src/HOL/Multivariate_Analysis/Complex_Analysis_Basics.thy
author wenzelm
Wed Dec 30 11:21:54 2015 +0100 (2015-12-30)
changeset 61973 0c7e865fa7cb
parent 61969 e01015e49041
child 61975 b4b11391c676
permissions -rw-r--r--
more symbols;
lp15@56215
     1
(*  Author: John Harrison, Marco Maggesi, Graziano Gentili, Gianni Ciolli, Valentina Bruno
lp15@56215
     2
    Ported from "hol_light/Multivariate/canal.ml" by L C Paulson (2014)
lp15@56215
     3
*)
lp15@56215
     4
wenzelm@60420
     5
section \<open>Complex Analysis Basics\<close>
lp15@56215
     6
lp15@56215
     7
theory Complex_Analysis_Basics
wenzelm@61560
     8
imports Cartesian_Euclidean_Space
lp15@56215
     9
begin
lp15@56215
    10
lp15@59730
    11
lp15@59730
    12
lemma cmod_fact [simp]: "cmod (fact n) = fact n"
lp15@59730
    13
  by (metis norm_of_nat of_nat_fact)
lp15@59730
    14
wenzelm@60420
    15
subsection\<open>General lemmas\<close>
hoelzl@56370
    16
hoelzl@56370
    17
lemma has_derivative_mult_right:
hoelzl@56370
    18
  fixes c:: "'a :: real_normed_algebra"
hoelzl@56370
    19
  shows "((op * c) has_derivative (op * c)) F"
hoelzl@56370
    20
by (rule has_derivative_mult_right [OF has_derivative_id])
hoelzl@56370
    21
lp15@61609
    22
lemma has_derivative_of_real[derivative_intros, simp]:
hoelzl@56370
    23
  "(f has_derivative f') F \<Longrightarrow> ((\<lambda>x. of_real (f x)) has_derivative (\<lambda>x. of_real (f' x))) F"
hoelzl@56370
    24
  using bounded_linear.has_derivative[OF bounded_linear_of_real] .
hoelzl@56370
    25
hoelzl@56370
    26
lemma has_vector_derivative_real_complex:
lp15@61806
    27
  "DERIV f (of_real a) :> f' \<Longrightarrow> ((\<lambda>x. f (of_real x)) has_vector_derivative f') (at a within s)"
lp15@61806
    28
  using has_derivative_compose[of of_real of_real a _ f "op * f'"]
hoelzl@56370
    29
  by (simp add: scaleR_conv_of_real ac_simps has_vector_derivative_def has_field_derivative_def)
lp15@56215
    30
lp15@56238
    31
lemma fact_cancel:
lp15@56238
    32
  fixes c :: "'a::real_field"
lp15@59730
    33
  shows "of_nat (Suc n) * c / (fact (Suc n)) = c / (fact n)"
hoelzl@56369
    34
  by (simp add: of_nat_mult del: of_nat_Suc times_nat.simps)
hoelzl@56889
    35
lp15@56215
    36
lemma bilinear_times:
hoelzl@56369
    37
  fixes c::"'a::real_algebra" shows "bilinear (\<lambda>x y::'a. x*y)"
hoelzl@56369
    38
  by (auto simp: bilinear_def distrib_left distrib_right intro!: linearI)
lp15@56215
    39
lp15@56215
    40
lemma linear_cnj: "linear cnj"
hoelzl@56369
    41
  using bounded_linear.linear[OF bounded_linear_cnj] .
lp15@56215
    42
lp15@56215
    43
lemma tendsto_Re_upper:
lp15@61609
    44
  assumes "~ (trivial_limit F)"
wenzelm@61973
    45
          "(f \<longlongrightarrow> l) F"
lp15@56215
    46
          "eventually (\<lambda>x. Re(f x) \<le> b) F"
lp15@56215
    47
    shows  "Re(l) \<le> b"
lp15@56215
    48
  by (metis assms tendsto_le [OF _ tendsto_const]  tendsto_Re)
lp15@56215
    49
lp15@56215
    50
lemma tendsto_Re_lower:
lp15@61609
    51
  assumes "~ (trivial_limit F)"
wenzelm@61973
    52
          "(f \<longlongrightarrow> l) F"
lp15@56215
    53
          "eventually (\<lambda>x. b \<le> Re(f x)) F"
lp15@56215
    54
    shows  "b \<le> Re(l)"
lp15@56215
    55
  by (metis assms tendsto_le [OF _ _ tendsto_const]  tendsto_Re)
lp15@56215
    56
lp15@56215
    57
lemma tendsto_Im_upper:
lp15@61609
    58
  assumes "~ (trivial_limit F)"
wenzelm@61973
    59
          "(f \<longlongrightarrow> l) F"
lp15@56215
    60
          "eventually (\<lambda>x. Im(f x) \<le> b) F"
lp15@56215
    61
    shows  "Im(l) \<le> b"
lp15@56215
    62
  by (metis assms tendsto_le [OF _ tendsto_const]  tendsto_Im)
lp15@56215
    63
lp15@56215
    64
lemma tendsto_Im_lower:
lp15@61609
    65
  assumes "~ (trivial_limit F)"
wenzelm@61973
    66
          "(f \<longlongrightarrow> l) F"
lp15@56215
    67
          "eventually (\<lambda>x. b \<le> Im(f x)) F"
lp15@56215
    68
    shows  "b \<le> Im(l)"
lp15@56215
    69
  by (metis assms tendsto_le [OF _ _ tendsto_const]  tendsto_Im)
lp15@56215
    70
hoelzl@56370
    71
lemma lambda_zero: "(\<lambda>h::'a::mult_zero. 0) = op * 0"
hoelzl@56370
    72
  by auto
hoelzl@56370
    73
hoelzl@56370
    74
lemma lambda_one: "(\<lambda>x::'a::monoid_mult. x) = op * 1"
hoelzl@56370
    75
  by auto
hoelzl@56370
    76
lp15@56215
    77
lemma continuous_mult_left:
lp15@61609
    78
  fixes c::"'a::real_normed_algebra"
lp15@56215
    79
  shows "continuous F f \<Longrightarrow> continuous F (\<lambda>x. c * f x)"
lp15@56215
    80
by (rule continuous_mult [OF continuous_const])
lp15@56215
    81
lp15@56215
    82
lemma continuous_mult_right:
lp15@61609
    83
  fixes c::"'a::real_normed_algebra"
lp15@56215
    84
  shows "continuous F f \<Longrightarrow> continuous F (\<lambda>x. f x * c)"
lp15@56215
    85
by (rule continuous_mult [OF _ continuous_const])
lp15@56215
    86
lp15@56215
    87
lemma continuous_on_mult_left:
lp15@61609
    88
  fixes c::"'a::real_normed_algebra"
lp15@56215
    89
  shows "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. c * f x)"
lp15@56215
    90
by (rule continuous_on_mult [OF continuous_on_const])
lp15@56215
    91
lp15@56215
    92
lemma continuous_on_mult_right:
lp15@61609
    93
  fixes c::"'a::real_normed_algebra"
lp15@56215
    94
  shows "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. f x * c)"
lp15@56215
    95
by (rule continuous_on_mult [OF _ continuous_on_const])
lp15@56215
    96
hoelzl@56371
    97
lemma uniformly_continuous_on_cmul_right [continuous_intros]:
lp15@56215
    98
  fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_algebra"
hoelzl@56332
    99
  shows "uniformly_continuous_on s f \<Longrightarrow> uniformly_continuous_on s (\<lambda>x. f x * c)"
lp15@61609
   100
  using bounded_linear.uniformly_continuous_on[OF bounded_linear_mult_left] .
lp15@56215
   101
hoelzl@56371
   102
lemma uniformly_continuous_on_cmul_left[continuous_intros]:
lp15@56215
   103
  fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_algebra"
lp15@56215
   104
  assumes "uniformly_continuous_on s f"
lp15@56215
   105
    shows "uniformly_continuous_on s (\<lambda>x. c * f x)"
lp15@56215
   106
by (metis assms bounded_linear.uniformly_continuous_on bounded_linear_mult_right)
lp15@56215
   107
lp15@56215
   108
lemma continuous_within_norm_id [continuous_intros]: "continuous (at x within S) norm"
lp15@56215
   109
  by (rule continuous_norm [OF continuous_ident])
lp15@56215
   110
lp15@56215
   111
lemma continuous_on_norm_id [continuous_intros]: "continuous_on S norm"
hoelzl@56369
   112
  by (intro continuous_on_id continuous_on_norm)
lp15@56215
   113
wenzelm@60420
   114
subsection\<open>DERIV stuff\<close>
lp15@56215
   115
lp15@56215
   116
lemma DERIV_zero_connected_constant:
lp15@56215
   117
  fixes f :: "'a::{real_normed_field,euclidean_space} \<Rightarrow> 'a"
lp15@56215
   118
  assumes "connected s"
lp15@56215
   119
      and "open s"
lp15@56215
   120
      and "finite k"
lp15@56215
   121
      and "continuous_on s f"
lp15@56215
   122
      and "\<forall>x\<in>(s - k). DERIV f x :> 0"
lp15@56215
   123
    obtains c where "\<And>x. x \<in> s \<Longrightarrow> f(x) = c"
lp15@56215
   124
using has_derivative_zero_connected_constant [OF assms(1-4)] assms
hoelzl@56369
   125
by (metis DERIV_const has_derivative_const Diff_iff at_within_open frechet_derivative_at has_field_derivative_def)
lp15@56215
   126
lp15@56215
   127
lemma DERIV_zero_constant:
hoelzl@56370
   128
  fixes f :: "'a::{real_normed_field, real_inner} \<Rightarrow> 'a"
lp15@56215
   129
  shows    "\<lbrakk>convex s;
lp15@61609
   130
             \<And>x. x\<in>s \<Longrightarrow> (f has_field_derivative 0) (at x within s)\<rbrakk>
lp15@56215
   131
             \<Longrightarrow> \<exists>c. \<forall>x \<in> s. f(x) = c"
hoelzl@56370
   132
  by (auto simp: has_field_derivative_def lambda_zero intro: has_derivative_zero_constant)
lp15@56215
   133
lp15@56215
   134
lemma DERIV_zero_unique:
hoelzl@56370
   135
  fixes f :: "'a::{real_normed_field, real_inner} \<Rightarrow> 'a"
lp15@56215
   136
  assumes "convex s"
lp15@56215
   137
      and d0: "\<And>x. x\<in>s \<Longrightarrow> (f has_field_derivative 0) (at x within s)"
lp15@56215
   138
      and "a \<in> s"
lp15@56215
   139
      and "x \<in> s"
lp15@56215
   140
    shows "f x = f a"
hoelzl@56370
   141
  by (rule has_derivative_zero_unique [OF assms(1) _ assms(4,3)])
hoelzl@56332
   142
     (metis d0 has_field_derivative_imp_has_derivative lambda_zero)
lp15@56215
   143
lp15@56215
   144
lemma DERIV_zero_connected_unique:
hoelzl@56370
   145
  fixes f :: "'a::{real_normed_field, real_inner} \<Rightarrow> 'a"
lp15@56215
   146
  assumes "connected s"
lp15@56215
   147
      and "open s"
lp15@56215
   148
      and d0: "\<And>x. x\<in>s \<Longrightarrow> DERIV f x :> 0"
lp15@56215
   149
      and "a \<in> s"
lp15@56215
   150
      and "x \<in> s"
lp15@61609
   151
    shows "f x = f a"
hoelzl@56370
   152
    by (rule has_derivative_zero_unique_connected [OF assms(2,1) _ assms(5,4)])
hoelzl@56370
   153
       (metis has_field_derivative_def lambda_zero d0)
lp15@56215
   154
lp15@56215
   155
lemma DERIV_transform_within:
lp15@56215
   156
  assumes "(f has_field_derivative f') (at a within s)"
lp15@56215
   157
      and "0 < d" "a \<in> s"
lp15@56215
   158
      and "\<And>x. x\<in>s \<Longrightarrow> dist x a < d \<Longrightarrow> f x = g x"
lp15@56215
   159
    shows "(g has_field_derivative f') (at a within s)"
