
    76
  by (fast intro!: monoid.intro magma.intro semigroup_axioms.intro
ballarin@13936
    77
    semigroup.intro monoid_axioms.intro
ballarin@13936
    78
    intro: prems)
ballarin@13936
    79
ballarin@13936
    80
lemma (in monoid) Units_closed [dest]:
ballarin@13936
    81
  "x \<in> Units G ==> x \<in> carrier G"
ballarin@13936
    82
  by (unfold Units_def) fast
ballarin@13936
    83
ballarin@13936
    84
lemma (in monoid) inv_unique:
ballarin@13936
    85
  assumes eq: "y \<otimes> x = \<one>" "x \<otimes> y' = \<one>"
ballarin@13936
    86
    and G: "x \<in> carrier G" "y \<in> carrier G" "y' \<in> carrier G"
ballarin@13936
    87
  shows "y = y'"
ballarin@13936
    88
proof -
ballarin@13936
    89
  from G eq have "y = y \<otimes> (x \<otimes> y')" by simp
ballarin@13936
    90
  also from G have "... = (y \<otimes> x) \<otimes> y'" by (simp add: m_assoc)
ballarin@13936
    91
  also from G eq have "... = y'" by simp
ballarin@13936
    92
  finally show ?thesis .
ballarin@13936
    93
qed
ballarin@13936
    94
ballarin@13940
    95
lemma (in monoid) Units_one_closed [intro, simp]:
ballarin@13940
    96
  "\<one> \<in> Units G"
ballarin@13940
    97
  by (unfold Units_def) auto
ballarin@13940
    98
ballarin@13936
    99
lemma (in monoid) Units_inv_closed [intro, simp]:
ballarin@13936
   100
  "x \<in> Units G ==> inv x \<in> carrier G"
paulson@13943
   101
  apply (unfold Units_def m_inv_def, auto)
ballarin@13936
   102
  apply (rule theI2, fast)
paulson@13943
   103
   apply (fast intro: inv_unique, fast)
ballarin@13936
   104
  done
ballarin@13936
   105
ballarin@13936
   106
lemma (in monoid) Units_l_inv:
ballarin@13936
   107
  "x \<in> Units G ==> inv x \<otimes> x = \<one>"
paulson@13943
   108
  apply (unfold Units_def m_inv_def, auto)
ballarin@13936
   109
  apply (rule theI2, fast)
paulson@13943
   110
   apply (fast intro: inv_unique, fast)
ballarin@13936
   111
  done
ballarin@13936
   112
ballarin@13936
   113
lemma (in monoid) Units_r_inv:
ballarin@13936
   114
  "x \<in> Units G ==> x \<otimes> inv x = \<one>"
paulson@13943
   115
  apply (unfold Units_def m_inv_def, auto)
ballarin@13936
   116
  apply (rule theI2, fast)
paulson@13943
   117
   apply (fast intro: inv_unique, fast)
ballarin@13936
   118
  done
ballarin@13936
   119
ballarin@13936
   120
lemma (in monoid) Units_inv_Units [intro, simp]:
ballarin@13936
   121
  "x \<in> Units G ==> inv x \<in> Units G"
ballarin@13936
   122
proof -
ballarin@13936
   123
  assume x: "x \<in> Units G"
ballarin@13936
   124
  show "inv x \<in> Units G"
ballarin@13936
   125
    by (auto simp add: Units_def
ballarin@13936
   126
      intro: Units_l_inv Units_r_inv x Units_closed [OF x])
ballarin@13936
   127
qed
ballarin@13936
   128
ballarin@13936
   129
lemma (in monoid) Units_l_cancel [simp]:
ballarin@13936
   130
  "[| x \<in> Units G; y \<in> carrier G; z \<in> carrier G |] ==>
ballarin@13936
   131
   (x \<otimes> y = x \<otimes> z) = (y = z)"
ballarin@13936
   132
proof
ballarin@13936
   133
  assume eq: "x \<otimes> y = x \<otimes> z"
ballarin@13936
   134
    and G: "x \<in> Units G" "y \<in> carrier G" "z \<in> carrier G"
ballarin@13936
   135
  then have "(inv x \<otimes> x) \<otimes> y = (inv x \<otimes> x) \<otimes> z"
ballarin@13936
   136
    by (simp add: m_assoc Units_closed)
ballarin@13936
   137
  with G show "y = z" by (simp add: Units_l_inv)
ballarin@13936
   138
next
ballarin@13936
   139
  assume eq: "y = z"
ballarin@13936
   140
    and G: "x \<in> Units G" "y \<in> carrier G" "z \<in> carrier G"
ballarin@13936
   141
  then show "x \<otimes> y = x \<otimes> z" by simp
ballarin@13936
   142
qed
ballarin@13936
   143
ballarin@13936
   144
lemma (in monoid) Units_inv_inv [simp]:
ballarin@13936
   145
  "x \<in> Units G ==> inv (inv x) = x"
ballarin@13936
   146
proof -
ballarin@13936
   147
  assume x: "x \<in> Units G"
ballarin@13936
   148
  then have "inv x \<otimes> inv (inv x) = inv x \<otimes> x"
ballarin@13936
   149
    by (simp add: Units_l_inv Units_r_inv)
ballarin@13936
   150
  with x show ?thesis by (simp add: Units_closed)
ballarin@13936
   151
qed
ballarin@13936
   152
ballarin@13936
   153
lemma (in monoid) inv_inj_on_Units:
ballarin@13936
   154
  "inj_on (m_inv G) (Units G)"
ballarin@13936
   155
proof (rule inj_onI)
ballarin@13936
   156
  fix x y
ballarin@13936
   157
  assume G: "x \<in> Units G" "y \<in> Units G" and eq: "inv x = inv y"
ballarin@13936
   158
  then have "inv (inv x) = inv (inv y)" by simp
ballarin@13936
   159
  with G show "x = y" by simp
ballarin@13936
   160
qed
ballarin@13936
   161
ballarin@13940
