src/HOL/Library/Zorn.thy
author haftmann
Mon Mar 23 08:14:24 2009 +0100 (2009-03-23)
changeset 30663 0b6aff7451b2
parent 30198 922f944f03b2
child 32960 69916a850301
permissions -rw-r--r--
Main is (Complex_Main) base entry point in library theories
wenzelm@14706
     1
(*  Title       : HOL/Library/Zorn.thy
nipkow@26191
     2
    Author      : Jacques D. Fleuriot, Tobias Nipkow
nipkow@26191
     3
    Description : Zorn's Lemma (ported from Larry Paulson's Zorn.thy in ZF)
nipkow@26191
     4
                  The well-ordering theorem
wenzelm@14706
     5
*)
paulson@13551
     6
wenzelm@14706
     7
header {* Zorn's Lemma *}
paulson@13551
     8
nipkow@15131
     9
theory Zorn
haftmann@30663
    10
imports Order_Relation Main
nipkow@15131
    11
begin
paulson@13551
    12
nipkow@26272
    13
(* Define globally? In Set.thy? *)
nipkow@26272
    14
definition chain_subset :: "'a set set \<Rightarrow> bool" ("chain\<^bsub>\<subseteq>\<^esub>") where
nipkow@26272
    15
"chain\<^bsub>\<subseteq>\<^esub> C \<equiv> \<forall>A\<in>C.\<forall>B\<in>C. A \<subseteq> B \<or> B \<subseteq> A"
nipkow@26272
    16
wenzelm@14706
    17
text{*
wenzelm@14706
    18
  The lemma and section numbers refer to an unpublished article
wenzelm@14706
    19
  \cite{Abrial-Laffitte}.
wenzelm@14706
    20
*}
paulson@13551
    21
wenzelm@19736
    22
definition
wenzelm@21404
    23
  chain     ::  "'a set set => 'a set set set" where
nipkow@26272
    24
  "chain S  = {F. F \<subseteq> S & chain\<^bsub>\<subseteq>\<^esub> F}"
paulson@13551
    25
wenzelm@21404
    26
definition
wenzelm@21404
    27
  super     ::  "['a set set,'a set set] => 'a set set set" where
wenzelm@19736
    28
  "super S c = {d. d \<in> chain S & c \<subset> d}"
paulson@13551
    29
wenzelm@21404
    30
definition
wenzelm@21404
    31
  maxchain  ::  "'a set set => 'a set set set" where
wenzelm@19736
    32
  "maxchain S = {c. c \<in> chain S & super S c = {}}"
paulson@13551
    33
wenzelm@21404
    34
definition
wenzelm@21404
    35
  succ      ::  "['a set set,'a set set] => 'a set set" where
wenzelm@19736
    36
  "succ S c =
wenzelm@19736
    37
    (if c \<notin> chain S | c \<in> maxchain S
wenzelm@19736
    38
    then c else SOME c'. c' \<in> super S c)"
paulson@13551
    39
berghofe@23755
    40
inductive_set
wenzelm@14706
    41
  TFin :: "'a set set => 'a set set set"
berghofe@23755
    42
  for S :: "'a set set"
berghofe@23755
    43
  where
paulson@13551
    44
    succI:        "x \<in> TFin S ==> succ S x \<in> TFin S"
berghofe@23755
    45
  | Pow_UnionI:   "Y \<in> Pow(TFin S) ==> Union(Y) \<in> TFin S"
paulson@13551
    46
paulson@13551
    47
paulson@13551
    48
subsection{*Mathematical Preamble*}
paulson@13551
    49
wenzelm@17200
    50
lemma Union_lemma0:
paulson@18143
    51
    "(\<forall>x \<in> C. x \<subseteq> A | B \<subseteq> x) ==> Union(C) \<subseteq> A | B \<subseteq> Union(C)"
wenzelm@17200
    52
  by blast
paulson@13551
    53
paulson@13551
    54
paulson@13551
    55
text{*This is theorem @{text increasingD2} of ZF/Zorn.thy*}
wenzelm@17200
    56
paulson@13551
    57
lemma Abrial_axiom1: "x \<subseteq> succ S x"
berghofe@26806
    58
  apply (auto simp add: succ_def super_def maxchain_def)
wenzelm@18585
    59
  apply (rule contrapos_np, assumption)
berghofe@26806
    60
  apply (rule_tac Q="\<lambda>S. xa \<in> S" in someI2, blast+)
wenzelm@17200
    61
  done
paulson@13551
    62
paulson@13551
    63
lemmas TFin_UnionI = TFin.Pow_UnionI [OF PowI]
paulson@13551
    64
wenzelm@14706
    65
lemma TFin_induct:
berghofe@26806
    66
  assumes H: "n \<in> TFin S"
berghofe@26806
    67
  and I: "!!x. x \<in> TFin S ==> P x ==> P (succ S x)"
berghofe@26806
    68
    "!!Y. Y \<subseteq> TFin S ==> Ball Y P ==> P(Union Y)"
berghofe@26806
    69
  shows "P n" using H
berghofe@26806
    70
  apply (induct rule: TFin.induct [where P=P])
berghofe@26806
    71
   apply (blast intro: I)+
wenzelm@17200
    72
  done
paulson@13551
    73