lp15@56215
   160
  using assms unfolding has_field_derivative_def
hoelzl@56332
   161
  by (blast intro: has_derivative_transform_within)
lp15@56215
   162
lp15@56215
   163
lemma DERIV_transform_within_open:
lp15@56215
   164
  assumes "DERIV f a :> f'"
lp15@56215
   165
      and "open s" "a \<in> s"
lp15@56215
   166
      and "\<And>x. x\<in>s \<Longrightarrow> f x = g x"
lp15@56215
   167
    shows "DERIV g a :> f'"
lp15@56215
   168
  using assms unfolding has_field_derivative_def
lp15@56215
   169
by (metis has_derivative_transform_within_open)
lp15@56215
   170
lp15@56215
   171
lemma DERIV_transform_at:
lp15@56215
   172
  assumes "DERIV f a :> f'"
lp15@56215
   173
      and "0 < d"
lp15@56215
   174
      and "\<And>x. dist x a < d \<Longrightarrow> f x = g x"
lp15@56215
   175
    shows "DERIV g a :> f'"
lp15@56215
   176
  by (blast intro: assms DERIV_transform_within)
lp15@56215
   177
lp15@59615
   178
(*generalising DERIV_isconst_all, which requires type real (using the ordering)*)
lp15@59615
   179
lemma DERIV_zero_UNIV_unique:
lp15@59615
   180
  fixes f :: "'a::{real_normed_field, real_inner} \<Rightarrow> 'a"
lp15@61609
   181
  shows "(\<And>x. DERIV f x :> 0) \<Longrightarrow> f x = f a"
lp15@59615
   182
by (metis DERIV_zero_unique UNIV_I assms convex_UNIV)
lp15@59615
   183
wenzelm@60420
   184
subsection \<open>Some limit theorems about real part of real series etc.\<close>
hoelzl@56370
   185
hoelzl@56370
   186
(*MOVE? But not to Finite_Cartesian_Product*)
hoelzl@56370
   187
lemma sums_vec_nth :
hoelzl@56370
   188
  assumes "f sums a"
hoelzl@56370
   189
  shows "(\<lambda>x. f x $ i) sums a $ i"
hoelzl@56370
   190
using assms unfolding sums_def
hoelzl@56370
   191
by (auto dest: tendsto_vec_nth [where i=i])
hoelzl@56370
   192
hoelzl@56370
   193
lemma summable_vec_nth :
hoelzl@56370
   194
  assumes "summable f"
hoelzl@56370
   195
  shows "summable (\<lambda>x. f x $ i)"
hoelzl@56370
   196
using assms unfolding summable_def
hoelzl@56370
   197
by (blast intro: sums_vec_nth)
hoelzl@56370
   198
wenzelm@60420
   199
subsection \<open>Complex number lemmas\<close>
hoelzl@56370
   200
hoelzl@56370
   201
lemma
hoelzl@56370
   202
  shows open_halfspace_Re_lt: "open {z. Re(z) < b}"
hoelzl@56370
   203
    and open_halfspace_Re_gt: "open {z. Re(z) > b}"
hoelzl@56370
   204
    and closed_halfspace_Re_ge: "closed {z. Re(z) \<ge> b}"
hoelzl@56370
   205
    and closed_halfspace_Re_le: "closed {z. Re(z) \<le> b}"
hoelzl@56370
   206
    and closed_halfspace_Re_eq: "closed {z. Re(z) = b}"
hoelzl@56370
   207
    and open_halfspace_Im_lt: "open {z. Im(z) < b}"
hoelzl@56370
   208
    and open_halfspace_Im_gt: "open {z. Im(z) > b}"
hoelzl@56370
   209
    and closed_halfspace_Im_ge: "closed {z. Im(z) \<ge> b}"
hoelzl@56370
   210
    and closed_halfspace_Im_le: "closed {z. Im(z) \<le> b}"
hoelzl@56370
   211
    and closed_halfspace_Im_eq: "closed {z. Im(z) = b}"
hoelzl@56370
   212
  by (intro open_Collect_less closed_Collect_le closed_Collect_eq isCont_Re
lp15@60150
   213
            isCont_Im continuous_ident continuous_const)+
hoelzl@56370
   214
wenzelm@61070
   215
lemma closed_complex_Reals: "closed (\<real> :: complex set)"
hoelzl@56370
   216
proof -
wenzelm@61070
   217
  have "(\<real> :: complex set) = {z. Im z = 0}"
hoelzl@56370
   218
    by (auto simp: complex_is_Real_iff)
hoelzl@56370
   219
  then show ?thesis
hoelzl@56370
   220
    by (metis closed_halfspace_Im_eq)
hoelzl@56370
   221
qed
hoelzl@56370
   222
lp15@60017
   223
lemma closed_Real_halfspace_Re_le: "closed (\<real> \<inter> {w. Re w \<le> x})"
lp15@60017
   224
  by (simp add: closed_Int closed_complex_Reals closed_halfspace_Re_le)
lp15@60017
   225
lp15@60017
   226
lemma closed_Real_halfspace_Re_ge: "closed (\<real> \<inter> {w. x \<le> Re(w)})"
lp15@60017
   227
  using closed_halfspace_Re_ge
lp15@60017
   228
  by (simp add: closed_Int closed_complex_Reals)
lp15@60017
   229
lp15@60017
   230
lemma closed_real_abs_le: "closed {w \<in> \<real>. \<bar>Re w\<bar> \<le> r}"
lp15@60017
   231
proof -
lp15@60017
   232
  have "{w \<in> \<real>. \<bar>Re w\<bar> \<le> r} = (\<real> \<inter> {w. Re w \<le> r}) \<inter> (\<real> \<inter> {w. Re w \<ge> -r})"
lp15@60017
   233
    by auto
lp15@60017
   234
  then show "closed {w \<in> \<real>. \<bar>Re w\<bar> \<le> r}"
lp15@60017
   235
    by (simp add: closed_Int closed_Real_halfspace_Re_ge closed_Real_halfspace_Re_le)
lp15@60017
   236
qed
lp15@60017
   237
hoelzl@56370
   238
lemma real_lim:
hoelzl@56370
   239
  fixes l::complex
wenzelm@61973
   240
  assumes "(f \<longlongrightarrow> l) F" and "~(trivial_limit F)" and "eventually P F" and "\<And>a. P a \<Longrightarrow> f a \<in> \<real>"
hoelzl@56370
   241
  shows  "l \<in> \<real>"
hoelzl@56370
   242
proof (rule Lim_in_closed_set[OF closed_complex_Reals _ assms(2,1)])
hoelzl@56370
   243
  show "eventually (\<lambda>x. f x \<in> \<real>) F"
hoelzl@56370
   244
    using assms(3, 4) by (auto intro: eventually_mono)
hoelzl@56370
   245
qed
hoelzl@56370
   246
hoelzl@56370
   247
lemma real_lim_sequentially:
hoelzl@56370
   248
  fixes l::complex
wenzelm@61973
   249
  shows "(f \<longlongrightarrow> l) sequentially \<Longrightarrow> (\<exists>N. \<forall>n\<ge>N. f n \<in> \<real>) \<Longrightarrow> l \<in> \<real>"
hoelzl@56370
   250
by (rule real_lim [where F=sequentially]) (auto simp: eventually_sequentially)
hoelzl@56370
   251
lp15@61609
   252
lemma real_series:
hoelzl@56370
   253
  fixes l::complex
hoelzl@56370
   254
  shows "f sums l \<Longrightarrow> (\<And>n. f n \<in> \<real>) \<Longrightarrow> l \<in> \<real>"
hoelzl@56370
   255
unfolding sums_def
hoelzl@56370
   256
by (metis real_lim_sequentially setsum_in_Reals)
hoelzl@56370
   257
hoelzl@56370
   258
lemma Lim_null_comparison_Re:
wenzelm@61973
   259
  assumes "eventually (\<lambda>x. norm(f x) \<le> Re(g x)) F" "(g \<longlongrightarrow> 0) F" shows "(f \<longlongrightarrow> 0) F"
hoelzl@56889
   260
  by (rule Lim_null_comparison[OF assms(1)] tendsto_eq_intros assms(2))+ simp
lp15@56215
   261
wenzelm@60420
   262
subsection\<open>Holomorphic functions\<close>
lp15@56215
   263
lp15@61848
   264
text{*Could be generalized to real normed fields, but in practice that would only include the reals*}
lp15@56215
   265
definition complex_differentiable :: "[complex \<Rightarrow> complex, complex filter] \<Rightarrow> bool"
lp15@61609
   266
           (infixr "(complex'_differentiable)" 50)
lp15@56215
   267
  where "f complex_differentiable F \<equiv> \<exists>f'. (f has_field_derivative f') F"
lp15@56215
   268
hoelzl@56370
   269
lemma complex_differentiable_imp_continuous_at:
hoelzl@56370
   270
    "f complex_differentiable (at x within s) \<Longrightarrow> continuous (at x within s) f"
lp15@56215
   271
  by (metis DERIV_continuous complex_differentiable_def)
lp15@56215
   272
lp15@56215
   273
lemma complex_differentiable_within_subset:
lp15@56215
   274
    "\<lbrakk>f complex_differentiable (at x within s); t \<subseteq> s\<rbrakk>
lp15@56215
   275
     \<Longrightarrow> f complex_differentiable (at x within t)"
hoelzl@56370
   276
  by (metis DERIV_subset complex_differentiable_def)
lp15@56215
   277
lp15@56215
   278
lemma complex_differentiable_at_within:
lp15@56215
   279
    "\<lbrakk>f complex_differentiable (at x)\<rbrakk>
lp15@56215
   280
     \<Longrightarrow> f complex_differentiable (at x within s)"
lp15@56215
   281
  unfolding complex_differentiable_def
lp15@56215
   282
  by (metis DERIV_subset top_greatest)
lp15@56215
   283
lp15@61520
   284
lemma complex_differentiable_linear [derivative_intros]: "(op * c) complex_differentiable F"
lp15@56215
   285
proof -
hoelzl@56370
   286
  show ?thesis
hoelzl@56370
   287
    unfolding complex_differentiable_def has_field_derivative_def mult_commute_abs
lp15@56215
   288
    by (force intro: has_derivative_mult_right)
lp15@56215
   289
qed
lp15@56215
   290
lp15@61520
   291
lemma complex_differentiable_const [derivative_intros]: "(\<lambda>z. c) complex_differentiable F"
lp15@56215
   292
  unfolding complex_differentiable_def has_field_derivative_def
hoelzl@56369
   293
  by (rule exI [where x=0])
lp15@61609
   294
     (metis has_derivative_const lambda_zero)
lp15@56215
   295
lp15@61520
   296
lemma complex_differentiable_ident [derivative_intros]: "(\<lambda>z. z) complex_differentiable F"
lp15@56215
   297
  unfolding complex_differentiable_def has_field_derivative_def
hoelzl@56369
   298
  by (rule exI [where x=1])
hoelzl@56369
   299
     (simp add: lambda_one [symmetric])
lp15@56215
   300
lp15@61520
   301
lemma complex_differentiable_id [derivative_intros]: "id complex_differentiable F"
hoelzl@56370
   302
  unfolding id_def by (rule complex_differentiable_ident)
hoelzl@56370
   303
lp15@61520
   304
lemma complex_differentiable_minus [derivative_intros]:
hoelzl@56370
   305
  "f complex_differentiable F \<Longrightarrow> (\<lambda>z. - (f z)) complex_differentiable F"
lp15@56215
   306
  using assms unfolding complex_differentiable_def
lp15@56215
   307
  by (metis field_differentiable_minus)
lp15@56215
   308
lp15@61520
   309
lemma complex_differentiable_add [derivative_intros]:
lp15@56215
   310
  assumes "f complex_differentiable F" "g complex_differentiable F"
lp15@56215
   311
    shows "(\<lambda>z. f z + g z) complex_differentiable F"
lp15@56215
   312
  using assms unfolding complex_differentiable_def
lp15@56215
   313
  by (metis field_differentiable_add)
lp15@56215
   314
lp15@61520
