src/HOL/MicroJava/BV/BVExample.thy
author wenzelm
Thu Oct 04 20:29:42 2007 +0200 (2007-10-04)
changeset 24850 0cfd722ab579
parent 24351 1e028d114075
child 28520 376b9c083b04
permissions -rw-r--r--
Name.uu, Name.aT;
kleing@12951
     1
(*  Title:      HOL/MicroJava/BV/BVExample.thy
kleing@12951
     2
    ID:         $Id$
kleing@12951
     3
    Author:     Gerwin Klein
kleing@12951
     4
*)
kleing@12951
     5
kleing@12972
     6
header {* \isaheader{Example Welltypings}\label{sec:BVExample} *}
kleing@12951
     7
haftmann@23022
     8
theory BVExample
wenzelm@24351
     9
imports "../JVM/JVMListExample" BVSpecTypeSafe JVM Executable_Set
haftmann@23022
    10
begin
kleing@12951
    11
kleing@12972
    12
text {*
kleing@12972
    13
  This theory shows type correctness of the example program in section 
kleing@12972
    14
  \ref{sec:JVMListExample} (p. \pageref{sec:JVMListExample}) by
kleing@12972
    15
  explicitly providing a welltyping. It also shows that the start
kleing@12972
    16
  state of the program conforms to the welltyping; hence type safe
kleing@12972
    17
  execution is guaranteed.
kleing@12972
    18
*}
kleing@12972
    19
kleing@12951
    20
section "Setup"
kleing@12951
    21
text {*
kleing@12951
    22
  Since the types @{typ cnam}, @{text vnam}, and @{text mname} are 
kleing@12951
    23
  anonymous, we describe distinctness of names in the example by axioms:
kleing@12951
    24
*}
kleing@12951
    25
axioms 
kleing@12951
    26
  distinct_classes: "list_nam \<noteq> test_nam"
kleing@12951
    27
  distinct_fields:  "val_nam \<noteq> next_nam"
kleing@12951
    28
kleing@13101
    29
text {* Abbreviations for definitions we will have to use often in the
kleing@12951
    30
proofs below: *}
kleing@13101
    31
lemmas name_defs   = list_name_def test_name_def val_name_def next_name_def 
kleing@12951
    32
lemmas system_defs = SystemClasses_def ObjectC_def NullPointerC_def 
kleing@12951
    33
                     OutOfMemoryC_def ClassCastC_def
kleing@12951
    34
lemmas class_defs  = list_class_def test_class_def
kleing@12951
    35
kleing@12951
    36
text {* These auxiliary proofs are for efficiency: class lookup,
kleing@12951
    37
subclass relation, method and field lookup are computed only once:
kleing@12951
    38
*}
kleing@12951
    39
lemma class_Object [simp]:
kleing@12951
    40
  "class E Object = Some (arbitrary, [],[])"
kleing@12951
    41
  by (simp add: class_def system_defs E_def)
kleing@12951
    42
kleing@12951
    43
lemma class_NullPointer [simp]:
kleing@12951
    44
  "class E (Xcpt NullPointer) = Some (Object, [], [])"
kleing@12951
    45
  by (simp add: class_def system_defs E_def)
kleing@12951
    46
kleing@12951
    47
lemma class_OutOfMemory [simp]:
kleing@12951
    48
  "class E (Xcpt OutOfMemory) = Some (Object, [], [])"
kleing@12951
    49
  by (simp add: class_def system_defs E_def)
kleing@12951
    50
kleing@12951
    51
lemma class_ClassCast [simp]:
kleing@12951
    52
  "class E (Xcpt ClassCast) = Some (Object, [], [])"
kleing@12951
    53
  by (simp add: class_def system_defs E_def)
kleing@12951
    54
kleing@12951
    55
lemma class_list [simp]:
kleing@12951
    56
  "class E list_name = Some list_class"
kleing@12951
    57
