src/HOL/Library/FuncSet.thy
author haftmann
Mon Mar 23 08:14:24 2009 +0100 (2009-03-23)
changeset 30663 0b6aff7451b2
parent 28524 644b62cf678f
child 31727 2621a957d417
permissions -rw-r--r--
Main is (Complex_Main) base entry point in library theories
paulson@13586
     1
(*  Title:      HOL/Library/FuncSet.thy
paulson@13586
     2
    Author:     Florian Kammueller and Lawrence C Paulson
paulson@13586
     3
*)
paulson@13586
     4
wenzelm@14706
     5
header {* Pi and Function Sets *}
paulson@13586
     6
nipkow@15131
     7
theory FuncSet
haftmann@30663
     8
imports Hilbert_Choice Main
nipkow@15131
     9
begin
paulson@13586
    10
wenzelm@19736
    11
definition
wenzelm@21404
    12
  Pi :: "['a set, 'a => 'b set] => ('a => 'b) set" where
wenzelm@19736
    13
  "Pi A B = {f. \<forall>x. x \<in> A --> f x \<in> B x}"
paulson@13586
    14
wenzelm@21404
    15
definition
wenzelm@21404
    16
  extensional :: "'a set => ('a => 'b) set" where
haftmann@28524
    17
  "extensional A = {f. \<forall>x. x~:A --> f x = undefined}"
paulson@13586
    18
wenzelm@21404
    19
definition
wenzelm@21404
    20
  "restrict" :: "['a => 'b, 'a set] => ('a => 'b)" where
haftmann@28524
    21
  "restrict f A = (%x. if x \<in> A then f x else undefined)"
paulson@13586
    22
wenzelm@19536
    23
abbreviation
wenzelm@21404
    24
  funcset :: "['a set, 'b set] => ('a => 'b) set"
wenzelm@21404
    25
    (infixr "->" 60) where
wenzelm@19536
    26
  "A -> B == Pi A (%_. B)"
wenzelm@19536
    27
wenzelm@21210
    28
notation (xsymbols)
wenzelm@19656
    29
  funcset  (infixr "\<rightarrow>" 60)
wenzelm@19536
    30
paulson@13586
    31
syntax
wenzelm@19736
    32
  "_Pi"  :: "[pttrn, 'a set, 'b set] => ('a => 'b) set"  ("(3PI _:_./ _)" 10)
wenzelm@19736
    33
  "_lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)"  ("(3%_:_./ _)" [0,0,3] 3)
paulson@13586
    34
paulson@13586
    35
syntax (xsymbols)
wenzelm@19736
    36
  "_Pi" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set"  ("(3\<Pi> _\<in>_./ _)"   10)
wenzelm@19736
    37
  "_lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)"  ("(3\<lambda>_\<in>_./ _)" [0,0,3] 3)
paulson@13586
    38
kleing@14565
    39
syntax (HTML output)
wenzelm@19736
    40
  "_Pi" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set"  ("(3\<Pi> _\<in>_./ _)"   10)
wenzelm@19736
    41
  "_lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)"  ("(3\<lambda>_\<in>_./ _)" [0,0,3] 3)
kleing@14565
    42
paulson@13586
    43
translations
wenzelm@20770
    44
  "PI x:A. B" == "CONST Pi A (%x. B)"
wenzelm@20770
    45
  "%x:A. f" == "CONST restrict (%x. f) A"
paulson@13586
    46
wenzelm@19736
    47
definition
wenzelm@21404
    48
  "compose" :: "['a set, 'b => 'c, 'a => 'b] => ('a => 'c)" where
wenzelm@19736
    49
  "compose A g f = (\<lambda>x\<in>A. g (f x))"
paulson@13586
    50
paulson@13586
    51
paulson@13586
    52
subsection{*Basic Properties of @{term Pi}*}
paulson@13586
    53
paulson@13586
    54
lemma Pi_I: "(!!x. x \<in> A ==> f x \<in> B x) ==> f \<in> Pi A B"
wenzelm@14706
    55
  by (simp add: Pi_def)
paulson@13586
    56
paulson@13586
    57
lemma funcsetI: "(!!x. x \<in> A ==> f x \<in> B) ==> f \<in> A -> B"
wenzelm@14706
    58
  by (simp add: Pi_def)
paulson@13586
    59
paulson@13586
    60
lemma Pi_mem: "[|f: Pi A B; x \<in> A|] ==> f x \<in> B x"
wenzelm@14706
    61
  by (simp add: Pi_def)
paulson@13586
    62
paulson@13586
    63
lemma funcset_mem: "[|f \<in> A -> B; x \<in> A|] ==> f x \<in> B"
wenzelm@14706
    64
  by (simp add: Pi_def)
paulson@13586
    65
paulson@14762
    66
lemma funcset_image: "f \<in> A\<rightarrow>B ==> f ` A \<subseteq> B"
wenzelm@19736
    67
  by (auto simp add: Pi_def)
paulson@14762
    68
paulson@13586
    69
lemma Pi_eq_empty: "((PI x: A. B x) = {}) = (\<exists>x\<in>A. B(x) = {})"
paulson@13593
    70
apply (simp add: Pi_def, auto)