   315
lemma complex_differentiable_setsum [derivative_intros]:
hoelzl@56370
   316
  "(\<And>i. i \<in> I \<Longrightarrow> (f i) complex_differentiable F) \<Longrightarrow> (\<lambda>z. \<Sum>i\<in>I. f i z) complex_differentiable F"
hoelzl@56370
   317
  by (induct I rule: infinite_finite_induct)
hoelzl@56370
   318
     (auto intro: complex_differentiable_add complex_differentiable_const)
hoelzl@56370
   319
lp15@61520
   320
lemma complex_differentiable_diff [derivative_intros]:
lp15@56215
   321
  assumes "f complex_differentiable F" "g complex_differentiable F"
lp15@56215
   322
    shows "(\<lambda>z. f z - g z) complex_differentiable F"
lp15@56215
   323
  using assms unfolding complex_differentiable_def
lp15@56215
   324
  by (metis field_differentiable_diff)
lp15@56215
   325
lp15@61520
   326
lemma complex_differentiable_inverse [derivative_intros]:
lp15@56215
   327
  assumes "f complex_differentiable (at a within s)" "f a \<noteq> 0"
lp15@56215
   328
  shows "(\<lambda>z. inverse (f z)) complex_differentiable (at a within s)"
lp15@56215
   329
  using assms unfolding complex_differentiable_def
lp15@56215
   330
  by (metis DERIV_inverse_fun)
lp15@56215
   331
lp15@61520
   332
lemma complex_differentiable_mult [derivative_intros]:
lp15@61609
   333
  assumes "f complex_differentiable (at a within s)"
lp15@56215
   334
          "g complex_differentiable (at a within s)"
lp15@56215
   335
    shows "(\<lambda>z. f z * g z) complex_differentiable (at a within s)"
lp15@56215
   336
  using assms unfolding complex_differentiable_def
lp15@56215
   337
  by (metis DERIV_mult [of f _ a s g])
lp15@61609
   338
lp15@61520
   339
lemma complex_differentiable_divide [derivative_intros]:
lp15@61609
   340
  assumes "f complex_differentiable (at a within s)"
lp15@56215
   341
          "g complex_differentiable (at a within s)"
lp15@56215
   342
          "g a \<noteq> 0"
lp15@56215
   343
    shows "(\<lambda>z. f z / g z) complex_differentiable (at a within s)"
lp15@56215
   344
  using assms unfolding complex_differentiable_def
lp15@56215
   345
  by (metis DERIV_divide [of f _ a s g])
lp15@56215
   346
lp15@61520
   347
lemma complex_differentiable_power [derivative_intros]:
lp15@61609
   348
  assumes "f complex_differentiable (at a within s)"
lp15@56215
   349
    shows "(\<lambda>z. f z ^ n) complex_differentiable (at a within s)"
lp15@56215
   350
  using assms unfolding complex_differentiable_def
lp15@56215
   351
  by (metis DERIV_power)
lp15@56215
   352
lp15@56215
   353
lemma complex_differentiable_transform_within:
lp15@56215
   354
  "0 < d \<Longrightarrow>
lp15@56215
   355
        x \<in> s \<Longrightarrow>
lp15@56215
   356
        (\<And>x'. x' \<in> s \<Longrightarrow> dist x' x < d \<Longrightarrow> f x' = g x') \<Longrightarrow>
lp15@56215
   357
        f complex_differentiable (at x within s)
lp15@56215
   358
        \<Longrightarrow> g complex_differentiable (at x within s)"
lp15@56215
   359
  unfolding complex_differentiable_def has_field_derivative_def
lp15@56215
   360
  by (blast intro: has_derivative_transform_within)
lp15@56215
   361
lp15@56215
   362
lemma complex_differentiable_compose_within:
lp15@61609
   363
  assumes "f complex_differentiable (at a within s)"
lp15@56215
   364
          "g complex_differentiable (at (f a) within f`s)"
lp15@56215
   365
    shows "(g o f) complex_differentiable (at a within s)"
lp15@56215
   366
  using assms unfolding complex_differentiable_def
lp15@56215
   367
  by (metis DERIV_image_chain)
lp15@56215
   368
hoelzl@56370
   369
lemma complex_differentiable_compose:
hoelzl@56370
   370
  "f complex_differentiable at z \<Longrightarrow> g complex_differentiable at (f z)
hoelzl@56370
   371
          \<Longrightarrow> (g o f) complex_differentiable at z"
hoelzl@56370
   372
by (metis complex_differentiable_at_within complex_differentiable_compose_within)
hoelzl@56370
   373
lp15@56215
   374
lemma complex_differentiable_within_open:
lp15@61609
   375
     "\<lbrakk>a \<in> s; open s\<rbrakk> \<Longrightarrow> f complex_differentiable at a within s \<longleftrightarrow>
lp15@56215
   376
                          f complex_differentiable at a"
lp15@56215
   377
  unfolding complex_differentiable_def
lp15@56215
   378
  by (metis at_within_open)
lp15@56215
   379
wenzelm@60420
   380
subsection\<open>Caratheodory characterization.\<close>
lp15@56215
   381
lp15@56215
   382
lemma complex_differentiable_caratheodory_at:
lp15@56215
   383
  "f complex_differentiable (at z) \<longleftrightarrow>
lp15@56215
   384
         (\<exists>g. (\<forall>w. f(w) - f(z) = g(w) * (w - z)) \<and> continuous (at z) g)"
lp15@56215
   385
  using CARAT_DERIV [of f]
lp15@56215
   386
  by (simp add: complex_differentiable_def has_field_derivative_def)
lp15@56215
   387
lp15@56215
   388
lemma complex_differentiable_caratheodory_within:
lp15@56215
   389
  "f complex_differentiable (at z within s) \<longleftrightarrow>
lp15@56215
   390
         (\<exists>g. (\<forall>w. f(w) - f(z) = g(w) * (w - z)) \<and> continuous (at z within s) g)"
lp15@56215
   391
  using DERIV_caratheodory_within [of f]
lp15@56215
   392
  by (simp add: complex_differentiable_def has_field_derivative_def)
lp15@56215
   393
wenzelm@60420
   394
subsection\<open>Holomorphic\<close>
hoelzl@56370
   395
hoelzl@56370
   396
definition holomorphic_on :: "[complex \<Rightarrow> complex, complex set] \<Rightarrow> bool"
hoelzl@56370
   397
           (infixl "(holomorphic'_on)" 50)
hoelzl@56370
   398
  where "f holomorphic_on s \<equiv> \<forall>x\<in>s. f complex_differentiable (at x within s)"
lp15@61609
   399
lp15@61520
   400
named_theorems holomorphic_intros "structural introduction rules for holomorphic_on"
lp15@61520
   401
lp15@61520
   402
lemma holomorphic_on_empty [holomorphic_intros]: "f holomorphic_on {}"
hoelzl@56370
   403
  by (simp add: holomorphic_on_def)
hoelzl@56370
   404
hoelzl@56370
   405
lemma holomorphic_on_open:
hoelzl@56370
   406
    "open s \<Longrightarrow> f holomorphic_on s \<longleftrightarrow> (\<forall>x \<in> s. \<exists>f'. DERIV f x :> f')"
hoelzl@56370
   407
  by (auto simp: holomorphic_on_def complex_differentiable_def has_field_derivative_def at_within_open [of _ s])
hoelzl@56370
   408
lp15@61609
   409
lemma holomorphic_on_imp_continuous_on:
hoelzl@56370
   410
    "f holomorphic_on s \<Longrightarrow> continuous_on s f"
lp15@61609
   411
  by (metis complex_differentiable_imp_continuous_at continuous_on_eq_continuous_within holomorphic_on_def)
hoelzl@56370
   412
hoelzl@56370
   413
lemma holomorphic_on_subset:
hoelzl@56370
   414
    "f holomorphic_on s \<Longrightarrow> t \<subseteq> s \<Longrightarrow> f holomorphic_on t"
hoelzl@56370
   415
  unfolding holomorphic_on_def
hoelzl@56370
   416
  by (metis complex_differentiable_within_subset subsetD)
hoelzl@56370
   417
hoelzl@56370
   418
lemma holomorphic_transform: "\<lbrakk>f holomorphic_on s; \<And>x. x \<in> s \<Longrightarrow> f x = g x\<rbrakk> \<Longrightarrow> g holomorphic_on s"
hoelzl@56370
   419
  by (metis complex_differentiable_transform_within linordered_field_no_ub holomorphic_on_def)
hoelzl@56370
   420
hoelzl@56370
   421
lemma holomorphic_cong: "s = t ==> (\<And>x. x \<in> s \<Longrightarrow> f x = g x) \<Longrightarrow> f holomorphic_on s \<longleftrightarrow> g holomorphic_on t"
hoelzl@56370
   422
  by (metis holomorphic_transform)
hoelzl@56370
   423
lp15@61520
   424
lemma holomorphic_on_linear [holomorphic_intros]: "(op * c) holomorphic_on s"
hoelzl@56370
   425
  unfolding holomorphic_on_def by (metis complex_differentiable_linear)
hoelzl@56370
   426
lp15@61520
   427
lemma holomorphic_on_const [holomorphic_intros]: "(\<lambda>z. c) holomorphic_on s"
hoelzl@56370
   428
  unfolding holomorphic_on_def by (metis complex_differentiable_const)
hoelzl@56370
   429
lp15@61520
   430
lemma holomorphic_on_ident [holomorphic_intros]: "(\<lambda>x. x) holomorphic_on s"
hoelzl@56370
   431
  unfolding holomorphic_on_def by (metis complex_differentiable_ident)
hoelzl@56370
   432
lp15@61520
   433
lemma holomorphic_on_id [holomorphic_intros]: "id holomorphic_on s"
hoelzl@56370
   434
  unfolding id_def by (rule holomorphic_on_ident)
hoelzl@56370
   435
hoelzl@56370
   436
lemma holomorphic_on_compose:
hoelzl@56370
   437
  "f holomorphic_on s \<Longrightarrow> g holomorphic_on (f ` s) \<Longrightarrow> (g o f) holomorphic_on s"
hoelzl@56370
   438
  using complex_differentiable_compose_within[of f _ s g]
hoelzl@56370
   439
  by (auto simp: holomorphic_on_def)
hoelzl@56370
   440
hoelzl@56370
   441
lemma holomorphic_on_compose_gen:
hoelzl@56370
   442
  "f holomorphic_on s \<Longrightarrow> g holomorphic_on t \<Longrightarrow> f ` s \<subseteq> t \<Longrightarrow> (g o f) holomorphic_on s"
hoelzl@56370
   443
  by (metis holomorphic_on_compose holomorphic_on_subset)
hoelzl@56370
   444
lp15@61520
   445
lemma holomorphic_on_minus [holomorphic_intros]: "f holomorphic_on s \<Longrightarrow> (\<lambda>z. -(f z)) holomorphic_on s"
hoelzl@56370
   446
  by (metis complex_differentiable_minus holomorphic_on_def)
hoelzl@56370
   447
lp15@61520
   448
lemma holomorphic_on_add [holomorphic_intros]:
hoelzl@56370
   449
  "\<lbrakk>f holomorphic_on s; g holomorphic_on s\<rbrakk> \<Longrightarrow> (\<lambda>z. f z + g z) holomorphic_on s"
hoelzl@56370
   450
  unfolding holomorphic_on_def by (metis complex_differentiable_add)
hoelzl@56370
   451
lp15@61520
   452
lemma holomorphic_on_diff [holomorphic_intros]:
hoelzl@56370
   453