paulson@13551
    74
lemma succ_trans: "x \<subseteq> y ==> x \<subseteq> succ S y"
wenzelm@17200
    75
  apply (erule subset_trans)
wenzelm@17200
    76
  apply (rule Abrial_axiom1)
wenzelm@17200
    77
  done
paulson@13551
    78
paulson@13551
    79
text{*Lemma 1 of section 3.1*}
paulson@13551
    80
lemma TFin_linear_lemma1:
wenzelm@14706
    81
     "[| n \<in> TFin S;  m \<in> TFin S;
wenzelm@14706
    82
         \<forall>x \<in> TFin S. x \<subseteq> m --> x = m | succ S x \<subseteq> m
paulson@13551
    83
      |] ==> n \<subseteq> m | succ S m \<subseteq> n"
wenzelm@17200
    84
  apply (erule TFin_induct)
wenzelm@17200
    85
   apply (erule_tac [2] Union_lemma0)
wenzelm@17200
    86
  apply (blast del: subsetI intro: succ_trans)
wenzelm@17200
    87
  done
paulson@13551
    88
paulson@13551
    89
text{* Lemma 2 of section 3.2 *}
paulson@13551
    90
lemma TFin_linear_lemma2:
paulson@13551
    91
     "m \<in> TFin S ==> \<forall>n \<in> TFin S. n \<subseteq> m --> n=m | succ S n \<subseteq> m"
wenzelm@17200
    92
  apply (erule TFin_induct)
wenzelm@17200
    93
   apply (rule impI [THEN ballI])
wenzelm@17200
    94
   txt{*case split using @{text TFin_linear_lemma1}*}
wenzelm@17200
    95
   apply (rule_tac n1 = n and m1 = x in TFin_linear_lemma1 [THEN disjE],
wenzelm@17200
    96
     assumption+)
wenzelm@17200
    97
    apply (drule_tac x = n in bspec, assumption)
wenzelm@17200
    98
    apply (blast del: subsetI intro: succ_trans, blast)
wenzelm@17200
    99
  txt{*second induction step*}
wenzelm@17200
   100
  apply (rule impI [THEN ballI])
wenzelm@17200
   101
  apply (rule Union_lemma0 [THEN disjE])
wenzelm@17200
   102
    apply (rule_tac [3] disjI2)
wenzelm@17200
   103
    prefer 2 apply blast
wenzelm@17200
   104
   apply (rule ballI)
wenzelm@17200
   105
   apply (rule_tac n1 = n and m1 = x in TFin_linear_lemma1 [THEN disjE],
wenzelm@17200
   106
     assumption+, auto)
wenzelm@17200
   107
  apply (blast intro!: Abrial_axiom1 [THEN subsetD])
wenzelm@17200
   108
  done
paulson@13551
   109
paulson@13551
   110
text{*Re-ordering the premises of Lemma 2*}
paulson@13551
   111
lemma TFin_subsetD:
paulson@13551
   112
     "[| n \<subseteq> m;  m \<in> TFin S;  n \<in> TFin S |] ==> n=m | succ S n \<subseteq> m"
wenzelm@17200
   113
  by (rule TFin_linear_lemma2 [rule_format])
paulson@13551
   114
paulson@13551
   115
text{*Consequences from section 3.3 -- Property 3.2, the ordering is total*}
paulson@13551
   116
lemma TFin_subset_linear: "[| m \<in> TFin S;  n \<in> TFin S|] ==> n \<subseteq> m | m \<subseteq> n"
wenzelm@17200
   117
  apply (rule disjE)
wenzelm@17200
   118
    apply (rule TFin_linear_lemma1 [OF _ _TFin_linear_lemma2])
wenzelm@17200
   119
      apply (assumption+, erule disjI2)
wenzelm@17200
   120
  apply (blast del: subsetI
wenzelm@17200
   121
    intro: subsetI Abrial_axiom1 [THEN subset_trans])
wenzelm@17200
   122
  done
paulson@13551
   123
paulson@13551
   124
text{*Lemma 3 of section 3.3*}
paulson@13551
   125
lemma eq_succ_upper: "[| n \<in> TFin S;  m \<in> TFin S;  m = succ S m |] ==> n \<subseteq> m"
wenzelm@17200
   126
  apply (erule TFin_induct)
wenzelm@17200
   127
   apply (drule TFin_subsetD)
wenzelm@17200
   128
     apply (assumption+, force, blast)
wenzelm@17200
   129
  done
paulson@13551
   130
paulson@13551
   131
text{*Property 3.3 of section 3.3*}
paulson@13551
   132
lemma equal_succ_Union: "m \<in> TFin S ==> (m = succ S m) = (m = Union(TFin S))"
wenzelm@17200
   133
  apply (rule iffI)
wenzelm@17200
   134
   apply (rule Union_upper [THEN equalityI])
paulson@18143
   135
    apply assumption
paulson@18143
   136
   apply (rule eq_succ_upper [THEN Union_least], assumption+)
wenzelm@17200
   137
  apply (erule ssubst)
wenzelm@17200
   138
  apply (rule Abrial_axiom1 [THEN equalityI])
wenzelm@17200
   139
  apply (blast del: subsetI intro: subsetI TFin_UnionI TFin.succI)
wenzelm@17200
   140
  done
paulson@13551
   141
paulson@13551