paulson@13586
    71
txt{*Converse direction requires Axiom of Choice to exhibit a function
paulson@13586
    72
picking an element from each non-empty @{term "B x"}*}
paulson@13593
    73
apply (drule_tac x = "%u. SOME y. y \<in> B u" in spec, auto)
wenzelm@14706
    74
apply (cut_tac P= "%y. y \<in> B x" in some_eq_ex, auto)
paulson@13586
    75
done
paulson@13586
    76
paulson@13593
    77
lemma Pi_empty [simp]: "Pi {} B = UNIV"
wenzelm@14706
    78
  by (simp add: Pi_def)
paulson@13593
    79
paulson@13593
    80
lemma Pi_UNIV [simp]: "A -> UNIV = UNIV"
wenzelm@14706
    81
  by (simp add: Pi_def)
paulson@13586
    82
paulson@13586
    83
text{*Covariance of Pi-sets in their second argument*}
paulson@13586
    84
lemma Pi_mono: "(!!x. x \<in> A ==> B x <= C x) ==> Pi A B <= Pi A C"
wenzelm@14706
    85
  by (simp add: Pi_def, blast)
paulson@13586
    86
paulson@13586
    87
text{*Contravariance of Pi-sets in their first argument*}
paulson@13586
    88
lemma Pi_anti_mono: "A' <= A ==> Pi A B <= Pi A' B"
wenzelm@14706
    89
  by (simp add: Pi_def, blast)
paulson@13586
    90
paulson@13586
    91
paulson@13586
    92
subsection{*Composition With a Restricted Domain: @{term compose}*}
paulson@13586
    93
wenzelm@14706
    94
lemma funcset_compose:
wenzelm@14706
    95
    "[| f \<in> A -> B; g \<in> B -> C |]==> compose A g f \<in> A -> C"
wenzelm@14706
    96
  by (simp add: Pi_def compose_def restrict_def)
paulson@13586
    97
paulson@13586
    98
lemma compose_assoc:
wenzelm@14706
    99
    "[| f \<in> A -> B; g \<in> B -> C; h \<in> C -> D |]
paulson@13586
   100
      ==> compose A h (compose A g f) = compose A (compose B h g) f"
wenzelm@14706
   101
  by (simp add: expand_fun_eq Pi_def compose_def restrict_def)
paulson@13586
   102
paulson@13586
   103
lemma compose_eq: "x \<in> A ==> compose A g f x = g(f(x))"
wenzelm@14706
   104
  by (simp add: compose_def restrict_def)
paulson@13586
   105
paulson@13586
   106
lemma surj_compose: "[| f ` A = B; g ` B = C |] ==> compose A g f ` A = C"
wenzelm@14706
   107
  by (auto simp add: image_def compose_eq)
paulson@13586
   108
paulson@13586
   109
paulson@13586
   110
subsection{*Bounded Abstraction: @{term restrict}*}
paulson@13586
   111
paulson@13586
   112
lemma restrict_in_funcset: "(!!x. x \<in> A ==> f x \<in> B) ==> (\<lambda>x\<in>A. f x) \<in> A -> B"
wenzelm@14706
   113
  by (simp add: Pi_def restrict_def)
paulson@13586
   114
paulson@13586
   115
lemma restrictI: "(!!x. x \<in> A ==> f x \<in> B x) ==> (\<lambda>x\<in>A. f x) \<in> Pi A B"
wenzelm@14706
   116
  by (simp add: Pi_def restrict_def)
paulson@13586
   117
paulson@13586
   118
lemma restrict_apply [simp]:
haftmann@28524
   119
    "(\<lambda>y\<in>A. f y) x = (if x \<in> A then f x else undefined)"
wenzelm@14706
   120
  by (simp add: restrict_def)
paulson@13586
   121
wenzelm@14706
   122
lemma restrict_ext:
paulson@13586
   123
    "(!!x. x \<in> A ==> f x = g x) ==> (\<lambda>x\<in>A. f x) = (\<lambda>x\<in>A. g x)"
wenzelm@14706
   124
  by (simp add: expand_fun_eq Pi_def Pi_def restrict_def)
paulson@13586
   125
paulson@14853
   126
lemma inj_on_restrict_eq [simp]: "inj_on (restrict f A) A = inj_on f A"
wenzelm@14706
   127
  by (simp add: inj_on_def restrict_def)
paulson@13586
   128
paulson@13586
   129
lemma Id_compose:
wenzelm@14706
   130
    "[|f \<in> A -> B;  f \<in> extensional A|] ==> compose A (\<lambda>y\<in>B. y) f = f"
wenzelm@14706
   131
  by (auto simp add: expand_fun_eq compose_def extensional_def Pi_def)
paulson@13586
   132
paulson@13586
   133
lemma compose_Id:
wenzelm@14706
   134
    "[|g \<in> A -> B;  g \<in> extensional A|] ==> compose A g (\<lambda>x\<in>A. x) = g"
wenzelm@14706
   135
  by (auto simp add: expand_fun_eq compose_def extensional_def Pi_def)
paulson@13586
   136
paulson@14853
   137
lemma image_restrict_eq [simp]: "(restrict f A) ` A = f ` A"
wenzelm@19736