  "\<lbrakk>f holomorphic_on s; g holomorphic_on s\<rbrakk> \<Longrightarrow> (\<lambda>z. f z - g z) holomorphic_on s"
hoelzl@56370
   454
  unfolding holomorphic_on_def by (metis complex_differentiable_diff)
hoelzl@56370
   455
lp15@61520
   456
lemma holomorphic_on_mult [holomorphic_intros]:
hoelzl@56370
   457
  "\<lbrakk>f holomorphic_on s; g holomorphic_on s\<rbrakk> \<Longrightarrow> (\<lambda>z. f z * g z) holomorphic_on s"
hoelzl@56370
   458
  unfolding holomorphic_on_def by (metis complex_differentiable_mult)
hoelzl@56370
   459
lp15@61520
   460
lemma holomorphic_on_inverse [holomorphic_intros]:
hoelzl@56370
   461
  "\<lbrakk>f holomorphic_on s; \<And>z. z \<in> s \<Longrightarrow> f z \<noteq> 0\<rbrakk> \<Longrightarrow> (\<lambda>z. inverse (f z)) holomorphic_on s"
hoelzl@56370
   462
  unfolding holomorphic_on_def by (metis complex_differentiable_inverse)
hoelzl@56370
   463
lp15@61520
   464
lemma holomorphic_on_divide [holomorphic_intros]:
hoelzl@56370
   465
  "\<lbrakk>f holomorphic_on s; g holomorphic_on s; \<And>z. z \<in> s \<Longrightarrow> g z \<noteq> 0\<rbrakk> \<Longrightarrow> (\<lambda>z. f z / g z) holomorphic_on s"
hoelzl@56370
   466
  unfolding holomorphic_on_def by (metis complex_differentiable_divide)
hoelzl@56370
   467
lp15@61520
   468
lemma holomorphic_on_power [holomorphic_intros]:
hoelzl@56370
   469
  "f holomorphic_on s \<Longrightarrow> (\<lambda>z. (f z)^n) holomorphic_on s"
hoelzl@56370
   470
  unfolding holomorphic_on_def by (metis complex_differentiable_power)
hoelzl@56370
   471
lp15@61520
   472
lemma holomorphic_on_setsum [holomorphic_intros]:
hoelzl@56370
   473
  "(\<And>i. i \<in> I \<Longrightarrow> (f i) holomorphic_on s) \<Longrightarrow> (\<lambda>x. setsum (\<lambda>i. f i x) I) holomorphic_on s"
hoelzl@56370
   474
  unfolding holomorphic_on_def by (metis complex_differentiable_setsum)
hoelzl@56370
   475
hoelzl@56370
   476
lemma DERIV_deriv_iff_complex_differentiable:
hoelzl@56370
   477
  "DERIV f x :> deriv f x \<longleftrightarrow> f complex_differentiable at x"
hoelzl@56370
   478
  unfolding complex_differentiable_def by (metis DERIV_imp_deriv)
hoelzl@56370
   479
hoelzl@56370
   480
lemma complex_derivative_chain:
hoelzl@56370
   481
  "f complex_differentiable at x \<Longrightarrow> g complex_differentiable at (f x)
hoelzl@56370
   482
    \<Longrightarrow> deriv (g o f) x = deriv g (f x) * deriv f x"
hoelzl@56370
   483
  by (metis DERIV_deriv_iff_complex_differentiable DERIV_chain DERIV_imp_deriv)
hoelzl@56370
   484
lp15@61848
   485
lemma deriv_linear: "deriv (\<lambda>w. c * w) = (\<lambda>z. c)"
hoelzl@56370
   486
  by (metis DERIV_imp_deriv DERIV_cmult_Id)
hoelzl@56370
   487
lp15@61848
   488
lemma deriv_ident: "deriv (\<lambda>w. w) = (\<lambda>z. 1)"
hoelzl@56370
   489
  by (metis DERIV_imp_deriv DERIV_ident)
hoelzl@56370
   490
lp15@61848
   491
lemma deriv_const: "deriv (\<lambda>w. c) = (\<lambda>z. 0)"
hoelzl@56370
   492
  by (metis DERIV_imp_deriv DERIV_const)
hoelzl@56370
   493
hoelzl@56370
   494
lemma complex_derivative_add:
lp15@61609
   495
  "\<lbrakk>f complex_differentiable at z; g complex_differentiable at z\<rbrakk>
hoelzl@56370
   496
   \<Longrightarrow> deriv (\<lambda>w. f w + g w) z = deriv f z + deriv g z"
hoelzl@56370
   497
  unfolding DERIV_deriv_iff_complex_differentiable[symmetric]
hoelzl@56381
   498
  by (auto intro!: DERIV_imp_deriv derivative_intros)
hoelzl@56370
   499
hoelzl@56370
   500
lemma complex_derivative_diff:
lp15@61609
   501
  "\<lbrakk>f complex_differentiable at z; g complex_differentiable at z\<rbrakk>
hoelzl@56370
   502
   \<Longrightarrow> deriv (\<lambda>w. f w - g w) z = deriv f z - deriv g z"
hoelzl@56370
   503
  unfolding DERIV_deriv_iff_complex_differentiable[symmetric]
hoelzl@56381
   504
  by (auto intro!: DERIV_imp_deriv derivative_intros)
hoelzl@56370
   505
hoelzl@56370
   506
lemma complex_derivative_mult:
lp15@61609
   507
  "\<lbrakk>f complex_differentiable at z; g complex_differentiable at z\<rbrakk>
hoelzl@56370
   508
   \<Longrightarrow> deriv (\<lambda>w. f w * g w) z = f z * deriv g z + deriv f z * g z"
hoelzl@56370
   509
  unfolding DERIV_deriv_iff_complex_differentiable[symmetric]
hoelzl@56381
   510
  by (auto intro!: DERIV_imp_deriv derivative_eq_intros)
hoelzl@56370
   511
hoelzl@56370
   512
lemma complex_derivative_cmult:
hoelzl@56370
   513
  "f complex_differentiable at z \<Longrightarrow> deriv (\<lambda>w. c * f w) z = c * deriv f z"
hoelzl@56370
   514
  unfolding DERIV_deriv_iff_complex_differentiable[symmetric]
hoelzl@56381
   515
  by (auto intro!: DERIV_imp_deriv derivative_eq_intros)
hoelzl@56370
   516
hoelzl@56370
   517
lemma complex_derivative_cmult_right:
hoelzl@56370
   518
  "f complex_differentiable at z \<Longrightarrow> deriv (\<lambda>w. f w * c) z = deriv f z * c"
hoelzl@56370
   519
  unfolding DERIV_deriv_iff_complex_differentiable[symmetric]
hoelzl@56381
   520
  by (auto intro!: DERIV_imp_deriv derivative_eq_intros)
hoelzl@56370
   521
hoelzl@56370
   522
lemma complex_derivative_transform_within_open:
lp15@61609
   523
  "\<lbrakk>f holomorphic_on s; g holomorphic_on s; open s; z \<in> s; \<And>w. w \<in> s \<Longrightarrow> f w = g w\<rbrakk>
hoelzl@56370
   524
   \<Longrightarrow> deriv f z = deriv g z"
hoelzl@56370
   525
  unfolding holomorphic_on_def
hoelzl@56370
   526
  by (rule DERIV_imp_deriv)
hoelzl@56370
   527
     (metis DERIV_deriv_iff_complex_differentiable DERIV_transform_within_open at_within_open)
hoelzl@56370
   528
hoelzl@56370
   529
lemma complex_derivative_compose_linear:
hoelzl@56370
   530
  "f complex_differentiable at (c * z) \<Longrightarrow> deriv (\<lambda>w. f (c * w)) z = c * deriv f (c * z)"
hoelzl@56370
   531
apply (rule DERIV_imp_deriv)
hoelzl@56370
   532
apply (simp add: DERIV_deriv_iff_complex_differentiable [symmetric])
haftmann@59554
   533
apply (drule DERIV_chain' [of "times c" c z UNIV f "deriv f (c * z)", OF DERIV_cmult_Id])
haftmann@59554
   534
apply (simp add: algebra_simps)
hoelzl@56370
   535
done
hoelzl@56370
   536
wenzelm@60420
   537
subsection\<open>Analyticity on a set\<close>
lp15@56215
   538
lp15@61609
   539
definition analytic_on (infixl "(analytic'_on)" 50)
lp15@56215
   540
  where
lp15@56215
   541
   "f analytic_on s \<equiv> \<forall>x \<in> s. \<exists>e. 0 < e \<and> f holomorphic_on (ball x e)"
lp15@56215
   542
hoelzl@56370
   543
lemma analytic_imp_holomorphic: "f analytic_on s \<Longrightarrow> f holomorphic_on s"
hoelzl@56370
   544
  by (simp add: at_within_open [OF _ open_ball] analytic_on_def holomorphic_on_def)
hoelzl@56370
   545
     (metis centre_in_ball complex_differentiable_at_within)
lp15@56215
   546
hoelzl@56370
   547
lemma analytic_on_open: "open s \<Longrightarrow> f analytic_on s \<longleftrightarrow> f holomorphic_on s"
lp15@56215
   548
apply (auto simp: analytic_imp_holomorphic)
lp15@56215
   549
apply (auto simp: analytic_on_def holomorphic_on_def)
lp15@56215
   550
by (metis holomorphic_on_def holomorphic_on_subset open_contains_ball)
lp15@56215
   551
lp15@56215
   552
lemma analytic_on_imp_differentiable_at:
lp15@56215
   553
  "f analytic_on s \<Longrightarrow> x \<in> s \<Longrightarrow> f complex_differentiable (at x)"
hoelzl@56370
   554
 apply (auto simp: analytic_on_def holomorphic_on_def)
lp15@56215
   555
by (metis Topology_Euclidean_Space.open_ball centre_in_ball complex_differentiable_within_open)
lp15@56215
   556
hoelzl@56370
   557
lemma analytic_on_subset: "f analytic_on s \<Longrightarrow> t \<subseteq> s \<Longrightarrow> f analytic_on t"
lp15@56215
   558
  by (auto simp: analytic_on_def)
lp15@56215
   559
hoelzl@56370
   560
lemma analytic_on_Un: "f analytic_on (s \<union> t) \<longleftrightarrow> f analytic_on s \<and> f analytic_on t"
lp15@56215
   561
  by (auto simp: analytic_on_def)
lp15@56215
   562
wenzelm@60585
   563
lemma analytic_on_Union: "f analytic_on (\<Union>s) \<longleftrightarrow> (\<forall>t \<in> s. f analytic_on t)"
hoelzl@56370
   564
  by (auto simp: analytic_on_def)
hoelzl@56370
   565
hoelzl@56370
   566
lemma analytic_on_UN: "f analytic_on (\<Union>i\<in>I. s i) \<longleftrightarrow> (\<forall>i\<in>I. f analytic_on (s i))"
lp15@56215
   567
  by (auto simp: analytic_on_def)
lp15@61609
   568
lp15@56215
   569
lemma analytic_on_holomorphic:
lp15@56215
   570
  "f analytic_on s \<longleftrightarrow> (\<exists>t. open t \<and> s \<subseteq> t \<and> f holomorphic_on t)"
lp15@56215
   571
  (is "?lhs = ?rhs")
lp15@56215
   572
proof -
lp15@56215
   573
  have "?lhs \<longleftrightarrow> (\<exists>t. open t \<and> s \<subseteq> t \<and> f analytic_on t)"
lp15@56215
   574
  proof safe
lp15@56215
   575
    assume "f analytic_on s"
lp15@56215
   576
    then show "\<exists>t. open t \<and> s \<subseteq> t \<and> f analytic_on t"
lp15@56215
   577
      apply (simp add: analytic_on_def)
lp15@56215
   578
      apply (rule exI [where x="\<Union>{u. open u \<and> f analytic_on u}"], auto)
lp15@56215
   579
      apply (metis Topology_Euclidean_Space.open_ball analytic_on_open centre_in_ball)
lp15@56215
   580
      by (metis analytic_on_def)
lp15@56215
   581
  next
lp15@56215
   582
    fix t
lp15@61609
   583
    assume "open t" "s \<subseteq> t" "f analytic_on t"
lp15@56215
   584
    then show "f analytic_on s"
lp15@56215
   585
        by (metis analytic_on_subset)
lp15@56215
   586
  qed
lp15@56215
   587
  also have "... \<longleftrightarrow> ?rhs"
lp15@56215
   588
    by (auto simp: analytic_on_open)
lp15@56215
   589
  finally show ?thesis .
