src/HOL/Library/Boolean_Algebra.thy
author haftmann
Mon Mar 23 08:14:24 2009 +0100 (2009-03-23)
changeset 30663 0b6aff7451b2
parent 29996 c09f348ca88a
child 34973 ae634fad947e
permissions -rw-r--r--
Main is (Complex_Main) base entry point in library theories
haftmann@29629
     1
(*  Title:      HOL/Library/Boolean_Algebra.thy
haftmann@29629
     2
    Author:     Brian Huffman
kleing@24332
     3
*)
kleing@24332
     4
kleing@24332
     5
header {* Boolean Algebras *}
kleing@24332
     6
kleing@24332
     7
theory Boolean_Algebra
haftmann@30663
     8
imports Main
kleing@24332
     9
begin
kleing@24332
    10
kleing@24332
    11
locale boolean =
huffman@24357
    12
  fixes conj :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixr "\<sqinter>" 70)
huffman@24357
    13
  fixes disj :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixr "\<squnion>" 65)
huffman@24357
    14
  fixes compl :: "'a \<Rightarrow> 'a" ("\<sim> _" [81] 80)
kleing@24332
    15
  fixes zero :: "'a" ("\<zero>")
kleing@24332
    16
  fixes one  :: "'a" ("\<one>")
kleing@24332
    17
  assumes conj_assoc: "(x \<sqinter> y) \<sqinter> z = x \<sqinter> (y \<sqinter> z)"
kleing@24332
    18
  assumes disj_assoc: "(x \<squnion> y) \<squnion> z = x \<squnion> (y \<squnion> z)"
kleing@24332
    19
  assumes conj_commute: "x \<sqinter> y = y \<sqinter> x"
kleing@24332
    20
  assumes disj_commute: "x \<squnion> y = y \<squnion> x"
kleing@24332
    21
  assumes conj_disj_distrib: "x \<sqinter> (y \<squnion> z) = (x \<sqinter> y) \<squnion> (x \<sqinter> z)"
kleing@24332
    22
  assumes disj_conj_distrib: "x \<squnion> (y \<sqinter> z) = (x \<squnion> y) \<sqinter> (x \<squnion> z)"
huffman@24357
    23
  assumes conj_one_right [simp]: "x \<sqinter> \<one> = x"
huffman@24357
    24
  assumes disj_zero_right [simp]: "x \<squnion> \<zero> = x"
huffman@24357
    25
  assumes conj_cancel_right [simp]: "x \<sqinter> \<sim> x = \<zero>"
huffman@24357
    26
  assumes disj_cancel_right [simp]: "x \<squnion> \<sim> x = \<one>"
kleing@24332
    27
begin
kleing@24332
    28
kleing@24332
    29
lemmas disj_ac =
kleing@24332
    30
  disj_assoc disj_commute
ballarin@25283
    31
  mk_left_commute [where 'a = 'a, of "disj", OF disj_assoc disj_commute]
kleing@24332
    32
kleing@24332
    33
lemmas conj_ac =
kleing@24332
    34
  conj_assoc conj_commute
ballarin@25283
    35
  mk_left_commute [where 'a = 'a, of "conj", OF conj_assoc conj_commute]
kleing@24332
    36
kleing@24332
    37
lemma dual: "boolean disj conj compl one zero"
kleing@24332
    38
apply (rule boolean.intro)
kleing@24332
    39
apply (rule disj_assoc)
kleing@24332
    40
apply (rule conj_assoc)
kleing@24332
    41
apply (rule disj_commute)
kleing@24332
    42
apply (rule conj_commute)
kleing@24332
    43
apply (rule disj_conj_distrib)
kleing@24332
    44
apply (rule conj_disj_distrib)
kleing@24332
    45
apply (rule disj_zero_right)
kleing@24332
    46
apply (rule conj_one_right)
kleing@24332
    47
apply (rule disj_cancel_right)
kleing@24332
    48
apply (rule conj_cancel_right)
kleing@24332
    49
done
kleing@24332
    50
huffman@24357
    51