   162
lemma (in monoid) Units_inv_comm:
ballarin@13940
   163
  assumes inv: "x \<otimes> y = \<one>"
ballarin@13940
   164
    and G: "x \<in> Units G" "y \<in> Units G"
ballarin@13940
   165
  shows "y \<otimes> x = \<one>"
ballarin@13940
   166
proof -
ballarin@13940
   167
  from G have "x \<otimes> y \<otimes> x = x \<otimes> \<one>" by (auto simp add: inv Units_closed)
ballarin@13940
   168
  with G show ?thesis by (simp del: r_one add: m_assoc Units_closed)
ballarin@13940
   169
qed
ballarin@13940
   170
ballarin@13936
   171
text {* Power *}
ballarin@13936
   172
ballarin@13936
   173
lemma (in monoid) nat_pow_closed [intro, simp]:
ballarin@13936
   174
  "x \<in> carrier G ==> x (^) (n::nat) \<in> carrier G"
ballarin@13936
   175
  by (induct n) (simp_all add: nat_pow_def)
ballarin@13936
   176
ballarin@13936
   177
lemma (in monoid) nat_pow_0 [simp]:
ballarin@13936
   178
  "x (^) (0::nat) = \<one>"
ballarin@13936
   179
  by (simp add: nat_pow_def)
ballarin@13936
   180
ballarin@13936
   181
lemma (in monoid) nat_pow_Suc [simp]:
ballarin@13936
   182
  "x (^) (Suc n) = x (^) n \<otimes> x"
ballarin@13936
   183
  by (simp add: nat_pow_def)
ballarin@13936
   184
ballarin@13936
   185
lemma (in monoid) nat_pow_one [simp]:
ballarin@13936
   186
  "\<one> (^) (n::nat) = \<one>"
ballarin@13936
   187
  by (induct n) simp_all
ballarin@13936
   188
ballarin@13936
   189
lemma (in monoid) nat_pow_mult:
ballarin@13936
   190
  "x \<in> carrier G ==> x (^) (n::nat) \<otimes> x (^) m = x (^) (n + m)"
ballarin@13936
   191
  by (induct m) (simp_all add: m_assoc [THEN sym])
ballarin@13936
   192
ballarin@13936
   193
lemma (in monoid) nat_pow_pow:
ballarin@13936
   194
  "x \<in> carrier G ==> (x (^) n) (^) m = x (^) (n * m::nat)"
ballarin@13936
   195
  by (induct m) (simp, simp add: nat_pow_mult add_commute)
ballarin@13936
   196
ballarin@13936
   197
text {*
ballarin@13936
   198
  A group is a monoid all of whose elements are invertible.
ballarin@13936
   199
*}
ballarin@13936
   200
ballarin@13936
   201
locale group = monoid +
ballarin@13936
   202
  assumes Units: "carrier G <= Units G"
ballarin@13936
   203
ballarin@13936
   204
theorem groupI:
ballarin@13936
   205
  assumes m_closed [simp]:
ballarin@13936
   206
      "!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==> mult G x y \<in> carrier G"
ballarin@13936
   207
    and one_closed [simp]: "one G \<in> carrier G"
ballarin@13936
   208
    and m_assoc:
ballarin@13936
   209
      "!!x y z. [| x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |] ==>
ballarin@13936
   210
      mult G (mult G x y) z = mult G x (mult G y z)"
ballarin@13936
   211
    and l_one [simp]: "!!x. x \<in> carrier G ==> mult G (one G) x = x"
ballarin@13936
   212
    and l_inv_ex: "!!x. x \<in> carrier G ==> EX y : carrier G. mult G y x = one G"
ballarin@13936
   213
  shows "group G"
ballarin@13936
   214
proof -
ballarin@13936
   215
  have l_cancel [simp]:
ballarin@13936
   216
    "!!x y z. [| x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |] ==>
ballarin@13936
   217
    (mult G x y = mult G x z) = (y = z)"
ballarin@13936
   218
  proof
ballarin@13936
   219
    fix x y z
ballarin@13936
   220
    assume eq: "mult G x y = mult G x z"
ballarin@13936
   221
      and G: "x \<in> carrier G" "y \<in> carrier G" "z \<in> carrier G"
ballarin@13936
   222
    with l_inv_ex obtain x_inv where xG: "x_inv \<in> carrier G"
ballarin@13936
   223
      and l_inv: "mult G x_inv x = one G" by fast
ballarin@13936
   224
    from G eq xG have "mult G (mult G x_inv x) y = mult G (mult G x_inv x) z"
ballarin@13936
   225
      by (simp add: m_assoc)
ballarin@13936
   226
    with G show "y = z" by (simp add: l_inv)
ballarin@13936
   227
  next
ballarin@13936
   228
    fix x y z
ballarin@13936
   229
    assume eq: "y = z"
ballarin@13936
   230
      and G: "x \<in> carrier G" "y \<in> carrier G" "z \<in> carrier G"
ballarin@13936
   231
    then show "mult G x y = mult G x z" by simp
ballarin@13936
   232
  qed
ballarin@13936
   233
  have r_one:
ballarin@13936
   234
    "!!x. x \<in> carrier G ==> mult G x (one G) = x"
ballarin@13936
   235
  proof -
ballarin@13936
   236
    fix x
ballarin@13936
   237
    assume x: "x \<in> carrier G"
ballarin@13936
   238
    with l_inv_ex obtain x_inv where xG: "x_inv \<in> carrier G"
ballarin@13936
   239
      and l_inv: "mult G x_inv x = one G" by fast
ballarin@13936
   240
    from x xG have "mult G x_inv (mult G x (one G)) = mult G x_inv x"
ballarin@13936
   241
      by (simp add: m_assoc [symmetric] l_inv)
ballarin@13936
   242