lp15@56215
   590
qed
lp15@56215
   591
lp15@56215
   592
lemma analytic_on_linear: "(op * c) analytic_on s"
hoelzl@56370
   593
  by (auto simp add: analytic_on_holomorphic holomorphic_on_linear)
lp15@56215
   594
lp15@56215
   595
lemma analytic_on_const: "(\<lambda>z. c) analytic_on s"
hoelzl@56370
   596
  by (metis analytic_on_def holomorphic_on_const zero_less_one)
hoelzl@56370
   597
hoelzl@56370
   598
lemma analytic_on_ident: "(\<lambda>x. x) analytic_on s"
hoelzl@56370
   599
  by (simp add: analytic_on_def holomorphic_on_ident gt_ex)
lp15@56215
   600
lp15@56215
   601
lemma analytic_on_id: "id analytic_on s"
hoelzl@56370
   602
  unfolding id_def by (rule analytic_on_ident)
lp15@56215
   603
lp15@56215
   604
lemma analytic_on_compose:
lp15@56215
   605
  assumes f: "f analytic_on s"
lp15@56215
   606
      and g: "g analytic_on (f ` s)"
lp15@56215
   607
    shows "(g o f) analytic_on s"
lp15@56215
   608
unfolding analytic_on_def
lp15@56215
   609
proof (intro ballI)
lp15@56215
   610
  fix x
lp15@56215
   611
  assume x: "x \<in> s"
lp15@56215
   612
  then obtain e where e: "0 < e" and fh: "f holomorphic_on ball x e" using f
lp15@56215
   613
    by (metis analytic_on_def)
lp15@56215
   614
  obtain e' where e': "0 < e'" and gh: "g holomorphic_on ball (f x) e'" using g
lp15@61609
   615
    by (metis analytic_on_def g image_eqI x)
lp15@56215
   616
  have "isCont f x"
lp15@56215
   617
    by (metis analytic_on_imp_differentiable_at complex_differentiable_imp_continuous_at f x)
lp15@56215
   618
  with e' obtain d where d: "0 < d" and fd: "f ` ball x d \<subseteq> ball (f x) e'"
lp15@56215
   619
     by (auto simp: continuous_at_ball)
lp15@61609
   620
  have "g \<circ> f holomorphic_on ball x (min d e)"
lp15@56215
   621
    apply (rule holomorphic_on_compose)
lp15@56215
   622
    apply (metis fh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
lp15@56215
   623
    by (metis fd gh holomorphic_on_subset image_mono min.cobounded1 subset_ball)
lp15@56215
   624
  then show "\<exists>e>0. g \<circ> f holomorphic_on ball x e"
lp15@61609
   625
    by (metis d e min_less_iff_conj)
lp15@56215
   626
qed
lp15@56215
   627
lp15@56215
   628
lemma analytic_on_compose_gen:
lp15@56215
   629
  "f analytic_on s \<Longrightarrow> g analytic_on t \<Longrightarrow> (\<And>z. z \<in> s \<Longrightarrow> f z \<in> t)
lp15@56215
   630
             \<Longrightarrow> g o f analytic_on s"
lp15@56215
   631
by (metis analytic_on_compose analytic_on_subset image_subset_iff)
lp15@56215
   632
lp15@56215
   633
lemma analytic_on_neg:
lp15@56215
   634
  "f analytic_on s \<Longrightarrow> (\<lambda>z. -(f z)) analytic_on s"
lp15@56215
   635
by (metis analytic_on_holomorphic holomorphic_on_minus)
lp15@56215
   636
lp15@56215
   637
lemma analytic_on_add:
lp15@56215
   638
  assumes f: "f analytic_on s"
lp15@56215
   639
      and g: "g analytic_on s"
lp15@56215
   640
    shows "(\<lambda>z. f z + g z) analytic_on s"
lp15@56215
   641
unfolding analytic_on_def
lp15@56215
   642
proof (intro ballI)
lp15@56215
   643
  fix z
lp15@56215
   644
  assume z: "z \<in> s"
lp15@56215
   645
  then obtain e where e: "0 < e" and fh: "f holomorphic_on ball z e" using f
lp15@56215
   646
    by (metis analytic_on_def)
lp15@56215
   647
  obtain e' where e': "0 < e'" and gh: "g holomorphic_on ball z e'" using g
lp15@61609
   648
    by (metis analytic_on_def g z)
lp15@61609
   649
  have "(\<lambda>z. f z + g z) holomorphic_on ball z (min e e')"
lp15@61609
   650
    apply (rule holomorphic_on_add)
lp15@56215
   651
    apply (metis fh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
lp15@56215
   652
    by (metis gh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
lp15@56215
   653
  then show "\<exists>e>0. (\<lambda>z. f z + g z) holomorphic_on ball z e"
lp15@56215
   654
    by (metis e e' min_less_iff_conj)
lp15@56215
   655
qed
lp15@56215
   656
lp15@56215
   657
lemma analytic_on_diff:
lp15@56215
   658
  assumes f: "f analytic_on s"
lp15@56215
   659
      and g: "g analytic_on s"
lp15@56215
   660
    shows "(\<lambda>z. f z - g z) analytic_on s"
lp15@56215
   661
unfolding analytic_on_def
lp15@56215
   662
proof (intro ballI)
lp15@56215
   663
  fix z
lp15@56215
   664
  assume z: "z \<in> s"
lp15@56215
   665
  then obtain e where e: "0 < e" and fh: "f holomorphic_on ball z e" using f
lp15@56215
   666
    by (metis analytic_on_def)
lp15@56215
   667
  obtain e' where e': "0 < e'" and gh: "g holomorphic_on ball z e'" using g
lp15@61609
   668
    by (metis analytic_on_def g z)
lp15@61609
   669
  have "(\<lambda>z. f z - g z) holomorphic_on ball z (min e e')"
lp15@61609
   670
    apply (rule holomorphic_on_diff)
lp15@56215
   671
    apply (metis fh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
lp15@56215
   672
    by (metis gh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
lp15@56215
   673
  then show "\<exists>e>0. (\<lambda>z. f z - g z) holomorphic_on ball z e"
lp15@56215
   674
    by (metis e e' min_less_iff_conj)
lp15@56215
   675
qed
lp15@56215
   676
lp15@56215
   677
lemma analytic_on_mult:
lp15@56215
   678
  assumes f: "f analytic_on s"
lp15@56215
   679
      and g: "g analytic_on s"
lp15@56215
   680
    shows "(\<lambda>z. f z * g z) analytic_on s"
lp15@56215
   681
unfolding analytic_on_def
lp15@56215
   682
proof (intro ballI)
lp15@56215
   683
  fix z
lp15@56215
   684
  assume z: "z \<in> s"
lp15@56215
   685
  then obtain e where e: "0 < e" and fh: "f holomorphic_on ball z e" using f
lp15@56215
   686
    by (metis analytic_on_def)
lp15@56215
   687
  obtain e' where e': "0 < e'" and gh: "g holomorphic_on ball z e'" using g
lp15@61609
   688
    by (metis analytic_on_def g z)
lp15@61609
   689
  have "(\<lambda>z. f z * g z) holomorphic_on ball z (min e e')"
lp15@61609
   690
    apply (rule holomorphic_on_mult)
lp15@56215
   691
    apply (metis fh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
lp15@56215
   692
    by (metis gh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
lp15@56215
   693
  then show "\<exists>e>0. (\<lambda>z. f z * g z) holomorphic_on ball z e"
lp15@56215
   694
    by (metis e e' min_less_iff_conj)
lp15@56215
   695
qed
lp15@56215
   696
lp15@56215
   697
lemma analytic_on_inverse:
lp15@56215
   698
  assumes f: "f analytic_on s"
lp15@56215
   699
      and nz: "(\<And>z. z \<in> s \<Longrightarrow> f z \<noteq> 0)"
lp15@56215
   700
    shows "(\<lambda>z. inverse (f z)) analytic_on s"
lp15@56215
   701
unfolding analytic_on_def
lp15@56215
   702
proof (intro ballI)
lp15@56215
   703
  fix z
lp15@56215
   704
  assume z: "z \<in> s"
lp15@56215
   705
  then obtain e where e: "0 < e" and fh: "f holomorphic_on ball z e" using f
lp15@56215
   706
    by (metis analytic_on_def)
lp15@56215
   707
  have "continuous_on (ball z e) f"
lp15@56215
   708
    by (metis fh holomorphic_on_imp_continuous_on)
lp15@61609
   709
  then obtain e' where e': "0 < e'" and nz': "\<And>y. dist z y < e' \<Longrightarrow> f y \<noteq> 0"
lp15@61609
   710
    by (metis Topology_Euclidean_Space.open_ball centre_in_ball continuous_on_open_avoid e z nz)
lp15@61609
   711
  have "(\<lambda>z. inverse (f z)) holomorphic_on ball z (min e e')"
lp15@56215
   712
    apply (rule holomorphic_on_inverse)
lp15@56215
   713
    apply (metis fh holomorphic_on_subset min.cobounded2 min.commute subset_ball)
lp15@61609
   714
    by (metis nz' mem_ball min_less_iff_conj)
lp15@56215
   715
  then show "\<exists>e>0. (\<lambda>z. inverse (f z)) holomorphic_on ball z e"
lp15@56215
   716
    by (metis e e' min_less_iff_conj)
lp15@56215
   717
qed
lp15@56215
   718
lp15@56215
   719
lp15@56215
   720
lemma analytic_on_divide:
lp15@56215
   721
  assumes f: "f analytic_on s"
lp15@56215
   722
      and g: "g analytic_on s"
lp15@56215
   723
      and nz: "(\<And>z. z \<in> s \<Longrightarrow> g z \<noteq> 0)"
lp15@56215
   724
    shows "(\<lambda>z. f z / g z) analytic_on s"
lp15@56215
   725
unfolding divide_inverse
lp15@56215
   726
by (metis analytic_on_inverse analytic_on_mult f g nz)
lp15@56215
   727
lp15@56215
   728
lemma analytic_on_power:
lp15@56215
   729
  "f analytic_on s \<Longrightarrow> (\<lambda>z. (f z) ^ n) analytic_on s"
lp15@56215
   730
by (induct n) (auto simp: analytic_on_const analytic_on_mult)
lp15@56215
   731
lp15@56215
   732
lemma analytic_on_setsum:
hoelzl@56369
   733
  "(\<And>i. i \<in> I \<Longrightarrow> (f i) analytic_on s) \<Longrightarrow> (\<lambda>x. setsum (\<lambda>i. f i x) I) analytic_on s"
hoelzl@56369
   734
  by (induct I rule: infinite_finite_induct) (auto simp: analytic_on_const analytic_on_add)
lp15@56215
   735
wenzelm@60420
   736
subsection\<open>analyticity at a point.\<close>
lp15@56215
   737
lp15@56215
   738
lemma analytic_at_ball:
lp15@56215
   739
  "f analytic_on {z} \<longleftrightarrow> (\<exists>e. 0<e \<and> f holomorphic_on ball z e)"
lp15@56215
   740
by (metis analytic_on_def singleton_iff)
lp15@56215
   741
lp15@56215
   742
lemma analytic_at:
lp15@56215
   743
    "f analytic_on {z} \<longleftrightarrow> (\<exists>s. open s \<and> z \<in> s \<and> f holomorphic_on s)"
lp15@56215
   744
by (metis analytic_on_holomorphic empty_subsetI insert_subset)
lp15@56215
   745
lp15@56215
   746
lemma analytic_on_analytic_at:
lp15@56215
   747
    "f analytic_on s \<longleftrightarrow> (\<forall>z \<in> s. f analytic_on {z})"
lp15@56215
   748
by (metis analytic_at_ball analytic_on_def)
lp15@56215
   749
lp15@56215
   750
lemma analytic_at_two:
lp15@56215
   751
  "f analytic_on {z} \<and> g analytic_on {z} \<longleftrightarrow>
lp15@56215
   752
   (\<exists>s. open s \<and> z \<in> s \<and> f holomorphic_on s \<and> g holomorphic_on s)"
lp15@56215
   753
  (is "?lhs = ?rhs")
lp15@61609
   754
proof
lp15@56215
   755
  assume ?lhs
lp15@61609
   756
  then obtain s t
lp15@56215
   757
    where st: "open s" "z \<in> s" "f holomorphic_on s"
lp15@56215
   758
              "open t" "z \<in> t" "g holomorphic_on t"
lp15@56215
   759
    by (auto simp: analytic_at)
lp15@56215
   760
  show ?rhs
lp15@56215
   761
    apply (rule_tac x="s \<inter> t" in exI)
lp15@56215
   762
    using st
lp15@56215
   763
    apply (auto simp: Diff_subset holomorphic_on_subset)
lp15@56215
   764
    done
lp15@56215
   765
next
lp15@61609
   766
  assume ?rhs
lp15@56215
   767
  then show ?lhs
lp15@56215
   768
    by (force simp add: analytic_at)
lp15@56215
   769
qed
lp15@56215
   770
wenzelm@60420
   771
subsection\<open>Combining theorems for derivative with ``analytic at'' hypotheses\<close>
lp15@56215
   772
lp15@61609
   773
lemma
lp15@56215
   774
  assumes "f analytic_on {z}" "g analytic_on {z}"
hoelzl@56370
   775
  shows complex_derivative_add_at: "deriv (\<lambda>w. f w + g w) z = deriv f z + deriv g z"
hoelzl@56370
   776
    and complex_derivative_diff_at: "deriv (\<lambda>w. f w - g w) z = deriv f z - deriv g z"
hoelzl@56370
   777
    and complex_derivative_mult_at: "deriv (\<lambda>w. f w * g w) z =
hoelzl@56370
   778
           f z * deriv g z + deriv f z * g z"
lp15@56215
   779
proof -
lp15@56215
   780
  obtain s where s: "open s" "z \<in> s" "f holomorphic_on s" "g holomorphic_on s"
lp15@56215
   781
    using assms by (metis analytic_at_two)
hoelzl@56370
   782
  show "deriv (\<lambda>w. f w + g w) z = deriv f z + deriv g z"
hoelzl@56370
   783