  by (simp add: class_def system_defs E_def name_defs distinct_classes [symmetric])
kleing@12951
    58
 
kleing@12951
    59
lemma class_test [simp]:
kleing@12951
    60
  "class E test_name = Some test_class"
kleing@12951
    61
  by (simp add: class_def system_defs E_def name_defs distinct_classes [symmetric])
kleing@12951
    62
kleing@12951
    63
lemma E_classes [simp]:
kleing@12951
    64
  "{C. is_class E C} = {list_name, test_name, Xcpt NullPointer, 
kleing@12951
    65
                        Xcpt ClassCast, Xcpt OutOfMemory, Object}"
kleing@12951
    66
  by (auto simp add: is_class_def class_def system_defs E_def name_defs class_defs)
kleing@12951
    67
kleing@12951
    68
text {* The subclass releation spelled out: *}
kleing@12951
    69
lemma subcls1:
berghofe@23757
    70
  "subcls1 E = (\<lambda>C D. (C, D) \<in> {(list_name,Object), (test_name,Object), (Xcpt NullPointer, Object),
berghofe@23757
    71
                (Xcpt ClassCast, Object), (Xcpt OutOfMemory, Object)})"
kleing@12951
    72
  apply (simp add: subcls1_def2)
kleing@12951
    73
  apply (simp add: name_defs class_defs system_defs E_def class_def)
berghofe@23757
    74
  apply (auto simp: expand_fun_eq split: split_if_asm)
kleing@12951
    75
  done
kleing@12951
    76
kleing@12951
    77
text {* The subclass relation is acyclic; hence its converse is well founded: *}
kleing@12951
    78
lemma notin_rtrancl:
berghofe@22271
    79
  "r\<^sup>*\<^sup>* a b \<Longrightarrow> a \<noteq> b \<Longrightarrow> (\<And>y. \<not> r a y) \<Longrightarrow> False"
berghofe@23757
    80
  by (auto elim: converse_rtranclpE)
kleing@12951
    81
berghofe@22271
    82
lemma acyclic_subcls1_E: "acyclicP (subcls1 E)"
berghofe@22271
    83
  apply (rule acyclicI [to_pred])
kleing@12951
    84
  apply (simp add: subcls1)
berghofe@23757
    85
  apply (auto dest!: tranclpD)
kleing@12951
    86
  apply (auto elim!: notin_rtrancl simp add: name_defs distinct_classes)
kleing@12951
    87
  done
kleing@12951
    88
berghofe@22271
    89
lemma wf_subcls1_E: "wfP ((subcls1 E)\<inverse>\<inverse>)"
berghofe@22271
    90
  apply (rule finite_acyclic_wf_converse [to_pred])
berghofe@23757
    91
  apply (simp add: subcls1 del: insert_iff)
kleing@12951
    92
  apply (rule acyclic_subcls1_E)
kleing@12951
    93
  done  
kleing@12951
    94
kleing@12951
    95
text {* Method and field lookup: *}
kleing@12951
    96
lemma method_Object [simp]:
kleing@12951
    97
  "method (E, Object) = empty"
kleing@12951
    98
  by (simp add: method_rec_lemma [OF class_Object wf_subcls1_E])
kleing@12951
    99
kleing@12951
   100
lemma method_append [simp]:
kleing@12951
   101
  "method (E, list_name) (append_name, [Class list_name]) =
kleing@12951
   102
  Some (list_name, PrimT Void, 3, 0, append_ins, [(1, 2, 8, Xcpt NullPointer)])"
kleing@12951
   103
  apply (insert class_list)
kleing@12951
   104
  apply (unfold list_class_def)
kleing@12951
   105
  apply (drule method_rec_lemma [OF _ wf_subcls1_E])
kleing@12951
   106
  apply simp
kleing@12951
   107
  done
kleing@12951
   108
kleing@12951
   109
lemma method_makelist [simp]:
kleing@12951
   110
  "method (E, test_name) (makelist_name, []) = 
kleing@12951
   111
  Some (test_name, PrimT Void, 3, 2, make_list_ins, [])"