    with x xG show "mult G x (one G) = x" by simp 
ballarin@13936
   243
  qed
ballarin@13936
   244
  have inv_ex:
ballarin@13936
   245
    "!!x. x \<in> carrier G ==> EX y : carrier G. mult G y x = one G &
ballarin@13936
   246
      mult G x y = one G"
ballarin@13936
   247
  proof -
ballarin@13936
   248
    fix x
ballarin@13936
   249
    assume x: "x \<in> carrier G"
ballarin@13936
   250
    with l_inv_ex obtain y where y: "y \<in> carrier G"
ballarin@13936
   251
      and l_inv: "mult G y x = one G" by fast
ballarin@13936
   252
    from x y have "mult G y (mult G x y) = mult G y (one G)"
ballarin@13936
   253
      by (simp add: m_assoc [symmetric] l_inv r_one)
ballarin@13936
   254
    with x y have r_inv: "mult G x y = one G"
ballarin@13936
   255
      by simp
ballarin@13936
   256
    from x y show "EX y : carrier G. mult G y x = one G &
ballarin@13936
   257
      mult G x y = one G"
ballarin@13936
   258
      by (fast intro: l_inv r_inv)
ballarin@13936
   259
  qed
ballarin@13936
   260
  then have carrier_subset_Units: "carrier G <= Units G"
ballarin@13936
   261
    by (unfold Units_def) fast
ballarin@13936
   262
  show ?thesis
ballarin@13936
   263
    by (fast intro!: group.intro magma.intro semigroup_axioms.intro
ballarin@13936
   264
      semigroup.intro monoid_axioms.intro group_axioms.intro
ballarin@13936
   265
      carrier_subset_Units intro: prems r_one)
ballarin@13936
   266
qed
ballarin@13936
   267
ballarin@13936
   268
lemma (in monoid) monoid_groupI:
ballarin@13936
   269
  assumes l_inv_ex:
ballarin@13936
   270
    "!!x. x \<in> carrier G ==> EX y : carrier G. mult G y x = one G"
ballarin@13936
   271
  shows "group G"
ballarin@13936
   272
  by (rule groupI) (auto intro: m_assoc l_inv_ex)
ballarin@13936
   273
ballarin@13936
   274
lemma (in group) Units_eq [simp]:
ballarin@13936
   275
  "Units G = carrier G"
ballarin@13936
   276
proof
ballarin@13936
   277
  show "Units G <= carrier G" by fast
ballarin@13936
   278
next
ballarin@13936
   279
  show "carrier G <= Units G" by (rule Units)
ballarin@13936
   280
qed
ballarin@13936
   281
ballarin@13936
   282
lemma (in group) inv_closed [intro, simp]:
ballarin@13936
   283
  "x \<in> carrier G ==> inv x \<in> carrier G"
ballarin@13936
   284
  using Units_inv_closed by simp
ballarin@13936
   285
ballarin@13936
   286
lemma (in group) l_inv:
ballarin@13936
   287
  "x \<in> carrier G ==> inv x \<otimes> x = \<one>"
ballarin@13936
   288
  using Units_l_inv by simp
ballarin@13813
   289
ballarin@13813
   290
subsection {* Cancellation Laws and Basic Properties *}
ballarin@13813
   291
ballarin@13813
   292
lemma (in group) l_cancel [simp]:
ballarin@13813
   293
  "[| x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |] ==>
ballarin@13813
   294
   (x \<otimes> y = x \<otimes> z) = (y = z)"
ballarin@13936
   295
  using Units_l_inv by simp
ballarin@13940
   296
ballarin@13813
   297
lemma (in group) r_inv:
ballarin@13813
   298
  "x \<in> carrier G ==> x \<otimes> inv x = \<one>"
ballarin@13813
   299
proof -
ballarin@13813
   300
  assume x: "x \<in> carrier G"
ballarin@13813
   301
  then have "inv x \<otimes> (x \<otimes> inv x) = inv x \<otimes> \<one>"
ballarin@13813
   302
    by (simp add: m_assoc [symmetric] l_inv)
ballarin@13813
   303
  with x show ?thesis by (simp del: r_one)
ballarin@13813
   304
qed
ballarin@13813
   305
ballarin@13813
   306
lemma (in group) r_cancel [simp]:
ballarin@13813
   307
  "[| x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |] ==>
ballarin@13813
   308
   (y \<otimes> x = z \<otimes> x) = (y = z)"
ballarin@13813
   309
proof
ballarin@13813
   310
  assume eq: "y \<otimes> x = z \<otimes> x"
ballarin@13813
   311
    and G: "x \<in> carrier G" "y \<in> carrier G" "z \<in> carrier G"
ballarin@13813
   312
  then have "y \<otimes> (x \<otimes> inv x) = z \<otimes> (x \<otimes> inv x)"
ballarin@13813
   313
    by (simp add: m_assoc [symmetric])
ballarin@13813
   314
  with G show "y = z" by (simp add: r_inv)
ballarin@13813
   315
next
ballarin@13813
   316
  assume eq: "y = z"
ballarin@13813
   317
    and G: "x \<in> carrier G" "y \<in> carrier G" "z \<in> carrier G"
ballarin@13813
   318
  then show "y \<otimes> x = z \<otimes> x" by simp
ballarin@13813
   319
qed
ballarin@13813
   320
ballarin@13854
   321
lemma (in group) inv_one [simp]:
ballarin@13854
   322
  "inv \<one> = \<one>"
ballarin@13854
   323
proof -
ballarin@13854
   324
  have "inv \<one> = \<one> \<otimes> (inv \<one>)" by simp
ballarin@13854
   325
  moreover have "... = \<one>" by (simp add: r_inv)
ballarin@13854
   326
  finally show ?thesis .