    apply (rule DERIV_imp_deriv [OF DERIV_add])
lp15@56215
   784
    using s
hoelzl@56370
   785
    apply (auto simp: holomorphic_on_open complex_differentiable_def DERIV_deriv_iff_complex_differentiable)
lp15@56215
   786
    done
hoelzl@56370
   787
  show "deriv (\<lambda>w. f w - g w) z = deriv f z - deriv g z"
hoelzl@56370
   788
    apply (rule DERIV_imp_deriv [OF DERIV_diff])
lp15@56215
   789
    using s
hoelzl@56370
   790
    apply (auto simp: holomorphic_on_open complex_differentiable_def DERIV_deriv_iff_complex_differentiable)
lp15@56215
   791
    done
hoelzl@56370
   792
  show "deriv (\<lambda>w. f w * g w) z = f z * deriv g z + deriv f z * g z"
hoelzl@56370
   793
    apply (rule DERIV_imp_deriv [OF DERIV_mult'])
lp15@56215
   794
    using s
hoelzl@56370
   795
    apply (auto simp: holomorphic_on_open complex_differentiable_def DERIV_deriv_iff_complex_differentiable)
lp15@56215
   796
    done
lp15@56215
   797
qed
lp15@56215
   798
lp15@56215
   799
lemma complex_derivative_cmult_at:
hoelzl@56370
   800
  "f analytic_on {z} \<Longrightarrow>  deriv (\<lambda>w. c * f w) z = c * deriv f z"
lp15@61848
   801
by (auto simp: complex_derivative_mult_at deriv_const analytic_on_const)
lp15@56215
   802
lp15@56215
   803
lemma complex_derivative_cmult_right_at:
hoelzl@56370
   804
  "f analytic_on {z} \<Longrightarrow>  deriv (\<lambda>w. f w * c) z = deriv f z * c"
lp15@61848
   805
by (auto simp: complex_derivative_mult_at deriv_const analytic_on_const)
lp15@56215
   806
wenzelm@60420
   807
subsection\<open>Complex differentiation of sequences and series\<close>
lp15@56215
   808
eberlm@61531
   809
(* TODO: Could probably be simplified using Uniform_Limit *)
lp15@56215
   810
lemma has_complex_derivative_sequence:
lp15@56215
   811
  fixes s :: "complex set"
lp15@56215
   812
  assumes cvs: "convex s"
lp15@56215
   813
      and df:  "\<And>n x. x \<in> s \<Longrightarrow> (f n has_field_derivative f' n x) (at x within s)"
lp15@56215
   814
      and conv: "\<And>e. 0 < e \<Longrightarrow> \<exists>N. \<forall>n x. n \<ge> N \<longrightarrow> x \<in> s \<longrightarrow> norm (f' n x - g' x) \<le> e"
wenzelm@61973
   815
      and "\<exists>x l. x \<in> s \<and> ((\<lambda>n. f n x) \<longlongrightarrow> l) sequentially"
wenzelm@61973
   816
    shows "\<exists>g. \<forall>x \<in> s. ((\<lambda>n. f n x) \<longlongrightarrow> g x) sequentially \<and>
lp15@56215
   817
                       (g has_field_derivative (g' x)) (at x within s)"
lp15@56215
   818
proof -
wenzelm@61973
   819
  from assms obtain x l where x: "x \<in> s" and tf: "((\<lambda>n. f n x) \<longlongrightarrow> l) sequentially"
lp15@56215
   820
    by blast
lp15@56215
   821
  { fix e::real assume e: "e > 0"
lp15@56215
   822
    then obtain N where N: "\<forall>n\<ge>N. \<forall>x. x \<in> s \<longrightarrow> cmod (f' n x - g' x) \<le> e"
lp15@61609
   823
      by (metis conv)
lp15@56215
   824
    have "\<exists>N. \<forall>n\<ge>N. \<forall>x\<in>s. \<forall>h. cmod (f' n x * h - g' x * h) \<le> e * cmod h"
lp15@56215
   825
    proof (rule exI [of _ N], clarify)
lp15@56215
   826
      fix n y h
lp15@56215
   827
      assume "N \<le> n" "y \<in> s"
lp15@56215
   828
      then have "cmod (f' n y - g' y) \<le> e"
lp15@56215
   829
        by (metis N)
lp15@56215
   830
      then have "cmod h * cmod (f' n y - g' y) \<le> cmod h * e"
lp15@56215
   831
        by (auto simp: antisym_conv2 mult_le_cancel_left norm_triangle_ineq2)
lp15@56215
   832
      then show "cmod (f' n y * h - g' y * h) \<le> e * cmod h"
lp15@56215
   833
        by (simp add: norm_mult [symmetric] field_simps)
lp15@56215
   834
    qed
lp15@56215
   835
  } note ** = this
lp15@56215
   836
  show ?thesis
lp15@56215
   837
  unfolding has_field_derivative_def
lp15@56215
   838
  proof (rule has_derivative_sequence [OF cvs _ _ x])
lp15@56215
   839
    show "\<forall>n. \<forall>x\<in>s. (f n has_derivative (op * (f' n x))) (at x within s)"
lp15@56215
   840
      by (metis has_field_derivative_def df)
wenzelm@61969
   841
  next show "(\<lambda>n. f n x) \<longlonglongrightarrow> l"
lp15@56215
   842
    by (rule tf)
lp15@56215
   843
  next show "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. \<forall>x\<in>s. \<forall>h. cmod (f' n x * h - g' x * h) \<le> e * cmod h"
lp15@56215
   844
    by (blast intro: **)
lp15@56215
   845
  qed
lp15@56215
   846
qed
lp15@56215
   847
lp15@56215
   848
lp15@56215
   849
lemma has_complex_derivative_series:
lp15@56215
   850
  fixes s :: "complex set"
lp15@56215
   851
  assumes cvs: "convex s"
lp15@56215
   852
      and df:  "\<And>n x. x \<in> s \<Longrightarrow> (f n has_field_derivative f' n x) (at x within s)"
lp15@61609
   853
      and conv: "\<And>e. 0 < e \<Longrightarrow> \<exists>N. \<forall>n x. n \<ge> N \<longrightarrow> x \<in> s
lp15@56215
   854
                \<longrightarrow> cmod ((\<Sum>i<n. f' i x) - g' x) \<le> e"
lp15@56215
   855
      and "\<exists>x l. x \<in> s \<and> ((\<lambda>n. f n x) sums l)"
lp15@56215
   856
    shows "\<exists>g. \<forall>x \<in> s. ((\<lambda>n. f n x) sums g x) \<and> ((g has_field_derivative g' x) (at x within s))"
lp15@56215
   857
proof -
lp15@56215
   858
  from assms obtain x l where x: "x \<in> s" and sf: "((\<lambda>n. f n x) sums l)"
lp15@56215
   859
    by blast
lp15@56215
   860
  { fix e::real assume e: "e > 0"
lp15@61609
   861
    then obtain N where N: "\<forall>n x. n \<ge> N \<longrightarrow> x \<in> s
lp15@56215
   862
            \<longrightarrow> cmod ((\<Sum>i<n. f' i x) - g' x) \<le> e"
lp15@61609
   863
      by (metis conv)
lp15@56215
   864
    have "\<exists>N. \<forall>n\<ge>N. \<forall>x\<in>s. \<forall>h. cmod ((\<Sum>i<n. h * f' i x) - g' x * h) \<le> e * cmod h"
lp15@56215
   865
    proof (rule exI [of _ N], clarify)
lp15@56215
   866
      fix n y h
lp15@56215
   867
      assume "N \<le> n" "y \<in> s"
lp15@56215
   868
      then have "cmod ((\<Sum>i<n. f' i y) - g' y) \<le> e"
lp15@56215
   869
        by (metis N)
lp15@56215
   870
      then have "cmod h * cmod ((\<Sum>i<n. f' i y) - g' y) \<le> cmod h * e"
lp15@56215
   871
        by (auto simp: antisym_conv2 mult_le_cancel_left norm_triangle_ineq2)
lp15@56215
   872
      then show "cmod ((\<Sum>i<n. h * f' i y) - g' y * h) \<le> e * cmod h"
lp15@56215
   873
        by (simp add: norm_mult [symmetric] field_simps setsum_right_distrib)
lp15@56215
   874
    qed
lp15@56215
   875
  } note ** = this
lp15@56215
   876
  show ?thesis
lp15@56215
   877
  unfolding has_field_derivative_def
lp15@56215
   878
  proof (rule has_derivative_series [OF cvs _ _ x])
lp15@56215
   879
    fix n x
lp15@56215
   880
    assume "x \<in> s"
lp15@56215
   881
    then show "((f n) has_derivative (\<lambda>z. z * f' n x)) (at x within s)"
lp15@56215
   882
      by (metis df has_field_derivative_def mult_commute_abs)
lp15@56215
   883
  next show " ((\<lambda>n. f n x) sums l)"
lp15@56215
   884
    by (rule sf)
lp15@56215
   885
  next show "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. \<forall>x\<in>s. \<forall>h. cmod ((\<Sum>i<n. h * f' i x) - g' x * h) \<le> e * cmod h"
lp15@56215
   886
    by (blast intro: **)
lp15@56215
   887
  qed
lp15@56215
   888
qed
lp15@56215
   889
eberlm@61531
   890
eberlm@61531
   891
lemma complex_differentiable_series:
eberlm@61531
   892
  fixes f :: "nat \<Rightarrow> complex \<Rightarrow> complex"
eberlm@61531
   893
  assumes "convex s" "open s"
eberlm@61531
   894
  assumes "\<And>n x. x \<in> s \<Longrightarrow> (f n has_field_derivative f' n x) (at x)"
eberlm@61531
   895
  assumes "uniformly_convergent_on s (\<lambda>n x. \<Sum>i<n. f' i x)"
eberlm@61531
   896
  assumes "x0 \<in> s" "summable (\<lambda>n. f n x0)" and x: "x \<in> s"
eberlm@61531
   897
  shows   "summable (\<lambda>n. f n x)" and "(\<lambda>x. \<Sum>n. f n x) complex_differentiable (at x)"
eberlm@61531
   898
proof -
eberlm@61531
   899
  from assms(4) obtain g' where A: "uniform_limit s (\<lambda>n x. \<Sum>i<n. f' i x) g' sequentially"
eberlm@61531
   900
    unfolding uniformly_convergent_on_def by blast
wenzelm@61808
   901
  from x and \<open>open s\<close> have s: "at x within s = at x" by (rule at_within_open)
eberlm@61531
   902
  have "\<exists>g. \<forall>x\<in>s. (\<lambda>n. f n x) sums g x \<and> (g has_field_derivative g' x) (at x within s)"
eberlm@61531
   903
    by (intro has_field_derivative_series[of s f f' g' x0] assms A has_field_derivative_at_within)
eberlm@61531
   904
  then obtain g where g: "\<And>x. x \<in> s \<Longrightarrow> (\<lambda>n. f n x) sums g x"
eberlm@61531
   905
    "\<And>x. x \<in> s \<Longrightarrow> (g has_field_derivative g' x) (at x within s)" by blast
eberlm@61531
   906
  from g[OF x] show "summable (\<lambda>n. f n x)" by (auto simp: summable_def)
eberlm@61531
   907
  from g(2)[OF x] have g': "(g has_derivative op * (g' x)) (at x)"
eberlm@61531
   908
    by (simp add: has_field_derivative_def s)
eberlm@61531
   909
  have "((\<lambda>x. \<Sum>n. f n x) has_derivative op * (g' x)) (at x)"
wenzelm@61808
   910
    by (rule has_derivative_transform_within_open[OF \<open>open s\<close> x _ g'])
eberlm@61531
   911
       (insert g, auto simp: sums_iff)
eberlm@61531
   912
  thus "(\<lambda>x. \<Sum>n. f n x) complex_differentiable (at x)" unfolding differentiable_def
eberlm@61531
   913
    by (auto simp: summable_def complex_differentiable_def has_field_derivative_def)
eberlm@61531
   914
qed
eberlm@61531
   915
eberlm@61531
   916
lemma complex_differentiable_series':
eberlm@61531
   917
  fixes f :: "nat \<Rightarrow> complex \<Rightarrow> complex"
eberlm@61531
   918
  assumes "convex s" "open s"
eberlm@61531
   919
  assumes "\<And>n x. x \<in> s \<Longrightarrow> (f n has_field_derivative f' n x) (at x)"
eberlm@61531
   920
  assumes "uniformly_convergent_on s (\<lambda>n x. \<Sum>i<n. f' i x)"
eberlm@61531
   921
  assumes "x0 \<in> s" "summable (\<lambda>n. f n x0)"
eberlm@61531
   922
  shows   "(\<lambda>x. \<Sum>n. f n x) complex_differentiable (at x0)"
wenzelm@61808
   923
  using complex_differentiable_series[OF assms, of x0] \<open>x0 \<in> s\<close> by blast+
eberlm@61531
   924
wenzelm@60420
   925
subsection\<open>Bound theorem\<close>
lp15@56215
   926
lp15@56215
   927
lemma complex_differentiable_bound:
lp15@56215
   928
  fixes s :: "complex set"
lp15@56215
   929
  assumes cvs: "convex s"
lp15@56215
   930
      and df:  "\<And>z. z \<in> s \<Longrightarrow> (f has_field_derivative f' z) (at z within s)"
lp15@56215
   931
      and dn:  "\<And>z. z \<in> s \<Longrightarrow> norm (f' z) \<le> B"
lp15@56215
   932
      and "x \<in> s"  "y \<in> s"
lp15@56215
   933
    shows "norm(f x - f y) \<le> B * norm(x - y)"
lp15@56215
   934
  apply (rule differentiable_bound [OF cvs])
huffman@56223
   935
  apply (rule ballI, erule df [unfolded has_field_derivative_def])
huffman@56223
   936
  apply (rule ballI, rule onorm_le, simp add: norm_mult mult_right_mono dn)
huffman@56223
   937
  apply fact
huffman@56223
   938
  apply fact
lp15@56215
   939
  done
lp15@56215
   940
wenzelm@60420
   941
subsection\<open>Inverse function theorem for complex derivatives.\<close>
lp15@56215
   942
lp15@56215
   943
lemma has_complex_derivative_inverse_basic:
lp15@56215
   944
  fixes f :: "complex \<Rightarrow> complex"
lp15@56215
   945
  shows "DERIV f (g y) :> f' \<Longrightarrow>