kleing@12951
   112
  apply (insert class_test)
kleing@12951
   113
  apply (unfold test_class_def)
kleing@12951
   114
  apply (drule method_rec_lemma [OF _ wf_subcls1_E])
kleing@12951
   115
  apply simp
kleing@12951
   116
  done
kleing@12951
   117
kleing@12951
   118
lemma field_val [simp]:
kleing@12951
   119
  "field (E, list_name) val_name = Some (list_name, PrimT Integer)"
haftmann@23022
   120
  apply (unfold TypeRel.field_def)
kleing@12951
   121
  apply (insert class_list)
kleing@12951
   122
  apply (unfold list_class_def)
kleing@12951
   123
  apply (drule fields_rec_lemma [OF _ wf_subcls1_E])
kleing@12951
   124
  apply simp
kleing@12951
   125
  done
kleing@12951
   126
kleing@12951
   127
lemma field_next [simp]:
kleing@12951
   128
  "field (E, list_name) next_name = Some (list_name, Class list_name)"
haftmann@23022
   129
  apply (unfold TypeRel.field_def)
kleing@12951
   130
  apply (insert class_list)
kleing@12951
   131
  apply (unfold list_class_def)
kleing@12951
   132
  apply (drule fields_rec_lemma [OF _ wf_subcls1_E])
kleing@12951
   133
  apply (simp add: name_defs distinct_fields [symmetric])
kleing@12951
   134
  done
kleing@12951
   135
kleing@12951
   136
lemma [simp]: "fields (E, Object) = []"
kleing@12951
   137
   by (simp add: fields_rec_lemma [OF class_Object wf_subcls1_E])
kleing@12951
   138
 
kleing@12951
   139
lemma [simp]: "fields (E, Xcpt NullPointer) = []"
kleing@12951
   140
  by (simp add: fields_rec_lemma [OF class_NullPointer wf_subcls1_E])
kleing@12951
   141
kleing@12951
   142
lemma [simp]: "fields (E, Xcpt ClassCast) = []"
kleing@12951
   143
  by (simp add: fields_rec_lemma [OF class_ClassCast wf_subcls1_E])
kleing@12951
   144
kleing@12951
   145
lemma [simp]: "fields (E, Xcpt OutOfMemory) = []"
kleing@12951
   146
  by (simp add: fields_rec_lemma [OF class_OutOfMemory wf_subcls1_E])
kleing@12951
   147
kleing@12951
   148
lemma [simp]: "fields (E, test_name) = []"
kleing@12951
   149
  apply (insert class_test)
kleing@12951
   150
  apply (unfold test_class_def)
kleing@12951
   151
  apply (drule fields_rec_lemma [OF _ wf_subcls1_E])
kleing@12951
   152
  apply simp
kleing@12951
   153
  done
kleing@12951
   154
kleing@12951
   155
lemmas [simp] = is_class_def
kleing@12951
   156
kleing@12951
   157
text {*
kleing@12951
   158
  The next definition and three proof rules implement an algorithm to
kleing@12951
   159
  enumarate natural numbers. The command @{text "apply (elim pc_end pc_next pc_0"} 
kleing@12951
   160
  transforms a goal of the form
kleing@12951
   161
  @{prop [display] "pc < n \<Longrightarrow> P pc"} 
kleing@12951
   162
  into a series of goals
kleing@12951
   163
  @{prop [display] "P 0"} 
kleing@12951
   164
  @{prop [display] "P (Suc 0)"} 
kleing@12951
   165
kleing@12951
   166
  @{text "\<dots>"}
kleing@12951
   167
kleing@12951
   168
  @{prop [display] "P n"} 
kleing@12951
   169
*}
kleing@12951
   170
constdefs 
kleing@12951
   171
  intervall :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> bool" ("_ \<in> [_, _')")
kleing@12951
   172
  "x \<in> [a, b) \<equiv> a \<le> x \<and> x < b"
kleing@12951
   173
kleing@12951
   174