ballarin@13854
   327
qed
ballarin@13854
   328
ballarin@13813
   329
lemma (in group) inv_inv [simp]:
ballarin@13813
   330
  "x \<in> carrier G ==> inv (inv x) = x"
ballarin@13936
   331
  using Units_inv_inv by simp
ballarin@13936
   332
ballarin@13936
   333
lemma (in group) inv_inj:
ballarin@13936
   334
  "inj_on (m_inv G) (carrier G)"
ballarin@13936
   335
  using inv_inj_on_Units by simp
ballarin@13813
   336
ballarin@13854
   337
lemma (in group) inv_mult_group:
ballarin@13813
   338
  "[| x \<in> carrier G; y \<in> carrier G |] ==> inv (x \<otimes> y) = inv y \<otimes> inv x"
ballarin@13813
   339
proof -
ballarin@13813
   340
  assume G: "x \<in> carrier G" "y \<in> carrier G"
ballarin@13813
   341
  then have "inv (x \<otimes> y) \<otimes> (x \<otimes> y) = (inv y \<otimes> inv x) \<otimes> (x \<otimes> y)"
ballarin@13813
   342
    by (simp add: m_assoc l_inv) (simp add: m_assoc [symmetric] l_inv)
ballarin@13813
   343
  with G show ?thesis by simp
ballarin@13813
   344
qed
ballarin@13813
   345
ballarin@13940
   346
lemma (in group) inv_comm:
ballarin@13940
   347
  "[| x \<otimes> y = \<one>; x \<in> carrier G; y \<in> carrier G |] ==> y \<otimes> x = \<one>"
ballarin@13940
   348
  by (rule Units_inv_comm) auto                          
ballarin@13940
   349
paulson@13944
   350
lemma (in group) inv_equality:
paulson@13943
   351
     "[|y \<otimes> x = \<one>; x \<in> carrier G; y \<in> carrier G|] ==> inv x = y"
paulson@13943
   352
apply (simp add: m_inv_def)
paulson@13943
   353
apply (rule the_equality)
paulson@13943
   354
 apply (simp add: inv_comm [of y x]) 
paulson@13943
   355
apply (rule r_cancel [THEN iffD1], auto) 
paulson@13943
   356
done
paulson@13943
   357
ballarin@13936
   358
text {* Power *}
ballarin@13936
   359
ballarin@13936
   360
lemma (in group) int_pow_def2:
ballarin@13936
   361
  "a (^) (z::int) = (if neg z then inv (a (^) (nat (-z))) else a (^) (nat z))"
ballarin@13936
   362
  by (simp add: int_pow_def nat_pow_def Let_def)
ballarin@13936
   363
ballarin@13936
   364
lemma (in group) int_pow_0 [simp]:
ballarin@13936
   365
  "x (^) (0::int) = \<one>"
ballarin@13936
   366
  by (simp add: int_pow_def2)
ballarin@13936
   367
ballarin@13936
   368
lemma (in group) int_pow_one [simp]:
ballarin@13936
   369
  "\<one> (^) (z::int) = \<one>"
ballarin@13936
   370
  by (simp add: int_pow_def2)
ballarin@13936
   371
ballarin@13813
   372
subsection {* Substructures *}
ballarin@13813
   373
ballarin@13813
   374
locale submagma = var H + struct G +
ballarin@13813
   375
  assumes subset [intro, simp]: "H \<subseteq> carrier G"
ballarin@13813
   376
    and m_closed [intro, simp]: "[| x \<in> H; y \<in> H |] ==> x \<otimes> y \<in> H"
ballarin@13813
   377
ballarin@13813
   378
declare (in submagma) magma.intro [intro] semigroup.intro [intro]
ballarin@13936
   379
  semigroup_axioms.intro [intro]
ballarin@13813
   380
(*
ballarin@13813
   381
alternative definition of submagma
ballarin@13813
   382
ballarin@13813
   383
locale submagma = var H + struct G +
ballarin@13813
   384
  assumes subset [intro, simp]: "carrier H \<subseteq> carrier G"
ballarin@13813
   385
    and m_equal [simp]: "mult H = mult G"
ballarin@13813
   386
    and m_closed [intro, simp]:
ballarin@13813
   387
      "[| x \<in> carrier H; y \<in> carrier H |] ==> x \<otimes> y \<in> carrier H"
ballarin@13813
   388
*)
ballarin@13813
   389
ballarin@13813
   390
lemma submagma_imp_subset:
ballarin@13813
   391
  "submagma H G ==> H \<subseteq> carrier G"
ballarin@13813
   392
  by (rule submagma.subset)
ballarin@13813
   393
ballarin@13813
   394
lemma (in submagma) subsetD [dest, simp]:
ballarin@13813
   395
  "x \<in> H ==> x \<in> carrier G"
ballarin@13813
   396
  using subset by blast
ballarin@13813
   397
ballarin@13813
   398
lemma (in submagma) magmaI [intro]:
ballarin@13813
   399
  includes magma G
ballarin@13813
   400
  shows "magma (G(| carrier := H |))"
ballarin@13813
   401
  by rule simp
ballarin@13813
   402
ballarin@13813
   403
lemma (in submagma) semigroup_axiomsI [intro]:
ballarin@13813
   404
  includes semigroup G
ballarin@13813
   405
  shows "semigroup_axioms (G(| carrier := H |))"
ballarin@13813
   406
    by rule (simp add: m_assoc)
ballarin@13813
   407
ballarin@13813
   408
lemma (in submagma) semigroupI [intro]:
ballarin@13813
   409
  includes semigroup G
ballarin@13813
   410
  shows "semigroup (G(| carrier := H |))"
ballarin@13813
   411
  using prems by fast
ballarin@13813
   412
ballarin@13813
   413
locale subgroup = submagma H G +
ballarin@13813
   414
  assumes one_closed [intro, simp]: "\<one> \<in> H"
ballarin@13813
   415
    and m_inv_closed [intro, simp]: "x \<in> H ==> inv x \<in> H"
ballarin@13813
   416
ballarin@13813
   417
declare (in subgroup) group.intro [intro]
ballarin@13949
   418
ballarin@13813
   419
lemma (in subgroup) group_axiomsI [intro]:
ballarin@13813
   420
  includes group G
ballarin@13813
   421
  shows "group_axioms (G(| carrier := H |))"
ballarin@14254
   422
  by (rule group_axioms.intro) (auto intro: l_inv r_inv simp add: Units_def)
ballarin@13813
   423
ballarin@13813
   424
lemma (in subgroup) groupI [intro]:
ballarin@13813
   425
  includes group G
ballarin@13813
   426
  shows "group (G(| carrier := H |))"
ballarin@13936
   427
  by (rule groupI) (auto intro: m_assoc l_inv)
ballarin@13813
   428
ballarin@13813
   429
text {*
ballarin@13813
   430
  Since @{term H} is nonempty, it contains some element @{term x}.  Since
ballarin@13813
   431
  it is closed under inverse, it contains @{text "inv x"}.  Since
ballarin@13813
   432
  it is closed under product, it contains @{text "x \<otimes> inv x = \<one>"}.