   142
subsection{*Hausdorff's Theorem: Every Set Contains a Maximal Chain.*}
paulson@13551
   143
wenzelm@14706
   144
text{*NB: We assume the partial ordering is @{text "\<subseteq>"},
paulson@13551
   145
 the subset relation!*}
paulson@13551
   146
paulson@13551
   147
lemma empty_set_mem_chain: "({} :: 'a set set) \<in> chain S"
nipkow@26272
   148
by (unfold chain_def chain_subset_def) auto
paulson@13551
   149
paulson@13551
   150
lemma super_subset_chain: "super S c \<subseteq> chain S"
wenzelm@17200
   151
  by (unfold super_def) blast
paulson@13551
   152
paulson@13551
   153
lemma maxchain_subset_chain: "maxchain S \<subseteq> chain S"
wenzelm@17200
   154
  by (unfold maxchain_def) blast
paulson@13551
   155
nipkow@26191
   156
lemma mem_super_Ex: "c \<in> chain S - maxchain S ==> EX d. d \<in> super S c"
wenzelm@17200
   157
  by (unfold super_def maxchain_def) auto
paulson@13551
   158
paulson@18143
   159
lemma select_super:
paulson@18143
   160
     "c \<in> chain S - maxchain S ==> (\<some>c'. c': super S c): super S c"
wenzelm@17200
   161
  apply (erule mem_super_Ex [THEN exE])
berghofe@26806
   162
  apply (rule someI2 [where Q="%X. X : super S c"], auto)
wenzelm@17200
   163
  done
paulson@13551
   164
paulson@18143
   165
lemma select_not_equals:
paulson@18143
   166
     "c \<in> chain S - maxchain S ==> (\<some>c'. c': super S c) \<noteq> c"
wenzelm@17200
   167
  apply (rule notI)
wenzelm@17200
   168
  apply (drule select_super)
berghofe@26806
   169
  apply (simp add: super_def less_le)
wenzelm@17200
   170
  done
paulson@13551
   171
wenzelm@17200
   172
lemma succI3: "c \<in> chain S - maxchain S ==> succ S c = (\<some>c'. c': super S c)"
wenzelm@17200
   173
  by (unfold succ_def) (blast intro!: if_not_P)
paulson@13551
   174
paulson@13551
   175
lemma succ_not_equals: "c \<in> chain S - maxchain S ==> succ S c \<noteq> c"
wenzelm@17200
   176
  apply (frule succI3)
wenzelm@17200
   177
  apply (simp (no_asm_simp))
wenzelm@17200
   178
  apply (rule select_not_equals, assumption)
wenzelm@17200
   179
  done
paulson@13551
   180
paulson@13551
   181
lemma TFin_chain_lemma4: "c \<in> TFin S ==> (c :: 'a set set): chain S"
wenzelm@17200
   182
  apply (erule TFin_induct)
wenzelm@17200
   183
   apply (simp add: succ_def select_super [THEN super_subset_chain[THEN subsetD]])
nipkow@26272
   184
  apply (unfold chain_def chain_subset_def)
wenzelm@17200
   185
  apply (rule CollectI, safe)
wenzelm@17200
   186
   apply (drule bspec, assumption)
wenzelm@17200
   187
   apply (rule_tac [2] m1 = Xa and n1 = X in TFin_subset_linear [THEN disjE],
berghofe@26806
   188
     best+)
wenzelm@17200
   189
  done
wenzelm@14706
   190
paulson@13551
   191
theorem Hausdorff: "\<exists>c. (c :: 'a set set): maxchain S"
paulson@18143
   192
  apply (rule_tac x = "Union (TFin S)" in exI)
wenzelm@17200
   193
  apply (rule classical)
wenzelm@17200
   194
  apply (subgoal_tac "succ S (Union (TFin S)) = Union (TFin S) ")
wenzelm@17200
   195
   prefer 2
wenzelm@17200
   196
   apply (blast intro!: TFin_UnionI equal_succ_Union [THEN iffD2, symmetric])
wenzelm@17200
   197
  apply (cut_tac subset_refl [THEN TFin_UnionI, THEN TFin_chain_lemma4])
wenzelm@17200
   198
  apply (drule DiffI [THEN succ_not_equals], blast+)
wenzelm@17200
   199
  done
paulson@13551
   200
paulson@13551
   201
wenzelm@14706
   202
subsection{*Zorn's Lemma: If All Chains Have Upper Bounds Then
paulson@13551
   203
                               There Is  a Maximal Element*}
paulson@13551
   204
wenzelm@14706
   205
lemma chain_extend:
nipkow@26272
   206
  "[| c \<in> chain S; z \<in> S; \<forall>x \<in> c. x \<subseteq> (z:: 'a set) |] ==> {z} Un c \<in> chain S"
nipkow@26272
   207
by (unfold chain_def chain_subset_def) blast
paulson@13551
   208
paulson@13551
   209
lemma chain_Union_upper: "[| c \<in> chain S; x \<in> c |] ==> x \<subseteq> Union(c)"
nipkow@26272
   210
by auto
paulson@13551
   211
paulson@13551
   212