lemma pc_0: "x < n \<Longrightarrow> (x \<in> [0, n) \<Longrightarrow> P x) \<Longrightarrow> P x"
kleing@12951
   175
  by (simp add: intervall_def)
kleing@12951
   176
kleing@12951
   177
lemma pc_next: "x \<in> [n0, n) \<Longrightarrow> P n0 \<Longrightarrow> (x \<in> [Suc n0, n) \<Longrightarrow> P x) \<Longrightarrow> P x"
kleing@12951
   178
  apply (cases "x=n0")
nipkow@13187
   179
  apply (auto simp add: intervall_def)
kleing@12951
   180
  done
kleing@12951
   181
kleing@12951
   182
lemma pc_end: "x \<in> [n,n) \<Longrightarrow> P x" 
kleing@12951
   183
  by (unfold intervall_def) arith
kleing@12951
   184
kleing@12951
   185
kleing@12951
   186
section "Program structure"
kleing@12951
   187
kleing@12951
   188
text {*
kleing@12951
   189
  The program is structurally wellformed:
kleing@12951
   190
*}
streckem@14045
   191
kleing@12951
   192
lemma wf_struct:
kleing@12951
   193
  "wf_prog (\<lambda>G C mb. True) E" (is "wf_prog ?mb E")
kleing@12951
   194
proof -
kleing@12951
   195
  have "unique E" 
kleing@12951
   196
    by (simp add: system_defs E_def class_defs name_defs distinct_classes)
kleing@12951
   197
  moreover
kleing@12951
   198
  have "set SystemClasses \<subseteq> set E" by (simp add: system_defs E_def)
kleing@12951
   199
  hence "wf_syscls E" by (rule wf_syscls)
kleing@12951
   200
  moreover
kleing@12951
   201
  have "wf_cdecl ?mb E ObjectC" by (simp add: wf_cdecl_def ObjectC_def)
kleing@12951
   202
  moreover
kleing@12951
   203
  have "wf_cdecl ?mb E NullPointerC" 
kleing@12951
   204
    by (auto elim: notin_rtrancl 
kleing@12951
   205
            simp add: wf_cdecl_def name_defs NullPointerC_def subcls1)
kleing@12951
   206
  moreover
kleing@12951
   207
  have "wf_cdecl ?mb E ClassCastC" 
kleing@12951
   208
    by (auto elim: notin_rtrancl 
kleing@12951
   209
            simp add: wf_cdecl_def name_defs ClassCastC_def subcls1)
kleing@12951
   210
  moreover
kleing@12951
   211
  have "wf_cdecl ?mb E OutOfMemoryC" 
kleing@12951
   212
    by (auto elim: notin_rtrancl 
kleing@12951
   213
            simp add: wf_cdecl_def name_defs OutOfMemoryC_def subcls1)
kleing@12951
   214
  moreover
kleing@12951
   215
  have "wf_cdecl ?mb E (list_name, list_class)"
kleing@12951
   216
    apply (auto elim!: notin_rtrancl 
kleing@12951
   217
            simp add: wf_cdecl_def wf_fdecl_def list_class_def 
kleing@12951
   218
                      wf_mdecl_def wf_mhead_def subcls1)
kleing@12951
   219
    apply (auto simp add: name_defs distinct_classes distinct_fields)
kleing@12951
   220
    done    
kleing@12951
   221
  moreover
kleing@12951
   222
  have "wf_cdecl ?mb E (test_name, test_class)" 
kleing@12951
   223
    apply (auto elim!: notin_rtrancl 
kleing@12951
   224
            simp add: wf_cdecl_def wf_fdecl_def test_class_def 
kleing@12951
   225
                      wf_mdecl_def wf_mhead_def subcls1)
kleing@12951
   226
    apply (auto simp add: name_defs distinct_classes distinct_fields)
kleing@12951
   227
    done       
kleing@12951
   228
  ultimately
streckem@14045
   229
  show ?thesis 
streckem@14045
   230
    by (simp add: wf_prog_def ws_prog_def wf_cdecl_mrT_cdecl_mdecl E_def SystemClasses_def)
kleing@12951
   231
qed
kleing@12951
   232
kleing@12951
   233
section "Welltypings"