ballarin@13813
   433
*}
ballarin@13813
   434
ballarin@13813
   435
lemma (in group) one_in_subset:
ballarin@13813
   436
  "[| H \<subseteq> carrier G; H \<noteq> {}; \<forall>a \<in> H. inv a \<in> H; \<forall>a\<in>H. \<forall>b\<in>H. a \<otimes> b \<in> H |]
ballarin@13813
   437
   ==> \<one> \<in> H"
ballarin@13813
   438
by (force simp add: l_inv)
ballarin@13813
   439
ballarin@13813
   440
text {* A characterization of subgroups: closed, non-empty subset. *}
ballarin@13813
   441
ballarin@13813
   442
lemma (in group) subgroupI:
ballarin@13813
   443
  assumes subset: "H \<subseteq> carrier G" and non_empty: "H \<noteq> {}"
ballarin@13813
   444
    and inv: "!!a. a \<in> H ==> inv a \<in> H"
ballarin@13813
   445
    and mult: "!!a b. [|a \<in> H; b \<in> H|] ==> a \<otimes> b \<in> H"
ballarin@13813
   446
  shows "subgroup H G"
ballarin@14254
   447
proof (rule subgroup.intro)
ballarin@14254
   448
  from subset and mult show "submagma H G" by (rule submagma.intro)
ballarin@13813
   449
next
ballarin@13813
   450
  have "\<one> \<in> H" by (rule one_in_subset) (auto simp only: prems)
ballarin@13813
   451
  with inv show "subgroup_axioms H G"
ballarin@13813
   452
    by (intro subgroup_axioms.intro) simp_all
ballarin@13813
   453
qed
ballarin@13813
   454
ballarin@13813
   455
text {*
ballarin@13813
   456
  Repeat facts of submagmas for subgroups.  Necessary???
ballarin@13813
   457
*}
ballarin@13813
   458
ballarin@13813
   459
lemma (in subgroup) subset:
ballarin@13813
   460
  "H \<subseteq> carrier G"
ballarin@13813
   461
  ..
ballarin@13813
   462
ballarin@13813
   463
lemma (in subgroup) m_closed:
ballarin@13813
   464
  "[| x \<in> H; y \<in> H |] ==> x \<otimes> y \<in> H"
ballarin@13813
   465
  ..
ballarin@13813
   466
ballarin@13813
   467
declare magma.m_closed [simp]
ballarin@13813
   468
ballarin@13936
   469
declare monoid.one_closed [iff] group.inv_closed [simp]
ballarin@13936
   470
  monoid.l_one [simp] monoid.r_one [simp] group.inv_inv [simp]
ballarin@13813
   471
ballarin@13813
   472
lemma subgroup_nonempty:
ballarin@13813
   473
  "~ subgroup {} G"
ballarin@13813
   474
  by (blast dest: subgroup.one_closed)
ballarin@13813
   475
ballarin@13813
   476
lemma (in subgroup) finite_imp_card_positive:
ballarin@13813
   477
  "finite (carrier G) ==> 0 < card H"
ballarin@13813
   478
proof (rule classical)
ballarin@14254
   479
  have sub: "subgroup H G" using prems by (rule subgroup.intro)
ballarin@13813
   480
  assume fin: "finite (carrier G)"
ballarin@13813
   481
    and zero: "~ 0 < card H"
ballarin@13813
   482
  then have "finite H" by (blast intro: finite_subset dest: subset)
ballarin@13813
   483
  with zero sub have "subgroup {} G" by simp
ballarin@13813
   484
  with subgroup_nonempty show ?thesis by contradiction
ballarin@13813
   485
qed
ballarin@13813
   486
ballarin@13936
   487
(*
ballarin@13936
   488
lemma (in monoid) Units_subgroup:
ballarin@13936
   489
  "subgroup (Units G) G"
ballarin@13936
   490
*)
ballarin@13936
   491
ballarin@13813
   492
subsection {* Direct Products *}
ballarin@13813
   493
ballarin@13813
   494
constdefs
ballarin@13817
   495
  DirProdSemigroup ::
ballarin@13854
   496
    "[('a, 'm) semigroup_scheme, ('b, 'n) semigroup_scheme]
ballarin@13817
   497
    => ('a \<times> 'b) semigroup"
ballarin@13817
   498
    (infixr "\<times>\<^sub>s" 80)
ballarin@13817
   499
  "G \<times>\<^sub>s H == (| carrier = carrier G \<times> carrier H,
ballarin@13817
   500
    mult = (%(xg, xh) (yg, yh). (mult G xg yg, mult H xh yh)) |)"
ballarin@13817
   501
ballarin@13936
   502
  DirProdGroup ::
ballarin@13854
   503
    "[('a, 'm) monoid_scheme, ('b, 'n) monoid_scheme] => ('a \<times> 'b) monoid"
ballarin@13936
   504
    (infixr "\<times>\<^sub>g" 80)
ballarin@13936
   505
  "G \<times>\<^sub>g H == (| carrier = carrier (G \<times>\<^sub>s H),
ballarin@13817
   506
    mult = mult (G \<times>\<^sub>s H),
ballarin@13817
   507
    one = (one G, one H) |)"
ballarin@13813
   508