lemma chain_ball_Union_upper: "c \<in> chain S ==> \<forall>x \<in> c. x \<subseteq> Union(c)"
nipkow@26272
   213
by auto
paulson@13551
   214
paulson@13551
   215
lemma maxchain_Zorn:
nipkow@26272
   216
  "[| c \<in> maxchain S; u \<in> S; Union(c) \<subseteq> u |] ==> Union(c) = u"
nipkow@26272
   217
apply (rule ccontr)
nipkow@26272
   218
apply (simp add: maxchain_def)
nipkow@26272
   219
apply (erule conjE)
nipkow@26272
   220
apply (subgoal_tac "({u} Un c) \<in> super S c")
nipkow@26272
   221
 apply simp
berghofe@26806
   222
apply (unfold super_def less_le)
nipkow@26272
   223
apply (blast intro: chain_extend dest: chain_Union_upper)
nipkow@26272
   224
done
paulson@13551
   225
paulson@13551
   226
theorem Zorn_Lemma:
nipkow@26272
   227
  "\<forall>c \<in> chain S. Union(c): S ==> \<exists>y \<in> S. \<forall>z \<in> S. y \<subseteq> z --> y = z"
nipkow@26272
   228
apply (cut_tac Hausdorff maxchain_subset_chain)
nipkow@26272
   229
apply (erule exE)
nipkow@26272
   230
apply (drule subsetD, assumption)
nipkow@26272
   231
apply (drule bspec, assumption)
nipkow@26272
   232
apply (rule_tac x = "Union(c)" in bexI)
nipkow@26272
   233
 apply (rule ballI, rule impI)
nipkow@26272
   234
 apply (blast dest!: maxchain_Zorn, assumption)
nipkow@26272
   235
done
paulson@13551
   236
paulson@13551
   237
subsection{*Alternative version of Zorn's Lemma*}
paulson@13551
   238
paulson@13551
   239
lemma Zorn_Lemma2:
wenzelm@17200
   240
  "\<forall>c \<in> chain S. \<exists>y \<in> S. \<forall>x \<in> c. x \<subseteq> y
wenzelm@17200
   241
    ==> \<exists>y \<in> S. \<forall>x \<in> S. (y :: 'a set) \<subseteq> x --> y = x"
nipkow@26272
   242
apply (cut_tac Hausdorff maxchain_subset_chain)
nipkow@26272
   243
apply (erule exE)
nipkow@26272
   244
apply (drule subsetD, assumption)
nipkow@26272
   245
apply (drule bspec, assumption, erule bexE)
nipkow@26272
   246
apply (rule_tac x = y in bexI)
nipkow@26272
   247
 prefer 2 apply assumption
nipkow@26272
   248
apply clarify
nipkow@26272
   249
apply (rule ccontr)
nipkow@26272
   250
apply (frule_tac z = x in chain_extend)
nipkow@26272
   251
  apply (assumption, blast)
berghofe@26806
   252
apply (unfold maxchain_def super_def less_le)
nipkow@26272
   253
apply (blast elim!: equalityCE)
nipkow@26272
   254
done
paulson@13551
   255
paulson@13551
   256
text{*Various other lemmas*}
paulson@13551
   257
paulson@13551
   258
lemma chainD: "[| c \<in> chain S; x \<in> c; y \<in> c |] ==> x \<subseteq> y | y \<subseteq> x"
nipkow@26272
   259
by (unfold chain_def chain_subset_def) blast
paulson@13551
   260
paulson@13551
   261
lemma chainD2: "!!(c :: 'a set set). c \<in> chain S ==> c \<subseteq> S"
nipkow@26272
   262
by (unfold chain_def) blast
nipkow@26191
   263
nipkow@26191
   264
nipkow@26191
   265
(* Define globally? In Relation.thy? *)
nipkow@26191
   266
definition Chain :: "('a*'a)set \<Rightarrow> 'a set set" where
nipkow@26191
   267
"Chain r \<equiv> {A. \<forall>a\<in>A.\<forall>b\<in>A. (a,b) : r \<or> (b,a) \<in> r}"
nipkow@26191
   268
nipkow@26191
   269
lemma mono_Chain: "r \<subseteq> s \<Longrightarrow> Chain r \<subseteq> Chain s"
nipkow@26191
   270
unfolding Chain_def by blast
nipkow@26191
   271
nipkow@26191
   272
text{* Zorn's lemma for partial orders: *}
nipkow@26191
   273
nipkow@26191
   274
lemma Zorns_po_lemma:
nipkow@26191
   275
assumes po: "Partial_order r" and u: "\<forall>C\<in>Chain r. \<exists>u\<in>Field r. \<forall>a\<in>C. (a,u):r"
nipkow@26191
   276
shows "\<exists>m\<in>Field r. \<forall>a\<in>Field r. (m,a):r \<longrightarrow> a=m"
nipkow@26191
   277
proof-
nipkow@26295
   278
  have "Preorder r" using po by(simp add:partial_order_on_def)
nipkow@26191
   279
--{* Mirror r in the set of subsets below (wrt r) elements of A*}
nipkow@26191
   280
  let ?B = "%x. r^-1 `` {x}" let ?S = "?B ` Field r"
nipkow@26191
   281
  have "\<forall>C \<in> chain ?S. EX U:?S. ALL A:C. A\<subseteq>U"
nipkow@26272
   282