subsection {* Complement *}
kleing@24332
    52
kleing@24332
    53
lemma complement_unique:
kleing@24332
    54
  assumes 1: "a \<sqinter> x = \<zero>"
kleing@24332
    55
  assumes 2: "a \<squnion> x = \<one>"
kleing@24332
    56
  assumes 3: "a \<sqinter> y = \<zero>"
kleing@24332
    57
  assumes 4: "a \<squnion> y = \<one>"
kleing@24332
    58
  shows "x = y"
kleing@24332
    59
proof -
kleing@24332
    60
  have "(a \<sqinter> x) \<squnion> (x \<sqinter> y) = (a \<sqinter> y) \<squnion> (x \<sqinter> y)" using 1 3 by simp
kleing@24332
    61
  hence "(x \<sqinter> a) \<squnion> (x \<sqinter> y) = (y \<sqinter> a) \<squnion> (y \<sqinter> x)" using conj_commute by simp
kleing@24332
    62
  hence "x \<sqinter> (a \<squnion> y) = y \<sqinter> (a \<squnion> x)" using conj_disj_distrib by simp
kleing@24332
    63
  hence "x \<sqinter> \<one> = y \<sqinter> \<one>" using 2 4 by simp
kleing@24332
    64
  thus "x = y" using conj_one_right by simp
kleing@24332
    65
qed
kleing@24332
    66
huffman@24357
    67
lemma compl_unique: "\<lbrakk>x \<sqinter> y = \<zero>; x \<squnion> y = \<one>\<rbrakk> \<Longrightarrow> \<sim> x = y"
kleing@24332
    68
by (rule complement_unique [OF conj_cancel_right disj_cancel_right])
kleing@24332
    69
kleing@24332
    70
lemma double_compl [simp]: "\<sim> (\<sim> x) = x"
kleing@24332
    71
proof (rule compl_unique)
huffman@24357
    72
  from conj_cancel_right show "\<sim> x \<sqinter> x = \<zero>" by (simp only: conj_commute)
huffman@24357
    73
  from disj_cancel_right show "\<sim> x \<squnion> x = \<one>" by (simp only: disj_commute)
kleing@24332
    74
qed
kleing@24332
    75
kleing@24332
    76
lemma compl_eq_compl_iff [simp]: "(\<sim> x = \<sim> y) = (x = y)"
kleing@24332
    77
by (rule inj_eq [OF inj_on_inverseI], rule double_compl)
kleing@24332
    78
huffman@24357
    79
subsection {* Conjunction *}
kleing@24332
    80
huffman@24393
    81
lemma conj_absorb [simp]: "x \<sqinter> x = x"
kleing@24332
    82
proof -
kleing@24332
    83
  have "x \<sqinter> x = (x \<sqinter> x) \<squnion> \<zero>" using disj_zero_right by simp
kleing@24332
    84
  also have "... = (x \<sqinter> x) \<squnion> (x \<sqinter> \<sim> x)" using conj_cancel_right by simp
huffman@24357
    85
  also have "... = x \<sqinter> (x \<squnion> \<sim> x)" using conj_disj_distrib by (simp only:)
kleing@24332
    86
  also have "... = x \<sqinter> \<one>" using disj_cancel_right by simp
kleing@24332
    87
  also have "... = x" using conj_one_right by simp
kleing@24332
    88
  finally show ?thesis .
kleing@24332
    89
qed
kleing@24332
    90
kleing@24332
    91
lemma conj_zero_right [simp]: "x \<sqinter> \<zero> = \<zero>"
kleing@24332
    92
proof -
kleing@24332
    93
  have "x \<sqinter> \<zero> = x \<sqinter> (x \<sqinter> \<sim> x)" using conj_cancel_right by simp
huffman@24393
    94
  also have "... = (x \<sqinter> x) \<sqinter> \<sim> x" using conj_assoc by (simp only:)
kleing@24332
    95
  also have "... = x \<sqinter> \<sim> x" using conj_absorb by simp
kleing@24332
    96
  also have "... = \<zero>" using conj_cancel_right by simp
kleing@24332
    97
  finally show ?thesis .