ballarin@13817
   509
lemma DirProdSemigroup_magma:
ballarin@13813
   510
  includes magma G + magma H
ballarin@13817
   511
  shows "magma (G \<times>\<^sub>s H)"
ballarin@14254
   512
  by (rule magma.intro) (auto simp add: DirProdSemigroup_def)
ballarin@13813
   513
ballarin@13817
   514
lemma DirProdSemigroup_semigroup_axioms:
ballarin@13813
   515
  includes semigroup G + semigroup H
ballarin@13817
   516
  shows "semigroup_axioms (G \<times>\<^sub>s H)"
ballarin@14254
   517
  by (rule semigroup_axioms.intro)
ballarin@14254
   518
    (auto simp add: DirProdSemigroup_def G.m_assoc H.m_assoc)
ballarin@13813
   519
ballarin@13817
   520
lemma DirProdSemigroup_semigroup:
ballarin@13813
   521
  includes semigroup G + semigroup H
ballarin@13817
   522
  shows "semigroup (G \<times>\<^sub>s H)"
ballarin@13813
   523
  using prems
ballarin@13813
   524
  by (fast intro: semigroup.intro
ballarin@13817
   525
    DirProdSemigroup_magma DirProdSemigroup_semigroup_axioms)
ballarin@13813
   526
ballarin@13813
   527
lemma DirProdGroup_magma:
ballarin@13813
   528
  includes magma G + magma H
ballarin@13813
   529
  shows "magma (G \<times>\<^sub>g H)"
ballarin@14254
   530
  by (rule magma.intro)
ballarin@13936
   531
    (auto simp add: DirProdGroup_def DirProdSemigroup_def)
ballarin@13813
   532
ballarin@13813
   533
lemma DirProdGroup_semigroup_axioms:
ballarin@13813
   534
  includes semigroup G + semigroup H
ballarin@13813
   535
  shows "semigroup_axioms (G \<times>\<^sub>g H)"
ballarin@14254
   536
  by (rule semigroup_axioms.intro)
ballarin@13936
   537
    (auto simp add: DirProdGroup_def DirProdSemigroup_def
ballarin@13817
   538
      G.m_assoc H.m_assoc)
ballarin@13813
   539
ballarin@13813
   540
lemma DirProdGroup_semigroup:
ballarin@13813
   541
  includes semigroup G + semigroup H
ballarin@13813
   542
  shows "semigroup (G \<times>\<^sub>g H)"
ballarin@13813
   543
  using prems
ballarin@13813
   544
  by (fast intro: semigroup.intro
ballarin@13813
   545
    DirProdGroup_magma DirProdGroup_semigroup_axioms)
ballarin@13813
   546
ballarin@13813
   547
(* ... and further lemmas for group ... *)
ballarin@13813
   548
ballarin@13817
   549
lemma DirProdGroup_group:
ballarin@13813
   550
  includes group G + group H
ballarin@13813
   551
  shows "group (G \<times>\<^sub>g H)"
ballarin@13936
   552
  by (rule groupI)
ballarin@13936
   553
    (auto intro: G.m_assoc H.m_assoc G.l_inv H.l_inv
ballarin@13936
   554
      simp add: DirProdGroup_def DirProdSemigroup_def)
ballarin@13813
   555
paulson@13944
   556
lemma carrier_DirProdGroup [simp]:
paulson@13944
   557
     "carrier (G \<times>\<^sub>g H) = carrier G \<times> carrier H"
paulson@13944
   558
  by (simp add: DirProdGroup_def DirProdSemigroup_def)
paulson@13944
   559
paulson@13944
   560
lemma one_DirProdGroup [simp]:
paulson@13944
   561
     "one (G \<times>\<^sub>g H) = (one G, one H)"
paulson@13944
   562
  by (simp add: DirProdGroup_def DirProdSemigroup_def);
paulson@13944
   563
paulson@13944
   564
lemma mult_DirProdGroup [simp]:
paulson@13944
   565
     "mult (G \<times>\<^sub>g H) (g, h) (g', h') = (mult G g g', mult H h h')"
paulson@13944
   566
  by (simp add: DirProdGroup_def DirProdSemigroup_def)
paulson@13944
   567
paulson@13944
   568
lemma inv_DirProdGroup [simp]:
paulson@13944
   569
  includes group G + group H
paulson@13944
   570
  assumes g: "g \<in> carrier G"
paulson@13944
   571
      and h: "h \<in> carrier H"
paulson@13944
   572
  shows "m_inv (G \<times>\<^sub>g H) (g, h) = (m_inv G g, m_inv H h)"
paulson@13944
   573
  apply (rule group.inv_equality [OF DirProdGroup_group])
paulson@13944
   574
  apply (simp_all add: prems group_def group.l_inv)
paulson@13944
   575
  done
paulson@13944
   576
ballarin@13813
   577
subsection {* Homomorphisms *}
ballarin@13813
   578
ballarin@13813
   579
constdefs
ballarin@13817
   580
  hom :: "[('a, 'c) semigroup_scheme, ('b, 'd) semigroup_scheme]
ballarin@13817
   581
    => ('a => 'b)set"
ballarin@13813
   582