lp15@56215
   946
        f' \<noteq> 0 \<Longrightarrow>
lp15@56215
   947
        continuous (at y) g \<Longrightarrow>
lp15@56215
   948
        open t \<Longrightarrow>
lp15@56215
   949
        y \<in> t \<Longrightarrow>
lp15@56215
   950
        (\<And>z. z \<in> t \<Longrightarrow> f (g z) = z)
lp15@56215
   951
        \<Longrightarrow> DERIV g y :> inverse (f')"
lp15@56215
   952
  unfolding has_field_derivative_def
lp15@56215
   953
  apply (rule has_derivative_inverse_basic)
lp15@56215
   954
  apply (auto simp:  bounded_linear_mult_right)
lp15@56215
   955
  done
lp15@56215
   956
lp15@56215
   957
(*Used only once, in Multivariate/cauchy.ml. *)
lp15@56215
   958
lemma has_complex_derivative_inverse_strong:
lp15@56215
   959
  fixes f :: "complex \<Rightarrow> complex"
lp15@56215
   960
  shows "DERIV f x :> f' \<Longrightarrow>
lp15@56215
   961
         f' \<noteq> 0 \<Longrightarrow>
lp15@56215
   962
         open s \<Longrightarrow>
lp15@56215
   963
         x \<in> s \<Longrightarrow>
lp15@56215
   964
         continuous_on s f \<Longrightarrow>
lp15@56215
   965
         (\<And>z. z \<in> s \<Longrightarrow> g (f z) = z)
lp15@56215
   966
         \<Longrightarrow> DERIV g (f x) :> inverse (f')"
lp15@56215
   967
  unfolding has_field_derivative_def
lp15@56215
   968
  apply (rule has_derivative_inverse_strong [of s x f g ])
lp15@61609
   969
  using assms
lp15@56215
   970
  by auto
lp15@56215
   971
lp15@56215
   972
lemma has_complex_derivative_inverse_strong_x:
lp15@56215
   973
  fixes f :: "complex \<Rightarrow> complex"
lp15@56215
   974
  shows  "DERIV f (g y) :> f' \<Longrightarrow>
lp15@56215
   975
          f' \<noteq> 0 \<Longrightarrow>
lp15@56215
   976
          open s \<Longrightarrow>
lp15@56215
   977
          continuous_on s f \<Longrightarrow>
lp15@56215
   978
          g y \<in> s \<Longrightarrow> f(g y) = y \<Longrightarrow>
lp15@56215
   979
          (\<And>z. z \<in> s \<Longrightarrow> g (f z) = z)
lp15@56215
   980
          \<Longrightarrow> DERIV g y :> inverse (f')"
lp15@56215
   981
  unfolding has_field_derivative_def
lp15@56215
   982
  apply (rule has_derivative_inverse_strong_x [of s g y f])
lp15@61609
   983
  using assms
lp15@56215
   984
  by auto
lp15@56215
   985
wenzelm@60420
   986
subsection \<open>Taylor on Complex Numbers\<close>
lp15@56215
   987
lp15@56215
   988
lemma setsum_Suc_reindex:
lp15@56215
   989
  fixes f :: "nat \<Rightarrow> 'a::ab_group_add"
lp15@56215
   990
    shows  "setsum f {0..n} = f 0 - f (Suc n) + setsum (\<lambda>i. f (Suc i)) {0..n}"
lp15@56215
   991
by (induct n) auto
lp15@56215
   992
lp15@56215
   993
lemma complex_taylor:
lp15@61609
   994
  assumes s: "convex s"
lp15@56215
   995
      and f: "\<And>i x. x \<in> s \<Longrightarrow> i \<le> n \<Longrightarrow> (f i has_field_derivative f (Suc i) x) (at x within s)"
lp15@56215
   996
      and B: "\<And>x. x \<in> s \<Longrightarrow> cmod (f (Suc n) x) \<le> B"
lp15@56215
   997
      and w: "w \<in> s"
lp15@56215
   998
      and z: "z \<in> s"
lp15@59730
   999
    shows "cmod(f 0 z - (\<Sum>i\<le>n. f i w * (z-w) ^ i / (fact i)))
lp15@56215
  1000
          \<le> B * cmod(z - w)^(Suc n) / fact n"
lp15@56215
  1001
proof -
lp15@56215
  1002
  have wzs: "closed_segment w z \<subseteq> s" using assms
lp15@56215
  1003
    by (metis convex_contains_segment)
lp15@56215
  1004
  { fix u
lp15@56215
  1005
    assume "u \<in> closed_segment w z"
lp15@56215
  1006
    then have "u \<in> s"
lp15@56215
  1007
      by (metis wzs subsetD)
lp15@59730
  1008
    have "(\<Sum>i\<le>n. f i u * (- of_nat i * (z-u)^(i - 1)) / (fact i) +
lp15@61609
  1009
                      f (Suc i) u * (z-u)^i / (fact i)) =
lp15@59730
  1010
              f (Suc n) u * (z-u) ^ n / (fact n)"
lp15@56215
  1011
    proof (induction n)
lp15@56215
  1012
      case 0 show ?case by simp
lp15@56215
  1013
    next
lp15@56215
  1014
      case (Suc n)
lp15@59730
  1015
      have "(\<Sum>i\<le>Suc n. f i u * (- of_nat i * (z-u) ^ (i - 1)) / (fact i) +
lp15@61609
  1016
                             f (Suc i) u * (z-u) ^ i / (fact i)) =
lp15@59730
  1017
           f (Suc n) u * (z-u) ^ n / (fact n) +
lp15@59730
  1018
           f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n) / (fact (Suc n)) -
lp15@59730
  1019
           f (Suc n) u * ((1 + of_nat n) * (z-u) ^ n) / (fact (Suc n))"
hoelzl@56479
  1020
        using Suc by simp
lp15@59730
  1021
      also have "... = f (Suc (Suc n)) u * (z-u) ^ Suc n / (fact (Suc n))"
lp15@56215
  1022
      proof -
lp15@59730
  1023
        have "(fact(Suc n)) *
lp15@59730
  1024
             (f(Suc n) u *(z-u) ^ n / (fact n) +
lp15@59730
  1025
               f(Suc(Suc n)) u *((z-u) *(z-u) ^ n) / (fact(Suc n)) -
lp15@59730
  1026
               f(Suc n) u *((1 + of_nat n) *(z-u) ^ n) / (fact(Suc n))) =
lp15@59730
  1027
            ((fact(Suc n)) *(f(Suc n) u *(z-u) ^ n)) / (fact n) +
lp15@59730
  1028
            ((fact(Suc n)) *(f(Suc(Suc n)) u *((z-u) *(z-u) ^ n)) / (fact(Suc n))) -
lp15@59730
  1029
            ((fact(Suc n)) *(f(Suc n) u *(of_nat(Suc n) *(z-u) ^ n))) / (fact(Suc n))"
lp15@59730
  1030
          by (simp add: algebra_simps del: fact.simps)
lp15@59730
  1031
        also have "... = ((fact (Suc n)) * (f (Suc n) u * (z-u) ^ n)) / (fact n) +
lp15@59730
  1032
                         (f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n)) -
lp15@59730
  1033
                         (f (Suc n) u * ((1 + of_nat n) * (z-u) ^ n))"
lp15@59730
  1034
          by (simp del: fact.simps)
lp15@59730
  1035
        also have "... = (of_nat (Suc n) * (f (Suc n) u * (z-u) ^ n)) +
lp15@59730
  1036
                         (f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n)) -
lp15@59730
  1037
                         (f (Suc n) u * ((1 + of_nat n) * (z-u) ^ n))"
lp15@59730
  1038
          by (simp only: fact.simps of_nat_mult ac_simps) simp
lp15@56215
  1039
        also have "... = f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n)"
lp15@56215
  1040
          by (simp add: algebra_simps)
lp15@56215
  1041
        finally show ?thesis
lp15@59730
  1042
        by (simp add: mult_left_cancel [where c = "(fact (Suc n))", THEN iffD1] del: fact.simps)
lp15@56215
  1043
      qed
lp15@56215
  1044
      finally show ?case .
lp15@56215
  1045
    qed
lp15@61609
  1046
    then have "((\<lambda>v. (\<Sum>i\<le>n. f i v * (z - v)^i / (fact i)))
lp15@59730
  1047
                has_field_derivative f (Suc n) u * (z-u) ^ n / (fact n))
lp15@56215
  1048
               (at u within s)"
hoelzl@56381
  1049
      apply (intro derivative_eq_intros)
wenzelm@60420
  1050
      apply (blast intro: assms \<open>u \<in> s\<close>)
lp15@56215
  1051
      apply (rule refl)+
lp15@56215
  1052
      apply (auto simp: field_simps)
lp15@56215
  1053
      done
lp15@56215
  1054
  } note sum_deriv = this
lp15@56215
  1055
  { fix u
lp15@56215
  1056
    assume u: "u \<in> closed_segment w z"
lp15@56215
  1057
    then have us: "u \<in> s"
lp15@56215
  1058
      by (metis wzs subsetD)
lp15@56215
  1059
    have "cmod (f (Suc n) u) * cmod (z - u) ^ n \<le> cmod (f (Suc n) u) * cmod (u - z) ^ n"
lp15@56215
  1060
      by (metis norm_minus_commute order_refl)
lp15@56215
  1061
    also have "... \<le> cmod (f (Suc n) u) * cmod (z - w) ^ n"
lp15@56215
  1062
      by (metis mult_left_mono norm_ge_zero power_mono segment_bound [OF u])
lp15@56215
  1063
    also have "... \<le> B * cmod (z - w) ^ n"
lp15@56215
  1064
      by (metis norm_ge_zero zero_le_power mult_right_mono  B [OF us])
lp15@56215
  1065
    finally have "cmod (f (Suc n) u) * cmod (z - u) ^ n \<le> B * cmod (z - w) ^ n" .
lp15@56215
  1066
  } note cmod_bound = this
lp15@59730
  1067
  have "(\<Sum>i\<le>n. f i z * (z - z) ^ i / (fact i)) = (\<Sum>i\<le>n. (f i z / (fact i)) * 0 ^ i)"
lp15@56215
  1068
    by simp
lp15@59730
  1069
  also have "\<dots> = f 0 z / (fact 0)"
lp15@56215
  1070
    by (subst setsum_zero_power) simp
lp15@61609
  1071
  finally have "cmod (f 0 z - (\<Sum>i\<le>n. f i w * (z - w) ^ i / (fact i)))
lp15@59730
  1072
                \<le> cmod ((\<Sum>i\<le>n. f i w * (z - w) ^ i / (fact i)) -
lp15@59730
  1073
                        (\<Sum>i\<le>n. f i z * (z - z) ^ i / (fact i)))"
lp15@56215
  1074
    by (simp add: norm_minus_commute)
lp15@59730
  1075
  also have "... \<le> B * cmod (z - w) ^ n / (fact n) * cmod (w - z)"
lp15@61609
  1076
    apply (rule complex_differentiable_bound
lp15@59730
  1077
      [where f' = "\<lambda>w. f (Suc n) w * (z - w)^n / (fact n)"
paulson@61518
  1078
         and s = "closed_segment w z", OF convex_closed_segment])
lp15@61609
  1079
    apply (auto simp: ends_in_segment DERIV_subset [OF sum_deriv wzs]
lp15@56215
  1080
                  norm_divide norm_mult norm_power divide_le_cancel cmod_bound)
lp15@56215
  1081
    done
lp15@59730
  1082
  also have "...  \<le> B * cmod (z - w) ^ Suc n / (fact n)"
lp15@61609
  1083
    by (simp add: algebra_simps norm_minus_commute)
lp15@56215
  1084
  finally show ?thesis .
lp15@56215
  1085
qed
lp15@56215
  1086
wenzelm@60420
  1087
text\<open>Something more like the traditional MVT for real components.\<close>
hoelzl@56370
  1088
lp15@56238
  1089
lemma complex_mvt_line:
hoelzl@56369
  1090
  assumes "\<And>u. u \<in> closed_segment w z \<Longrightarrow> (f has_field_derivative f'(u)) (at u)"
paulson@61518
  1091
    shows "\<exists>u. u \<in> closed_segment w z \<and> Re(f z) - Re(f w) = Re(f'(u) * (z - w))"
lp15@56238
  1092
proof -
lp15@56238
  1093
  have twz: "\<And>t. (1 - t) *\<^sub>R w + t *\<^sub>R z = w + t *\<^sub>R (z - w)"
lp15@56238
  1094
    by (simp add: real_vector.scale_left_diff_distrib real_vector.scale_right_diff_distrib)
hoelzl@56381
  1095
  note assms[unfolded has_field_derivative_def, derivative_intros]
lp15@56238
  1096
  show ?thesis
lp15@56238
  1097
    apply (cut_tac mvt_simple
lp15@56238
  1098
                     [of 0 1 "Re o f o (\<lambda>t. (1 - t) *\<^sub>R w +  t *\<^sub>R z)"
lp15@56238
  1099
                      "\<lambda>u. Re o (\<lambda>h. f'((1 - u) *\<^sub>R w + u *\<^sub>R z) * h) o (\<lambda>t. t *\<^sub>R (z - w))"])
lp15@56238
  1100
    apply auto
lp15@56238
  1101
    apply (rule_tac x="(1 - x) *\<^sub>R w + x *\<^sub>R z" in exI)
paulson@61518
  1102
    apply (auto simp: closed_segment_def twz) []
paulson@61518
  1103
    apply (intro derivative_eq_intros has_derivative_at_within, simp_all)
hoelzl@56369
  1104
    apply (simp add: fun_eq_iff real_vector.scale_right_diff_distrib)
paulson@61518
  1105
    apply (force simp: twz closed_segment_def)
lp15@56238
  1106
    done
lp15@56238
  1107
qed
lp15@56238
  1108
lp15@56238
  1109
lemma complex_taylor_mvt:
lp15@56238
  1110
  assumes "\<And>i x. \<lbrakk>x \<in> closed_segment w z; i \<le> n\<rbrakk> \<Longrightarrow> ((f i) has_field_derivative f (Suc i) x) (at x)"
lp15@56238
  1111
    shows "\<exists>u. u \<in> closed_segment w z \<and>
lp15@56238
  1112
            Re (f 0 z) =
lp15@59730
  1113
            Re ((\<Sum>i = 0..n. f i w * (z - w) ^ i / (fact i)) +
lp15@59730
  1114
                (f (Suc n) u * (z-u)^n / (fact n)) * (z - w))"
lp15@56238
  1115
proof -
lp15@56238
  1116
  { fix u
lp15@56238
  1117
    assume u: "u \<in> closed_segment w z"
lp15@56238
  1118
    have "(\<Sum>i = 0..n.