  proof (auto simp:chain_def chain_subset_def)
nipkow@26191
   283
    fix C assume 1: "C \<subseteq> ?S" and 2: "\<forall>A\<in>C.\<forall>B\<in>C. A\<subseteq>B | B\<subseteq>A"
nipkow@26191
   284
    let ?A = "{x\<in>Field r. \<exists>M\<in>C. M = ?B x}"
nipkow@26191
   285
    have "C = ?B ` ?A" using 1 by(auto simp: image_def)
nipkow@26191
   286
    have "?A\<in>Chain r"
nipkow@26191
   287
    proof (simp add:Chain_def, intro allI impI, elim conjE)
nipkow@26191
   288
      fix a b
nipkow@26191
   289
      assume "a \<in> Field r" "?B a \<in> C" "b \<in> Field r" "?B b \<in> C"
nipkow@26191
   290
      hence "?B a \<subseteq> ?B b \<or> ?B b \<subseteq> ?B a" using 2 by auto
nipkow@26191
   291
      thus "(a, b) \<in> r \<or> (b, a) \<in> r" using `Preorder r` `a:Field r` `b:Field r`
nipkow@26191
   292
	by(simp add:subset_Image1_Image1_iff)
nipkow@26191
   293
    qed
nipkow@26191
   294
    then obtain u where uA: "u:Field r" "\<forall>a\<in>?A. (a,u) : r" using u by auto
nipkow@26191
   295
    have "\<forall>A\<in>C. A \<subseteq> r^-1 `` {u}" (is "?P u")
nipkow@26191
   296
    proof auto
nipkow@26191
   297
      fix a B assume aB: "B:C" "a:B"
nipkow@26191
   298
      with 1 obtain x where "x:Field r" "B = r^-1 `` {x}" by auto
nipkow@26191
   299
      thus "(a,u) : r" using uA aB `Preorder r`
nipkow@30198
   300
	by (auto simp add: preorder_on_def refl_on_def) (metis transD)
nipkow@26191
   301
    qed
nipkow@26191
   302
    thus "EX u:Field r. ?P u" using `u:Field r` by blast
nipkow@26191
   303
  qed
nipkow@26191
   304
  from Zorn_Lemma2[OF this]
nipkow@26191
   305
  obtain m B where "m:Field r" "B = r^-1 `` {m}"
nipkow@26191
   306
    "\<forall>x\<in>Field r. B \<subseteq> r^-1 `` {x} \<longrightarrow> B = r^-1 `` {x}"
ballarin@27064
   307
    by auto
nipkow@26191
   308
  hence "\<forall>a\<in>Field r. (m, a) \<in> r \<longrightarrow> a = m" using po `Preorder r` `m:Field r`
nipkow@26191
   309
    by(auto simp:subset_Image1_Image1_iff Partial_order_eq_Image1_Image1_iff)
nipkow@26191
   310
  thus ?thesis using `m:Field r` by blast
nipkow@26191
   311
qed
nipkow@26191
   312
nipkow@26191
   313
(* The initial segment of a relation appears generally useful.
nipkow@26191
   314
   Move to Relation.thy?
nipkow@26191
   315
   Definition correct/most general?
nipkow@26191
   316
   Naming?
nipkow@26191
   317
*)
nipkow@26191
   318
definition init_seg_of :: "(('a*'a)set * ('a*'a)set)set" where
nipkow@26191
   319
"init_seg_of == {(r,s). r \<subseteq> s \<and> (\<forall>a b c. (a,b):s \<and> (b,c):r \<longrightarrow> (a,b):r)}"
nipkow@26191
   320
nipkow@26191
   321
abbreviation initialSegmentOf :: "('a*'a)set \<Rightarrow> ('a*'a)set \<Rightarrow> bool"
nipkow@26191
   322
             (infix "initial'_segment'_of" 55) where
nipkow@26191
   323
"r initial_segment_of s == (r,s):init_seg_of"
nipkow@26191
   324
nipkow@30198
   325
lemma refl_on_init_seg_of[simp]: "r initial_segment_of r"
nipkow@26191
   326
by(simp add:init_seg_of_def)
nipkow@26191
   327
nipkow@26191
   328
lemma trans_init_seg_of:
nipkow@26191
   329
  "r initial_segment_of s \<Longrightarrow> s initial_segment_of t \<Longrightarrow> r initial_segment_of t"
nipkow@26191
   330
by(simp (no_asm_use) add: init_seg_of_def)
nipkow@26191
   331
  (metis Domain_iff UnCI Un_absorb2 subset_trans)
nipkow@26191
   332
nipkow@26191
   333
lemma antisym_init_seg_of:
nipkow@26191
   334
  "r initial_segment_of s \<Longrightarrow> s initial_segment_of r \<Longrightarrow> r=s"
nipkow@26191
   335
by(auto simp:init_seg_of_def)
nipkow@26191
   336
nipkow@26191
   337
lemma Chain_init_seg_of_Union:
nipkow@26191
   338
  "R \<in> Chain init_seg_of \<Longrightarrow> r\<in>R \<Longrightarrow> r initial_segment_of \<Union>R"
nipkow@26191
   339
by(auto simp add:init_seg_of_def Chain_def Ball_def) blast
nipkow@26191
   340
nipkow@26272
   341
lemma chain_subset_trans_Union:
nipkow@26272
   342
  "chain\<^bsub>\<subseteq>\<^esub> R \<Longrightarrow> \<forall>r\<in>R. trans r \<Longrightarrow> trans(\<Union>R)"