   138
  by (auto simp add: restrict_def)
paulson@13586
   139
paulson@14745
   140
paulson@14762
   141
subsection{*Bijections Between Sets*}
paulson@14762
   142
nipkow@26106
   143
text{*The definition of @{const bij_betw} is in @{text "Fun.thy"}, but most of
paulson@14762
   144
the theorems belong here, or need at least @{term Hilbert_Choice}.*}
paulson@14762
   145
paulson@14762
   146
lemma bij_betw_imp_funcset: "bij_betw f A B \<Longrightarrow> f \<in> A \<rightarrow> B"
wenzelm@19736
   147
  by (auto simp add: bij_betw_def inj_on_Inv Pi_def)
paulson@14762
   148
paulson@14853
   149
lemma inj_on_compose:
paulson@14853
   150
    "[| bij_betw f A B; inj_on g B |] ==> inj_on (compose A g f) A"
paulson@14853
   151
  by (auto simp add: bij_betw_def inj_on_def compose_eq)
paulson@14853
   152
paulson@14762
   153
lemma bij_betw_compose:
paulson@14762
   154
    "[| bij_betw f A B; bij_betw g B C |] ==> bij_betw (compose A g f) A C"
wenzelm@19736
   155
  apply (simp add: bij_betw_def compose_eq inj_on_compose)
wenzelm@19736
   156
  apply (auto simp add: compose_def image_def)
wenzelm@19736
   157
  done
paulson@14762
   158
paulson@14853
   159
lemma bij_betw_restrict_eq [simp]:
paulson@14853
   160
     "bij_betw (restrict f A) A B = bij_betw f A B"
paulson@14853
   161
  by (simp add: bij_betw_def)
paulson@14853
   162
paulson@14853
   163
paulson@14853
   164
subsection{*Extensionality*}
paulson@14853
   165
haftmann@28524
   166
lemma extensional_arb: "[|f \<in> extensional A; x\<notin> A|] ==> f x = undefined"
paulson@14853
   167
  by (simp add: extensional_def)
paulson@14853
   168
paulson@14853
   169
lemma restrict_extensional [simp]: "restrict f A \<in> extensional A"
paulson@14853
   170
  by (simp add: restrict_def extensional_def)
paulson@14853
   171
paulson@14853
   172
lemma compose_extensional [simp]: "compose A f g \<in> extensional A"
paulson@14853
   173
  by (simp add: compose_def)
paulson@14853
   174
paulson@14853
   175
lemma extensionalityI:
paulson@14853
   176
    "[| f \<in> extensional A; g \<in> extensional A;
paulson@14853
   177
      !!x. x\<in>A ==> f x = g x |] ==> f = g"
paulson@14853
   178
  by (force simp add: expand_fun_eq extensional_def)
paulson@14853
   179
paulson@14853
   180
lemma Inv_funcset: "f ` A = B ==> (\<lambda>x\<in>B. Inv A f x) : B -> A"
paulson@14853
   181
  by (unfold Inv_def) (fast intro: restrict_in_funcset someI2)
paulson@14853
   182
paulson@14853
   183
lemma compose_Inv_id:
paulson@14853
   184
    "bij_betw f A B ==> compose A (\<lambda>y\<in>B. Inv A f y) f = (\<lambda>x\<in>A. x)"
paulson@14853
   185
  apply (simp add: bij_betw_def compose_def)
paulson@14853
   186
  apply (rule restrict_ext, auto)
paulson@14853
   187
  apply (erule subst)
paulson@14853
   188
  apply (simp add: Inv_f_f)
paulson@14853
   189
  done
paulson@14853
   190
paulson@14853
   191
lemma compose_id_Inv:
paulson@14853
   192
    "f ` A = B ==> compose B f (\<lambda>y\<in>B. Inv A f y) = (\<lambda>x\<in>B. x)"
paulson@14853
   193
  apply (simp add: compose_def)
paulson@14853
   194
  apply (rule restrict_ext)
paulson@14853
   195
  apply (simp add: f_Inv_f)
paulson@14853
   196
  done
paulson@14853
   197
paulson@14762
   198
paulson@14745
   199
subsection{*Cardinality*}
paulson@14745
   200
paulson@14745
   201
lemma card_inj: "[|f \<in> A\<rightarrow>B; inj_on f A; finite B|] ==> card(A) \<le> card(B)"
wenzelm@19736
   202
  apply (rule card_inj_on_le)
wenzelm@19736
   203
    apply (auto simp add: Pi_def)
wenzelm@19736
   204
  done
paulson@14745
   205
paulson@14745
   206
lemma card_bij:
paulson@14745
   207
     "[|f \<in> A\<rightarrow>B; inj_on f A;
paulson@14745
   208
        g \<in> B\<rightarrow>A; inj_on g B; finite A; finite B|] ==> card(A) = card(B)"
wenzelm@19736
   209
  by (blast intro: card_inj order_antisym)
paulson@14745
   210
paulson@13586
   211
end