kleing@24332
    98
qed
kleing@24332
    99
kleing@24332
   100
lemma compl_one [simp]: "\<sim> \<one> = \<zero>"
kleing@24332
   101
by (rule compl_unique [OF conj_zero_right disj_zero_right])
kleing@24332
   102
kleing@24332
   103
lemma conj_zero_left [simp]: "\<zero> \<sqinter> x = \<zero>"
kleing@24332
   104
by (subst conj_commute) (rule conj_zero_right)
kleing@24332
   105
kleing@24332
   106
lemma conj_one_left [simp]: "\<one> \<sqinter> x = x"
kleing@24332
   107
by (subst conj_commute) (rule conj_one_right)
kleing@24332
   108
kleing@24332
   109
lemma conj_cancel_left [simp]: "\<sim> x \<sqinter> x = \<zero>"
kleing@24332
   110
by (subst conj_commute) (rule conj_cancel_right)
kleing@24332
   111
kleing@24332
   112
lemma conj_left_absorb [simp]: "x \<sqinter> (x \<sqinter> y) = x \<sqinter> y"
huffman@24357
   113
by (simp only: conj_assoc [symmetric] conj_absorb)
kleing@24332
   114
kleing@24332
   115
lemma conj_disj_distrib2:
kleing@24332
   116
  "(y \<squnion> z) \<sqinter> x = (y \<sqinter> x) \<squnion> (z \<sqinter> x)" 
huffman@24357
   117
by (simp only: conj_commute conj_disj_distrib)
kleing@24332
   118
kleing@24332
   119
lemmas conj_disj_distribs =
kleing@24332
   120
   conj_disj_distrib conj_disj_distrib2
kleing@24332
   121
huffman@24357
   122
subsection {* Disjunction *}
kleing@24332
   123
kleing@24332
   124
lemma disj_absorb [simp]: "x \<squnion> x = x"
kleing@24332
   125
by (rule boolean.conj_absorb [OF dual])
kleing@24332
   126
kleing@24332
   127
lemma disj_one_right [simp]: "x \<squnion> \<one> = \<one>"
kleing@24332
   128
by (rule boolean.conj_zero_right [OF dual])
kleing@24332
   129
kleing@24332
   130
lemma compl_zero [simp]: "\<sim> \<zero> = \<one>"
kleing@24332
   131
by (rule boolean.compl_one [OF dual])
kleing@24332
   132
kleing@24332
   133
lemma disj_zero_left [simp]: "\<zero> \<squnion> x = x"
kleing@24332
   134
by (rule boolean.conj_one_left [OF dual])
kleing@24332
   135
kleing@24332
   136
lemma disj_one_left [simp]: "\<one> \<squnion> x = \<one>"
kleing@24332
   137
by (rule boolean.conj_zero_left [OF dual])
kleing@24332
   138
kleing@24332
   139
lemma disj_cancel_left [simp]: "\<sim> x \<squnion> x = \<one>"
kleing@24332
   140
by (rule boolean.conj_cancel_left [OF dual])
kleing@24332
   141
kleing@24332
   142
lemma disj_left_absorb [simp]: "x \<squnion> (x \<squnion> y) = x \<squnion> y"
kleing@24332
   143
by (rule boolean.conj_left_absorb [OF dual])
kleing@24332
   144
kleing@24332
   145
lemma disj_conj_distrib2:
kleing@24332
   146
  "(y \<sqinter> z) \<squnion> x = (y \<squnion> x) \<sqinter> (z \<squnion> x)"
kleing@24332
   147
by (rule boolean.conj_disj_distrib2 [OF dual])
kleing@24332
   148
kleing@24332
   149
lemmas disj_conj_distribs =
kleing@24332
   150
   disj_conj_distrib disj_conj_distrib2
kleing@24332
   151
huffman@24357
   152
subsection {* De Morgan's Laws *}
kleing@24332
   153
kleing@24332
   154
lemma de_Morgan_conj [simp]: "\<sim> (x \<sqinter> y) = \<sim> x \<squnion> \<sim> y"
kleing@24332
   155
proof (rule compl_unique)
kleing@24332
   156
  have "(x \<sqinter> y) \<sqinter> (\<sim> x \<squnion> \<sim> y) = ((x \<sqinter> y) \<sqinter> \<sim> x) \<squnion> ((x \<sqinter> y) \<sqinter> \<sim> y)"
kleing@24332
   157
    by (rule conj_disj_distrib)
kleing@24332
   158
  also have "... = (y \<sqinter> (x \<sqinter> \<sim> x)) \<squnion> (x \<sqinter> (y \<sqinter> \<sim> y))"
huffman@24357
   159
    by (simp only: conj_ac)
kleing@24332
   160
  finally show "(x \<sqinter> y) \<sqinter> (\<sim> x \<squnion> \<sim> y) = \<zero>"