nipkow@26272
   343
apply(auto simp add:chain_subset_def)
nipkow@26191
   344
apply(simp (no_asm_use) add:trans_def)
nipkow@26191
   345
apply (metis subsetD)
nipkow@26191
   346
done
nipkow@26191
   347
nipkow@26272
   348
lemma chain_subset_antisym_Union:
nipkow@26272
   349
  "chain\<^bsub>\<subseteq>\<^esub> R \<Longrightarrow> \<forall>r\<in>R. antisym r \<Longrightarrow> antisym(\<Union>R)"
nipkow@26272
   350
apply(auto simp add:chain_subset_def antisym_def)
nipkow@26191
   351
apply (metis subsetD)
nipkow@26191
   352
done
nipkow@26191
   353
nipkow@26272
   354
lemma chain_subset_Total_Union:
nipkow@26272
   355
assumes "chain\<^bsub>\<subseteq>\<^esub> R" "\<forall>r\<in>R. Total r"
nipkow@26191
   356
shows "Total (\<Union>R)"
nipkow@26295
   357
proof (simp add: total_on_def Ball_def, auto del:disjCI)
nipkow@26191
   358
  fix r s a b assume A: "r:R" "s:R" "a:Field r" "b:Field s" "a\<noteq>b"
nipkow@26272
   359
  from `chain\<^bsub>\<subseteq>\<^esub> R` `r:R` `s:R` have "r\<subseteq>s \<or> s\<subseteq>r"
nipkow@26272
   360
    by(simp add:chain_subset_def)
nipkow@26191
   361
  thus "(\<exists>r\<in>R. (a,b) \<in> r) \<or> (\<exists>r\<in>R. (b,a) \<in> r)"
nipkow@26191
   362
  proof
nipkow@26191
   363
    assume "r\<subseteq>s" hence "(a,b):s \<or> (b,a):s" using assms(2) A
nipkow@26295
   364
      by(simp add:total_on_def)(metis mono_Field subsetD)
nipkow@26191
   365
    thus ?thesis using `s:R` by blast
nipkow@26191
   366
  next
nipkow@26191
   367
    assume "s\<subseteq>r" hence "(a,b):r \<or> (b,a):r" using assms(2) A
nipkow@26295
   368
      by(simp add:total_on_def)(metis mono_Field subsetD)
nipkow@26191
   369
    thus ?thesis using `r:R` by blast
nipkow@26191
   370
  qed
nipkow@26191
   371
qed
nipkow@26191
   372
nipkow@26191
   373
lemma wf_Union_wf_init_segs:
nipkow@26191
   374
assumes "R \<in> Chain init_seg_of" and "\<forall>r\<in>R. wf r" shows "wf(\<Union>R)"
nipkow@26191
   375
proof(simp add:wf_iff_no_infinite_down_chain, rule ccontr, auto)
nipkow@26191
   376
  fix f assume 1: "\<forall>i. \<exists>r\<in>R. (f(Suc i), f i) \<in> r"
nipkow@26191
   377
  then obtain r where "r:R" and "(f(Suc 0), f 0) : r" by auto
nipkow@26191
   378
  { fix i have "(f(Suc i), f i) \<in> r"
nipkow@26191
   379
    proof(induct i)
nipkow@26191
   380
      case 0 show ?case by fact
nipkow@26191
   381
    next
nipkow@26191
   382
      case (Suc i)
nipkow@26191
   383
      moreover obtain s where "s\<in>R" and "(f(Suc(Suc i)), f(Suc i)) \<in> s"
nipkow@26191
   384
	using 1 by auto
nipkow@26191
   385
      moreover hence "s initial_segment_of r \<or> r initial_segment_of s"
nipkow@26191
   386
	using assms(1) `r:R` by(simp add: Chain_def)
nipkow@26191
   387
      ultimately show ?case by(simp add:init_seg_of_def) blast
nipkow@26191
   388
    qed
nipkow@26191
   389
  }
nipkow@26191
   390
  thus False using assms(2) `r:R`
nipkow@26191
   391
    by(simp add:wf_iff_no_infinite_down_chain) blast
nipkow@26191
   392
qed
nipkow@26191
   393
huffman@27476
   394
lemma initial_segment_of_Diff:
huffman@27476
   395
  "p initial_segment_of q \<Longrightarrow> p - s initial_segment_of q - s"
huffman@27476
   396
unfolding init_seg_of_def by blast
huffman@27476
   397
nipkow@26191
   398
lemma Chain_inits_DiffI:
nipkow@26191
   399
  "R \<in> Chain init_seg_of \<Longrightarrow> {r - s |r. r \<in> R} \<in> Chain init_seg_of"
huffman@27476
   400
unfolding Chain_def by (blast intro: initial_segment_of_Diff)
nipkow@26191
   401
nipkow@26272
   402
theorem well_ordering: "\<exists>r::('a*'a)set. Well_order r \<and> Field r = UNIV"
nipkow@26191
   403
proof-
nipkow@26191
   404
-- {*The initial segment relation on well-orders: *}
nipkow@26191
   405
  let ?WO = "{r::('a*'a)set. Well_order r}"
nipkow@26191
   406
  def I \<equiv> "init_seg_of \<inter> ?WO \<times> ?WO"
nipkow@26191
   407
  have I_init: "I \<subseteq> init_seg_of" by(auto simp:I_def)