lp15@56238
  1119
               (f (Suc i) u * (z-u) ^ i - of_nat i * (f i u * (z-u) ^ (i - Suc 0))) /
lp15@59730
  1120
               (fact i)) =
lp15@56238
  1121
          f (Suc 0) u -
lp15@56238
  1122
             (f (Suc (Suc n)) u * ((z-u) ^ Suc n) - (of_nat (Suc n)) * (z-u) ^ n * f (Suc n) u) /
lp15@59730
  1123
             (fact (Suc n)) +
lp15@56238
  1124
             (\<Sum>i = 0..n.
lp15@56238
  1125
                 (f (Suc (Suc i)) u * ((z-u) ^ Suc i) - of_nat (Suc i) * (f (Suc i) u * (z-u) ^ i)) /
lp15@59730
  1126
                 (fact (Suc i)))"
lp15@56238
  1127
       by (subst setsum_Suc_reindex) simp
lp15@56238
  1128
    also have "... = f (Suc 0) u -
lp15@56238
  1129
             (f (Suc (Suc n)) u * ((z-u) ^ Suc n) - (of_nat (Suc n)) * (z-u) ^ n * f (Suc n) u) /
lp15@59730
  1130
             (fact (Suc n)) +
lp15@56238
  1131
             (\<Sum>i = 0..n.
lp15@61609
  1132
                 f (Suc (Suc i)) u * ((z-u) ^ Suc i) / (fact (Suc i))  -
lp15@59730
  1133
                 f (Suc i) u * (z-u) ^ i / (fact i))"
haftmann@57514
  1134
      by (simp only: diff_divide_distrib fact_cancel ac_simps)
lp15@56238
  1135
    also have "... = f (Suc 0) u -
lp15@56238
  1136
             (f (Suc (Suc n)) u * (z-u) ^ Suc n - of_nat (Suc n) * (z-u) ^ n * f (Suc n) u) /
lp15@59730
  1137
             (fact (Suc n)) +
lp15@59730
  1138
             f (Suc (Suc n)) u * (z-u) ^ Suc n / (fact (Suc n)) - f (Suc 0) u"
lp15@56238
  1139
      by (subst setsum_Suc_diff) auto
lp15@59730
  1140
    also have "... = f (Suc n) u * (z-u) ^ n / (fact n)"
lp15@56238
  1141
      by (simp only: algebra_simps diff_divide_distrib fact_cancel)
lp15@61609
  1142
    finally have "(\<Sum>i = 0..n. (f (Suc i) u * (z - u) ^ i
lp15@59730
  1143
                             - of_nat i * (f i u * (z-u) ^ (i - Suc 0))) / (fact i)) =
lp15@59730
  1144
                  f (Suc n) u * (z - u) ^ n / (fact n)" .
lp15@59730
  1145
    then have "((\<lambda>u. \<Sum>i = 0..n. f i u * (z - u) ^ i / (fact i)) has_field_derivative
lp15@59730
  1146
                f (Suc n) u * (z - u) ^ n / (fact n))  (at u)"
hoelzl@56381
  1147
      apply (intro derivative_eq_intros)+
lp15@56238
  1148
      apply (force intro: u assms)
lp15@56238
  1149
      apply (rule refl)+
haftmann@57514
  1150
      apply (auto simp: ac_simps)
lp15@56238
  1151
      done
lp15@56238
  1152
  }
lp15@56238
  1153
  then show ?thesis
lp15@59730
  1154
    apply (cut_tac complex_mvt_line [of w z "\<lambda>u. \<Sum>i = 0..n. f i u * (z-u) ^ i / (fact i)"
lp15@59730
  1155
               "\<lambda>u. (f (Suc n) u * (z-u)^n / (fact n))"])
lp15@56238
  1156
    apply (auto simp add: intro: open_closed_segment)
lp15@56238
  1157
    done
lp15@56238
  1158
qed
lp15@56238
  1159
lp15@60017
  1160
wenzelm@60420
  1161
subsection \<open>Polynomal function extremal theorem, from HOL Light\<close>
lp15@60017
  1162
lp15@60017
  1163
lemma polyfun_extremal_lemma: (*COMPLEX_POLYFUN_EXTREMAL_LEMMA in HOL Light*)
lp15@60017
  1164
    fixes c :: "nat \<Rightarrow> 'a::real_normed_div_algebra"
lp15@60017
  1165
  assumes "0 < e"
lp15@60017
  1166
    shows "\<exists>M. \<forall>z. M \<le> norm(z) \<longrightarrow> norm (\<Sum>i\<le>n. c(i) * z^i) \<le> e * norm(z) ^ (Suc n)"
lp15@60017
  1167
proof (induct n)
lp15@60017
  1168
  case 0 with assms
lp15@60017
  1169
  show ?case
lp15@60017
  1170
    apply (rule_tac x="norm (c 0) / e" in exI)
lp15@60017
  1171
    apply (auto simp: field_simps)
lp15@60017
  1172
    done
lp15@60017
  1173
next
lp15@60017
  1174
  case (Suc n)
lp15@60017
  1175
  obtain M where M: "\<And>z. M \<le> norm z \<Longrightarrow> norm (\<Sum>i\<le>n. c i * z^i) \<le> e * norm z ^ Suc n"
lp15@60017
  1176
    using Suc assms by blast
lp15@60017
  1177
  show ?case
lp15@60017
  1178
  proof (rule exI [where x= "max M (1 + norm(c(Suc n)) / e)"], clarsimp simp del: power_Suc)
lp15@60017
  1179
    fix z::'a
lp15@60017
  1180
    assume z1: "M \<le> norm z" and "1 + norm (c (Suc n)) / e \<le> norm z"
lp15@60017
  1181
    then have z2: "e + norm (c (Suc n)) \<le> e * norm z"
lp15@60017
  1182
      using assms by (simp add: field_simps)
lp15@60017
  1183
    have "norm (\<Sum>i\<le>n. c i * z^i) \<le> e * norm z ^ Suc n"
lp15@60017
  1184
      using M [OF z1] by simp
lp15@60017
  1185
    then have "norm (\<Sum>i\<le>n. c i * z^i) + norm (c (Suc n) * z ^ Suc n) \<le> e * norm z ^ Suc n + norm (c (Suc n) * z ^ Suc n)"
lp15@60017
  1186
      by simp
lp15@60017
  1187
    then have "norm ((\<Sum>i\<le>n. c i * z^i) + c (Suc n) * z ^ Suc n) \<le> e * norm z ^ Suc n + norm (c (Suc n) * z ^ Suc n)"
lp15@60017
  1188
      by (blast intro: norm_triangle_le elim: )
lp15@60017
  1189
    also have "... \<le> (e + norm (c (Suc n))) * norm z ^ Suc n"
lp15@60017
  1190
      by (simp add: norm_power norm_mult algebra_simps)
lp15@60017
  1191
    also have "... \<le> (e * norm z) * norm z ^ Suc n"
lp15@60017
  1192
      by (metis z2 mult.commute mult_left_mono norm_ge_zero norm_power)
lp15@60017
  1193
    finally show "norm ((\<Sum>i\<le>n. c i * z^i) + c (Suc n) * z ^ Suc n) \<le> e * norm z ^ Suc (Suc n)"
lp15@60162
  1194
      by simp
lp15@60017
  1195
  qed
lp15@60017
  1196
qed
lp15@60017
  1197
lp15@60017
  1198
lemma polyfun_extremal: (*COMPLEX_POLYFUN_EXTREMAL in HOL Light*)
lp15@60017
  1199
    fixes c :: "nat \<Rightarrow> 'a::real_normed_div_algebra"
lp15@60017
  1200
  assumes k: "c k \<noteq> 0" "1\<le>k" and kn: "k\<le>n"
lp15@60017
  1201
    shows "eventually (\<lambda>z. norm (\<Sum>i\<le>n. c(i) * z^i) \<ge> B) at_infinity"
lp15@60017
  1202
using kn
lp15@60017
  1203
proof (induction n)
lp15@60017
  1204
  case 0
lp15@60017
  1205
  then show ?case
lp15@60017
  1206
    using k  by simp
lp15@60017
  1207
next
lp15@60017
  1208
  case (Suc m)
lp15@60017
  1209
  let ?even = ?case
lp15@60017
  1210
  show ?even
lp15@60017
  1211
  proof (cases "c (Suc m) = 0")
lp15@60017
  1212
    case True
lp15@60017
  1213
    then show ?even using Suc k
lp15@60017
  1214
      by auto (metis antisym_conv less_eq_Suc_le not_le)
lp15@60017
  1215
  next
lp15@60017
  1216
    case False
lp15@60017
  1217
    then obtain M where M:
lp15@60017
  1218
          "\<And>z. M \<le> norm z \<Longrightarrow> norm (\<Sum>i\<le>m. c i * z^i) \<le> norm (c (Suc m)) / 2 * norm z ^ Suc m"
lp15@60017
  1219
      using polyfun_extremal_lemma [of "norm(c (Suc m)) / 2" c m] Suc
lp15@60017
  1220
      by auto
lp15@60017
  1221
    have "\<exists>b. \<forall>z. b \<le> norm z \<longrightarrow> B \<le> norm (\<Sum>i\<le>Suc m. c i * z^i)"
lp15@60017
  1222
    proof (rule exI [where x="max M (max 1 (\<bar>B\<bar> / (norm(c (Suc m)) / 2)))"], clarsimp simp del: power_Suc)
lp15@60017
  1223
      fix z::'a
lp15@60017
  1224
      assume z1: "M \<le> norm z" "1 \<le> norm z"
lp15@60017
  1225
         and "\<bar>B\<bar> * 2 / norm (c (Suc m)) \<le> norm z"
lp15@60017
  1226
      then have z2: "\<bar>B\<bar> \<le> norm (c (Suc m)) * norm z / 2"
lp15@60017
  1227
        using False by (simp add: field_simps)
lp15@60017
  1228
      have nz: "norm z \<le> norm z ^ Suc m"
wenzelm@60420
  1229
        by (metis \<open>1 \<le> norm z\<close> One_nat_def less_eq_Suc_le power_increasing power_one_right zero_less_Suc)
lp15@60017
  1230
      have *: "\<And>y x. norm (c (Suc m)) * norm z / 2 \<le> norm y - norm x \<Longrightarrow> B \<le> norm (x + y)"
lp15@60017
  1231
        by (metis abs_le_iff add.commute norm_diff_ineq order_trans z2)
lp15@60017
  1232
      have "norm z * norm (c (Suc m)) + 2 * norm (\<Sum>i\<le>m. c i * z^i)
lp15@60017
  1233
            \<le> norm (c (Suc m)) * norm z + norm (c (Suc m)) * norm z ^ Suc m"
lp15@60017
  1234
        using M [of z] Suc z1  by auto
lp15@60017
  1235
      also have "... \<le> 2 * (norm (c (Suc m)) * norm z ^ Suc m)"
lp15@60017
  1236
        using nz by (simp add: mult_mono del: power_Suc)
lp15@60017
  1237
      finally show "B \<le> norm ((\<Sum>i\<le>m. c i * z^i) + c (Suc m) * z ^ Suc m)"
lp15@60017
  1238
        using Suc.IH
lp15@60017
  1239
        apply (auto simp: eventually_at_infinity)
lp15@60017
  1240
        apply (rule *)
lp15@60017
  1241
        apply (simp add: field_simps norm_mult norm_power)
lp15@60017
  1242
        done
lp15@60017
  1243
    qed
lp15@60017
  1244
    then show ?even
lp15@60017
  1245
      by (simp add: eventually_at_infinity)
lp15@60017
  1246
  qed
lp15@60017
  1247
qed
lp15@60017
  1248
lp15@56215
  1249
end