kleing@12951
   234
text {*
kleing@12951
   235
  We show welltypings of the methods @{term append_name} in class @{term list_name}, 
kleing@12951
   236
  and @{term makelist_name} in class @{term test_name}:
kleing@12951
   237
*}
kleing@12951
   238
lemmas eff_simps [simp] = eff_def norm_eff_def xcpt_eff_def
kleing@12951
   239
declare appInvoke [simp del]
kleing@12951
   240
kleing@12951
   241
constdefs
kleing@12951
   242
  phi_append :: method_type ("\<phi>\<^sub>a")
kleing@12951
   243
  "\<phi>\<^sub>a \<equiv> map (\<lambda>(x,y). Some (x, map OK y)) [ 
kleing@12951
   244
   (                                    [], [Class list_name, Class list_name]),
kleing@12951
   245
   (                     [Class list_name], [Class list_name, Class list_name]),
kleing@12951
   246
   (                     [Class list_name], [Class list_name, Class list_name]),
kleing@12951
   247
   (    [Class list_name, Class list_name], [Class list_name, Class list_name]),
kleing@12951
   248
   ([NT, Class list_name, Class list_name], [Class list_name, Class list_name]),
kleing@12951
   249
   (                     [Class list_name], [Class list_name, Class list_name]),
kleing@12951
   250
   (    [Class list_name, Class list_name], [Class list_name, Class list_name]),
kleing@12951
   251
   (                          [PrimT Void], [Class list_name, Class list_name]),
kleing@12951
   252
   (                        [Class Object], [Class list_name, Class list_name]),
kleing@12951
   253
   (                                    [], [Class list_name, Class list_name]),
kleing@12951
   254
   (                     [Class list_name], [Class list_name, Class list_name]),
kleing@12951
   255
   (    [Class list_name, Class list_name], [Class list_name, Class list_name]),
kleing@12951
   256
   (                                    [], [Class list_name, Class list_name]),
kleing@12951
   257
   (                          [PrimT Void], [Class list_name, Class list_name])]"
kleing@12951
   258
kleing@13214
   259
kleing@13214
   260
lemma bounded_append [simp]:
kleing@13214
   261
  "check_bounded append_ins [(Suc 0, 2, 8, Xcpt NullPointer)]"
kleing@13214
   262
  apply (simp add: check_bounded_def)
kleing@13214
   263
  apply (simp add: nat_number append_ins_def)
kleing@13214
   264
  apply (rule allI, rule impI)
kleing@13214
   265
  apply (elim pc_end pc_next pc_0)
kleing@13214
   266
  apply auto
kleing@13214
   267
  done
kleing@13214
   268
kleing@13214
   269
lemma types_append [simp]: "check_types E 3 (Suc (Suc 0)) (map OK \<phi>\<^sub>a)"
kleing@13214
   270
  apply (auto simp add: check_types_def phi_append_def JVM_states_unfold)
kleing@13214
   271
  apply (unfold list_def)
kleing@13214
   272
  apply auto
kleing@13214
   273
  done
kleing@13214
   274
  
kleing@12951
   275
lemma wt_append [simp]:
kleing@12951
   276
  "wt_method E list_name [Class list_name] (PrimT Void) 3 0 append_ins
kleing@12951
   277
             [(Suc 0, 2, 8, Xcpt NullPointer)] \<phi>\<^sub>a"
kleing@13214
   278
  apply (simp add: wt_method_def wt_start_def wt_instr_def)
kleing@13214
   279
  apply (simp add: phi_append_def append_ins_def)
kleing@12951
   280
  apply clarify
kleing@12951
   281