  "hom G H ==
ballarin@13813
   583
    {h. h \<in> carrier G -> carrier H &
ballarin@13813
   584
      (\<forall>x \<in> carrier G. \<forall>y \<in> carrier G. h (mult G x y) = mult H (h x) (h y))}"
ballarin@13813
   585
ballarin@13813
   586
lemma (in semigroup) hom:
ballarin@13813
   587
  includes semigroup G
ballarin@13813
   588
  shows "semigroup (| carrier = hom G G, mult = op o |)"
ballarin@14254
   589
proof (rule semigroup.intro)
ballarin@13813
   590
  show "magma (| carrier = hom G G, mult = op o |)"
ballarin@14254
   591
    by (rule magma.intro) (simp add: Pi_def hom_def)
ballarin@13813
   592
next
ballarin@13813
   593
  show "semigroup_axioms (| carrier = hom G G, mult = op o |)"
ballarin@14254
   594
    by (rule semigroup_axioms.intro) (simp add: o_assoc)
ballarin@13813
   595
qed
ballarin@13813
   596
ballarin@13813
   597
lemma hom_mult:
ballarin@13813
   598
  "[| h \<in> hom G H; x \<in> carrier G; y \<in> carrier G |] 
ballarin@13813
   599
   ==> h (mult G x y) = mult H (h x) (h y)"
ballarin@13813
   600
  by (simp add: hom_def) 
ballarin@13813
   601
ballarin@13813
   602
lemma hom_closed:
ballarin@13813
   603
  "[| h \<in> hom G H; x \<in> carrier G |] ==> h x \<in> carrier H"
ballarin@13813
   604
  by (auto simp add: hom_def funcset_mem)
ballarin@13813
   605
paulson@13943
   606
lemma compose_hom:
paulson@13943
   607
     "[|group G; h \<in> hom G G; h' \<in> hom G G; h' \<in> carrier G -> carrier G|]
paulson@13943
   608
      ==> compose (carrier G) h h' \<in> hom G G"
paulson@13943
   609
apply (simp (no_asm_simp) add: hom_def)
paulson@13943
   610
apply (intro conjI) 
paulson@13943
   611
 apply (force simp add: funcset_compose hom_def)
paulson@13943
   612
apply (simp add: compose_def group.axioms hom_mult funcset_mem) 
paulson@13943
   613
done
paulson@13943
   614
ballarin@13813
   615
locale group_hom = group G + group H + var h +
ballarin@13813
   616
  assumes homh: "h \<in> hom G H"
ballarin@13813
   617
  notes hom_mult [simp] = hom_mult [OF homh]
ballarin@13813
   618
    and hom_closed [simp] = hom_closed [OF homh]
ballarin@13813
   619
ballarin@13813
   620
lemma (in group_hom) one_closed [simp]:
ballarin@13813
   621
  "h \<one> \<in> carrier H"
ballarin@13813
   622
  by simp
ballarin@13813
   623
ballarin@13813
   624
lemma (in group_hom) hom_one [simp]:
ballarin@13813
   625
  "h \<one> = \<one>\<^sub>2"
ballarin@13813
   626
proof -
ballarin@13813
   627
  have "h \<one> \<otimes>\<^sub>2 \<one>\<^sub>2 = h \<one> \<otimes>\<^sub>2 h \<one>"
ballarin@13813
   628
    by (simp add: hom_mult [symmetric] del: hom_mult)
ballarin@13813
   629
  then show ?thesis by (simp del: r_one)
ballarin@13813
   630
qed
ballarin@13813
   631
ballarin@13813
   632
lemma (in group_hom) inv_closed [simp]:
ballarin@13813
   633
  "x \<in> carrier G ==> h (inv x) \<in> carrier H"
ballarin@13813
   634
  by simp
ballarin@13813
   635
ballarin@13813
   636
lemma (in group_hom) hom_inv [simp]:
ballarin@13813
   637
  "x \<in> carrier G ==> h (inv x) = inv\<^sub>2 (h x)"
ballarin@13813
   638
proof -
ballarin@13813
   639
  assume x: "x \<in> carrier G"
ballarin@13813
   640
  then have "h x \<otimes>\<^sub>2 h (inv x) = \<one>\<^sub>2"
ballarin@13813
   641
    by (simp add: hom_mult [symmetric] G.r_inv del: hom_mult)
ballarin@13813
   642
  also from x have "... = h x \<otimes>\<^sub>2 inv\<^sub>2 (h x)"
ballarin@13813
   643
    by (simp add: hom_mult [symmetric] H.r_inv del: hom_mult)
ballarin@13813
   644
  finally have "h x \<otimes>\<^sub>2 h (inv x) = h x \<otimes>\<^sub>2 inv\<^sub>2 (h x)" .
ballarin@13813
   645
  with x show ?thesis by simp
ballarin@13813
   646
qed
ballarin@13813
   647
ballarin@13949
   648
subsection {* Commutative Structures *}
ballarin@13936
   649
ballarin@13936
   650
text {*
ballarin@13936
   651
  Naming convention: multiplicative structures that are commutative
ballarin@13936
   652
  are called \emph{commutative}, additive structures are called
ballarin@13936
   653
  \emph{Abelian}.