huffman@24357
   161
    by (simp only: conj_cancel_right conj_zero_right disj_zero_right)
kleing@24332
   162
next
kleing@24332
   163
  have "(x \<sqinter> y) \<squnion> (\<sim> x \<squnion> \<sim> y) = (x \<squnion> (\<sim> x \<squnion> \<sim> y)) \<sqinter> (y \<squnion> (\<sim> x \<squnion> \<sim> y))"
kleing@24332
   164
    by (rule disj_conj_distrib2)
kleing@24332
   165
  also have "... = (\<sim> y \<squnion> (x \<squnion> \<sim> x)) \<sqinter> (\<sim> x \<squnion> (y \<squnion> \<sim> y))"
huffman@24357
   166
    by (simp only: disj_ac)
kleing@24332
   167
  finally show "(x \<sqinter> y) \<squnion> (\<sim> x \<squnion> \<sim> y) = \<one>"
huffman@24357
   168
    by (simp only: disj_cancel_right disj_one_right conj_one_right)
kleing@24332
   169
qed
kleing@24332
   170
kleing@24332
   171
lemma de_Morgan_disj [simp]: "\<sim> (x \<squnion> y) = \<sim> x \<sqinter> \<sim> y"
kleing@24332
   172
by (rule boolean.de_Morgan_conj [OF dual])
kleing@24332
   173
kleing@24332
   174
end
kleing@24332
   175
huffman@24357
   176
subsection {* Symmetric Difference *}
kleing@24332
   177
kleing@24332
   178
locale boolean_xor = boolean +
kleing@24332
   179
  fixes xor :: "'a => 'a => 'a"  (infixr "\<oplus>" 65)
kleing@24332
   180
  assumes xor_def: "x \<oplus> y = (x \<sqinter> \<sim> y) \<squnion> (\<sim> x \<sqinter> y)"
kleing@24332
   181
begin
kleing@24332
   182
kleing@24332
   183
lemma xor_def2:
kleing@24332
   184
  "x \<oplus> y = (x \<squnion> y) \<sqinter> (\<sim> x \<squnion> \<sim> y)"
huffman@24357
   185
by (simp only: xor_def conj_disj_distribs
huffman@24357
   186
               disj_ac conj_ac conj_cancel_right disj_zero_left)
kleing@24332
   187
kleing@24332
   188
lemma xor_commute: "x \<oplus> y = y \<oplus> x"
huffman@24357
   189
by (simp only: xor_def conj_commute disj_commute)
kleing@24332
   190
kleing@24332
   191
lemma xor_assoc: "(x \<oplus> y) \<oplus> z = x \<oplus> (y \<oplus> z)"
kleing@24332
   192
proof -
kleing@24332
   193
  let ?t = "(x \<sqinter> y \<sqinter> z) \<squnion> (x \<sqinter> \<sim> y \<sqinter> \<sim> z) \<squnion>
kleing@24332
   194
            (\<sim> x \<sqinter> y \<sqinter> \<sim> z) \<squnion> (\<sim> x \<sqinter> \<sim> y \<sqinter> z)"
kleing@24332
   195
  have "?t \<squnion> (z \<sqinter> x \<sqinter> \<sim> x) \<squnion> (z \<sqinter> y \<sqinter> \<sim> y) =
kleing@24332
   196
        ?t \<squnion> (x \<sqinter> y \<sqinter> \<sim> y) \<squnion> (x \<sqinter> z \<sqinter> \<sim> z)"
huffman@24357
   197
    by (simp only: conj_cancel_right conj_zero_right)
kleing@24332
   198
  thus "(x \<oplus> y) \<oplus> z = x \<oplus> (y \<oplus> z)"
huffman@24357
   199
    apply (simp only: xor_def de_Morgan_disj de_Morgan_conj double_compl)
huffman@24357
   200
    apply (simp only: conj_disj_distribs conj_ac disj_ac)
kleing@24332
   201
    done
kleing@24332
   202
qed
kleing@24332
   203
kleing@24332
   204
lemmas xor_ac =
kleing@24332
   205
  xor_assoc xor_commute
ballarin@25283
   206
  mk_left_commute [where 'a = 'a, of "xor", OF xor_assoc xor_commute]
kleing@24332
   207
kleing@24332
   208
lemma xor_zero_right [simp]: "x \<oplus> \<zero> = x"
huffman@24357
   209
by (simp only: xor_def compl_zero conj_one_right conj_zero_right disj_zero_right)
kleing@24332
   210
kleing@24332
   211
lemma xor_zero_left [simp]: "\<zero> \<oplus> x = x"
kleing@24332
   212
by (subst xor_commute) (rule xor_zero_right)
kleing@24332
   213
kleing@24332
   214
lemma xor_one_right [simp]: "x \<oplus> \<one> = \<sim> x"
huffman@24357
   215