nipkow@26272
   408
  hence subch: "!!R. R : Chain I \<Longrightarrow> chain\<^bsub>\<subseteq>\<^esub> R"
nipkow@26272
   409
    by(auto simp:init_seg_of_def chain_subset_def Chain_def)
nipkow@26191
   410
  have Chain_wo: "!!R r. R \<in> Chain I \<Longrightarrow> r \<in> R \<Longrightarrow> Well_order r"
nipkow@26191
   411
    by(simp add:Chain_def I_def) blast
nipkow@26191
   412
  have FI: "Field I = ?WO" by(auto simp add:I_def init_seg_of_def Field_def)
nipkow@26191
   413
  hence 0: "Partial_order I"
nipkow@30198
   414
    by(auto simp: partial_order_on_def preorder_on_def antisym_def antisym_init_seg_of refl_on_def trans_def I_def elim!: trans_init_seg_of)
nipkow@26191
   415
-- {*I-chains have upper bounds in ?WO wrt I: their Union*}
nipkow@26191
   416
  { fix R assume "R \<in> Chain I"
nipkow@26191
   417
    hence Ris: "R \<in> Chain init_seg_of" using mono_Chain[OF I_init] by blast
nipkow@26272
   418
    have subch: "chain\<^bsub>\<subseteq>\<^esub> R" using `R : Chain I` I_init
nipkow@26272
   419
      by(auto simp:init_seg_of_def chain_subset_def Chain_def)
nipkow@26191
   420
    have "\<forall>r\<in>R. Refl r" "\<forall>r\<in>R. trans r" "\<forall>r\<in>R. antisym r" "\<forall>r\<in>R. Total r"
nipkow@26191
   421
         "\<forall>r\<in>R. wf(r-Id)"
nipkow@26295
   422
      using Chain_wo[OF `R \<in> Chain I`] by(simp_all add:order_on_defs)
nipkow@30198
   423
    have "Refl (\<Union>R)" using `\<forall>r\<in>R. Refl r` by(auto simp:refl_on_def)
nipkow@26191
   424
    moreover have "trans (\<Union>R)"
nipkow@26272
   425
      by(rule chain_subset_trans_Union[OF subch `\<forall>r\<in>R. trans r`])
nipkow@26191
   426
    moreover have "antisym(\<Union>R)"
nipkow@26272
   427
      by(rule chain_subset_antisym_Union[OF subch `\<forall>r\<in>R. antisym r`])
nipkow@26191
   428
    moreover have "Total (\<Union>R)"
nipkow@26272
   429
      by(rule chain_subset_Total_Union[OF subch `\<forall>r\<in>R. Total r`])
nipkow@26191
   430
    moreover have "wf((\<Union>R)-Id)"
nipkow@26191
   431
    proof-
nipkow@26191
   432
      have "(\<Union>R)-Id = \<Union>{r-Id|r. r \<in> R}" by blast
nipkow@26191
   433
      with `\<forall>r\<in>R. wf(r-Id)` wf_Union_wf_init_segs[OF Chain_inits_DiffI[OF Ris]]
nipkow@26191
   434
      show ?thesis by (simp (no_asm_simp)) blast
nipkow@26191
   435
    qed
nipkow@26295
   436
    ultimately have "Well_order (\<Union>R)" by(simp add:order_on_defs)
nipkow@26191
   437
    moreover have "\<forall>r \<in> R. r initial_segment_of \<Union>R" using Ris
nipkow@26191
   438
      by(simp add: Chain_init_seg_of_Union)
nipkow@26191
   439
    ultimately have "\<Union>R : ?WO \<and> (\<forall>r\<in>R. (r,\<Union>R) : I)"
nipkow@26191
   440
      using mono_Chain[OF I_init] `R \<in> Chain I`
nipkow@26191
   441
      by(simp (no_asm) add:I_def del:Field_Union)(metis Chain_wo subsetD)
nipkow@26191
   442
  }
nipkow@26191
   443
  hence 1: "\<forall>R \<in> Chain I. \<exists>u\<in>Field I. \<forall>r\<in>R. (r,u) : I" by (subst FI) blast
nipkow@26191
   444
--{*Zorn's Lemma yields a maximal well-order m:*}
nipkow@26191
   445
  then obtain m::"('a*'a)set" where "Well_order m" and
nipkow@26191
   446
    max: "\<forall>r. Well_order r \<and> (m,r):I \<longrightarrow> r=m"
nipkow@26191
   447
    using Zorns_po_lemma[OF 0 1] by (auto simp:FI)
nipkow@26191
   448
--{*Now show by contradiction that m covers the whole type:*}
nipkow@26191
   449
  { fix x::'a assume "x \<notin> Field m"
nipkow@26191
   450
--{*We assume that x is not covered and extend m at the top with x*}
nipkow@26191
   451
    have "m \<noteq> {}"
nipkow@26191
   452
    proof
nipkow@26191
   453
      assume "m={}"
nipkow@26191
   454
      moreover have "Well_order {(x,x)}"
nipkow@30198
   455
	by(simp add:order_on_defs refl_on_def trans_def antisym_def total_on_def Field_def Domain_def Range_def)
nipkow@26191
   456
      ultimately show False using max
nipkow@26191
   457