ballarin@13936
   654
*}
ballarin@13813
   655
ballarin@13813
   656
subsection {* Definition *}
ballarin@13813
   657
ballarin@13936
   658
locale comm_semigroup = semigroup +
ballarin@13813
   659
  assumes m_comm: "[| x \<in> carrier G; y \<in> carrier G |] ==> x \<otimes> y = y \<otimes> x"
ballarin@13813
   660
ballarin@13936
   661
lemma (in comm_semigroup) m_lcomm:
ballarin@13813
   662
  "[| x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |] ==>
ballarin@13813
   663
   x \<otimes> (y \<otimes> z) = y \<otimes> (x \<otimes> z)"
ballarin@13813
   664
proof -
ballarin@13813
   665
  assume xyz: "x \<in> carrier G" "y \<in> carrier G" "z \<in> carrier G"
ballarin@13813
   666
  from xyz have "x \<otimes> (y \<otimes> z) = (x \<otimes> y) \<otimes> z" by (simp add: m_assoc)
ballarin@13813
   667
  also from xyz have "... = (y \<otimes> x) \<otimes> z" by (simp add: m_comm)
ballarin@13813
   668
  also from xyz have "... = y \<otimes> (x \<otimes> z)" by (simp add: m_assoc)
ballarin@13813
   669
  finally show ?thesis .
ballarin@13813
   670
qed
ballarin@13813
   671
ballarin@13936
   672
lemmas (in comm_semigroup) m_ac = m_assoc m_comm m_lcomm
ballarin@13936
   673
ballarin@13936
   674
locale comm_monoid = comm_semigroup + monoid
ballarin@13813
   675
ballarin@13936
   676
lemma comm_monoidI:
ballarin@13936
   677
  assumes m_closed:
ballarin@13936
   678
      "!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==> mult G x y \<in> carrier G"
ballarin@13936
   679
    and one_closed: "one G \<in> carrier G"
ballarin@13936
   680
    and m_assoc:
ballarin@13936
   681
      "!!x y z. [| x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |] ==>
ballarin@13936
   682
      mult G (mult G x y) z = mult G x (mult G y z)"
ballarin@13936
   683
    and l_one: "!!x. x \<in> carrier G ==> mult G (one G) x = x"
ballarin@13936
   684
    and m_comm:
ballarin@13936
   685
      "!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==> mult G x y = mult G y x"
ballarin@13936
   686
  shows "comm_monoid G"
ballarin@13936
   687
  using l_one
ballarin@13936
   688
  by (auto intro!: comm_monoid.intro magma.intro semigroup_axioms.intro
ballarin@13936
   689
    comm_semigroup_axioms.intro monoid_axioms.intro
ballarin@13936
   690
    intro: prems simp: m_closed one_closed m_comm)
ballarin@13817
   691
ballarin@13936
   692
lemma (in monoid) monoid_comm_monoidI:
ballarin@13936
   693
  assumes m_comm:
ballarin@13936
   694
      "!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==> mult G x y = mult G y x"
ballarin@13936
   695
  shows "comm_monoid G"
ballarin@13936
   696
  by (rule comm_monoidI) (auto intro: m_assoc m_comm)
ballarin@13936
   697
(*
ballarin@13936
   698
lemma (in comm_monoid) r_one [simp]:
ballarin@13817
   699
  "x \<in> carrier G ==> x \<otimes> \<one> = x"
ballarin@13817
   700
proof -
ballarin@13817
   701
  assume G: "x \<in> carrier G"
ballarin@13817
   702
  then have "x \<otimes> \<one> = \<one> \<otimes> x" by (simp add: m_comm)
ballarin@13817
   703
  also from G have "... = x" by simp
ballarin@13817
   704
  finally show ?thesis .
ballarin@13817
   705
qed
ballarin@13936
   706
*)
ballarin@13817
   707
ballarin@13936
   708
lemma (in comm_monoid) nat_pow_distr:
ballarin@13936
   709
  "[| x \<in> carrier G; y \<in> carrier G |] ==>
ballarin@13936
   710
  (x \<otimes> y) (^) (n::nat) = x (^) n \<otimes> y (^) n"
ballarin@13936
   711
  by (induct n) (simp, simp add: m_ac)
ballarin@13936
   712
ballarin@13936
   713
locale comm_group = comm_monoid + group
ballarin@13936
   714
ballarin@13936
   715
lemma (in group) group_comm_groupI:
ballarin@13936
   716
  assumes m_comm: "!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==>
ballarin@13936
   717
      mult G x y = mult G y x"
ballarin@13936
   718
  shows "comm_group G"
ballarin@13936
   719
  by (fast intro: comm_group.intro comm_semigroup_axioms.intro
ballarin@13936
   720
    group.axioms prems)
ballarin@13817
   721
ballarin@13936
   722
lemma comm_groupI:
ballarin@13936
   723
  assumes m_closed:
ballarin@13936
   724
      "!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==> mult G x y \<in> carrier G"
ballarin@13936
   725
    and one_closed: "one G \<in> carrier G"
ballarin@13936
   726
    and m_assoc:
ballarin@13936
   727
      "!!x y z. [| x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |] ==>
ballarin@13936
   728
      mult G (mult G x y) z = mult G x (mult G y z)"
ballarin@13936
   729
    and m_comm:
ballarin@13936
   730
      "!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==> mult G x y = mult G y x"
ballarin@13936
   731
    and l_one: "!!x. x \<in> carrier G ==> mult G (one G) x = x"
ballarin@13936
   732
    and l_inv_ex: "!!x. x \<in> carrier G ==> EX y : carrier G. mult G y x = one G"
ballarin@13936
   733
  shows "comm_group G"
ballarin@13936
   734
  by (fast intro: group.group_comm_groupI groupI prems)
ballarin@13936
   735
ballarin@13936
   736
lemma (in comm_group) inv_mult:
ballarin@13854
   737
  "[| x \<in> carrier G; y \<in> carrier G |] ==> inv (x \<otimes> y) = inv x \<otimes> inv y"
ballarin@13936
   738
  by (simp add: m_ac inv_mult_group)
ballarin@13854
   739
ballarin@13813
   740
end