by (simp only: xor_def compl_one conj_zero_right conj_one_right disj_zero_left)
kleing@24332
   216
kleing@24332
   217
lemma xor_one_left [simp]: "\<one> \<oplus> x = \<sim> x"
kleing@24332
   218
by (subst xor_commute) (rule xor_one_right)
kleing@24332
   219
kleing@24332
   220
lemma xor_self [simp]: "x \<oplus> x = \<zero>"
huffman@24357
   221
by (simp only: xor_def conj_cancel_right conj_cancel_left disj_zero_right)
kleing@24332
   222
kleing@24332
   223
lemma xor_left_self [simp]: "x \<oplus> (x \<oplus> y) = y"
huffman@24357
   224
by (simp only: xor_assoc [symmetric] xor_self xor_zero_left)
kleing@24332
   225
huffman@29996
   226
lemma xor_compl_left [simp]: "\<sim> x \<oplus> y = \<sim> (x \<oplus> y)"
huffman@24357
   227
apply (simp only: xor_def de_Morgan_disj de_Morgan_conj double_compl)
huffman@24357
   228
apply (simp only: conj_disj_distribs)
huffman@24357
   229
apply (simp only: conj_cancel_right conj_cancel_left)
huffman@24357
   230
apply (simp only: disj_zero_left disj_zero_right)
huffman@24357
   231
apply (simp only: disj_ac conj_ac)
kleing@24332
   232
done
kleing@24332
   233
huffman@29996
   234
lemma xor_compl_right [simp]: "x \<oplus> \<sim> y = \<sim> (x \<oplus> y)"
huffman@24357
   235
apply (simp only: xor_def de_Morgan_disj de_Morgan_conj double_compl)
huffman@24357
   236
apply (simp only: conj_disj_distribs)
huffman@24357
   237
apply (simp only: conj_cancel_right conj_cancel_left)
huffman@24357
   238
apply (simp only: disj_zero_left disj_zero_right)
huffman@24357
   239
apply (simp only: disj_ac conj_ac)
kleing@24332
   240
done
kleing@24332
   241
huffman@29996
   242
lemma xor_cancel_right: "x \<oplus> \<sim> x = \<one>"
huffman@24357
   243
by (simp only: xor_compl_right xor_self compl_zero)
kleing@24332
   244
huffman@29996
   245
lemma xor_cancel_left: "\<sim> x \<oplus> x = \<one>"
huffman@29996
   246
by (simp only: xor_compl_left xor_self compl_zero)
kleing@24332
   247
kleing@24332
   248
lemma conj_xor_distrib: "x \<sqinter> (y \<oplus> z) = (x \<sqinter> y) \<oplus> (x \<sqinter> z)"
kleing@24332
   249
proof -
kleing@24332
   250
  have "(x \<sqinter> y \<sqinter> \<sim> z) \<squnion> (x \<sqinter> \<sim> y \<sqinter> z) =
kleing@24332
   251
        (y \<sqinter> x \<sqinter> \<sim> x) \<squnion> (z \<sqinter> x \<sqinter> \<sim> x) \<squnion> (x \<sqinter> y \<sqinter> \<sim> z) \<squnion> (x \<sqinter> \<sim> y \<sqinter> z)"
huffman@24357
   252
    by (simp only: conj_cancel_right conj_zero_right disj_zero_left)
kleing@24332
   253
  thus "x \<sqinter> (y \<oplus> z) = (x \<sqinter> y) \<oplus> (x \<sqinter> z)"
huffman@24357
   254
    by (simp (no_asm_use) only:
kleing@24332
   255
        xor_def de_Morgan_disj de_Morgan_conj double_compl
kleing@24332
   256
        conj_disj_distribs conj_ac disj_ac)
kleing@24332
   257
qed
kleing@24332
   258
kleing@24332
   259
lemma conj_xor_distrib2:
kleing@24332
   260
  "(y \<oplus> z) \<sqinter> x = (y \<sqinter> x) \<oplus> (z \<sqinter> x)"
kleing@24332
   261
proof -
kleing@24332
   262
  have "x \<sqinter> (y \<oplus> z) = (x \<sqinter> y) \<oplus> (x \<sqinter> z)"
kleing@24332
   263
    by (rule conj_xor_distrib)
kleing@24332
   264
  thus "(y \<oplus> z) \<sqinter> x = (y \<sqinter> x) \<oplus> (z \<sqinter> x)"
huffman@24357
   265
    by (simp only: conj_commute)
kleing@24332
   266
qed
kleing@24332
   267
kleing@24332
   268
lemmas conj_xor_distribs =
kleing@24332
   269
   conj_xor_distrib conj_xor_distrib2
kleing@24332
   270
kleing@24332
   271
end
kleing@24332
   272
kleing@24332
   273
end