	by (auto simp:I_def init_seg_of_def simp del:Field_insert)
nipkow@26191
   458
    qed
nipkow@26191
   459
    hence "Field m \<noteq> {}" by(auto simp:Field_def)
nipkow@26295
   460
    moreover have "wf(m-Id)" using `Well_order m`
nipkow@26295
   461
      by(simp add:well_order_on_def)
nipkow@26191
   462
--{*The extension of m by x:*}
nipkow@26191
   463
    let ?s = "{(a,x)|a. a : Field m}" let ?m = "insert (x,x) m Un ?s"
nipkow@26191
   464
    have Fm: "Field ?m = insert x (Field m)"
nipkow@26191
   465
      apply(simp add:Field_insert Field_Un)
nipkow@26191
   466
      unfolding Field_def by auto
nipkow@26191
   467
    have "Refl m" "trans m" "antisym m" "Total m" "wf(m-Id)"
nipkow@26295
   468
      using `Well_order m` by(simp_all add:order_on_defs)
nipkow@26191
   469
--{*We show that the extension is a well-order*}
nipkow@30198
   470
    have "Refl ?m" using `Refl m` Fm by(auto simp:refl_on_def)
nipkow@26191
   471
    moreover have "trans ?m" using `trans m` `x \<notin> Field m`
nipkow@26191
   472
      unfolding trans_def Field_def Domain_def Range_def by blast
nipkow@26191
   473
    moreover have "antisym ?m" using `antisym m` `x \<notin> Field m`
nipkow@26191
   474
      unfolding antisym_def Field_def Domain_def Range_def by blast
nipkow@26295
   475
    moreover have "Total ?m" using `Total m` Fm by(auto simp: total_on_def)
nipkow@26191
   476
    moreover have "wf(?m-Id)"
nipkow@26191
   477
    proof-
nipkow@26191
   478
      have "wf ?s" using `x \<notin> Field m`
nipkow@26191
   479
	by(auto simp add:wf_eq_minimal Field_def Domain_def Range_def) metis
nipkow@26191
   480
      thus ?thesis using `wf(m-Id)` `x \<notin> Field m`
nipkow@26191
   481
	wf_subset[OF `wf ?s` Diff_subset]
nipkow@26191
   482
	by (fastsimp intro!: wf_Un simp add: Un_Diff Field_def)
nipkow@26191
   483
    qed
nipkow@26295
   484
    ultimately have "Well_order ?m" by(simp add:order_on_defs)
nipkow@26191
   485
--{*We show that the extension is above m*}
nipkow@26191
   486
    moreover hence "(m,?m) : I" using `Well_order m` `x \<notin> Field m`
nipkow@26191
   487
      by(fastsimp simp:I_def init_seg_of_def Field_def Domain_def Range_def)
nipkow@26191
   488
    ultimately
nipkow@26191
   489
--{*This contradicts maximality of m:*}
nipkow@26191
   490
    have False using max `x \<notin> Field m` unfolding Field_def by blast
nipkow@26191
   491
  }
nipkow@26191
   492
  hence "Field m = UNIV" by auto
nipkow@26272
   493
  moreover with `Well_order m` have "Well_order m" by simp
nipkow@26272
   494
  ultimately show ?thesis by blast
nipkow@26272
   495
qed
nipkow@26272
   496
nipkow@26295
   497
corollary well_order_on: "\<exists>r::('a*'a)set. well_order_on A r"
nipkow@26272
   498
proof -
nipkow@26272
   499
  obtain r::"('a*'a)set" where wo: "Well_order r" and univ: "Field r = UNIV"
nipkow@26272
   500
    using well_ordering[where 'a = "'a"] by blast
nipkow@26272
   501
  let ?r = "{(x,y). x:A & y:A & (x,y):r}"
nipkow@26272
   502
  have 1: "Field ?r = A" using wo univ
nipkow@30198
   503
    by(fastsimp simp: Field_def Domain_def Range_def order_on_defs refl_on_def)
nipkow@26272
   504
  have "Refl r" "trans r" "antisym r" "Total r" "wf(r-Id)"
nipkow@26295
   505
    using `Well_order r` by(simp_all add:order_on_defs)
nipkow@30198
   506
  have "Refl ?r" using `Refl r` by(auto simp:refl_on_def 1 univ)
nipkow@26272
   507
  moreover have "trans ?r" using `trans r`
nipkow@26272
   508
    unfolding trans_def by blast
nipkow@26272
   509
  moreover have "antisym ?r" using `antisym r`
nipkow@26272
   510
    unfolding antisym_def by blast
nipkow@26295
   511
  moreover have "Total ?r" using `Total r` by(simp add:total_on_def 1 univ)
nipkow@26272
   512
  moreover have "wf(?r - Id)" by(rule wf_subset[OF `wf(r-Id)`]) blast
nipkow@26295
   513
  ultimately have "Well_order ?r" by(simp add:order_on_defs)
nipkow@26295
   514
  with 1 show ?thesis by metis
nipkow@26191
   515
qed
nipkow@26191
   516
paulson@13551
   517
end