  apply (elim pc_end pc_next pc_0)
kleing@12951
   282
  apply simp
kleing@12951
   283
  apply (fastsimp simp add: match_exception_entry_def sup_state_conv subcls1)
kleing@12951
   284
  apply simp
kleing@12951
   285
  apply simp
kleing@12951
   286
  apply (fastsimp simp add: sup_state_conv subcls1)
kleing@12951
   287
  apply simp
kleing@12951
   288
  apply (simp add: app_def xcpt_app_def)
kleing@12951
   289
  apply simp
kleing@12951
   290
  apply simp
kleing@12951
   291
  apply simp
kleing@12951
   292
  apply (simp add: match_exception_entry_def)
kleing@12951
   293
  apply (simp add: match_exception_entry_def)
kleing@12951
   294
  apply simp
kleing@12951
   295
  apply simp
kleing@12951
   296
  done
kleing@12951
   297
kleing@13006
   298
text {* Some abbreviations for readability *} 
kleing@12951
   299
syntax
kleing@13214
   300
  Clist :: ty 
kleing@13214
   301
  Ctest :: ty
kleing@12951
   302
translations
kleing@13214
   303
  "Clist" == "Class list_name"
kleing@13214
   304
  "Ctest" == "Class test_name"
kleing@12951
   305
kleing@12951
   306
constdefs
kleing@12951
   307
  phi_makelist :: method_type ("\<phi>\<^sub>m")
kleing@12951
   308
  "\<phi>\<^sub>m \<equiv> map (\<lambda>(x,y). Some (x, y)) [ 
kleing@13214
   309
    (                                   [], [OK Ctest, Err     , Err     ]),
kleing@13214
   310
    (                              [Clist], [OK Ctest, Err     , Err     ]),
kleing@13214
   311
    (                       [Clist, Clist], [OK Ctest, Err     , Err     ]),
kleing@13214
   312
    (                              [Clist], [OK Clist, Err     , Err     ]),
kleing@13214
   313
    (               [PrimT Integer, Clist], [OK Clist, Err     , Err     ]),
kleing@13214
   314
    (                                   [], [OK Clist, Err     , Err     ]),
kleing@13214
   315
    (                              [Clist], [OK Clist, Err     , Err     ]),
kleing@13214
   316
    (                       [Clist, Clist], [OK Clist, Err     , Err     ]),
kleing@13214
   317
    (                              [Clist], [OK Clist, OK Clist, Err     ]),
kleing@13214
   318
    (               [PrimT Integer, Clist], [OK Clist, OK Clist, Err     ]),
kleing@13214
   319
    (                                   [], [OK Clist, OK Clist, Err     ]),
kleing@13214
   320
    (                              [Clist], [OK Clist, OK Clist, Err     ]),
kleing@13214
   321
    (                       [Clist, Clist], [OK Clist, OK Clist, Err     ]),
kleing@13214
   322
    (                              [Clist], [OK Clist, OK Clist, OK Clist]),
kleing@13214
   323
    (               [PrimT Integer, Clist], [OK Clist, OK Clist, OK Clist]),
kleing@13214
   324
    (                                   [], [OK Clist, OK Clist, OK Clist]),
kleing@13214
   325
    (                              [Clist], [OK Clist, OK Clist, OK Clist]),
kleing@13214
   326
    (                       [Clist, Clist], [OK Clist, OK Clist, OK Clist]),
kleing@13214
   327
    (                         [PrimT Void], [OK Clist, OK Clist, OK Clist]),
kleing@13214
   328
    (                                   [], [OK Clist, OK Clist, OK Clist]),
kleing@13214
   329
    (                              [Clist], [OK Clist, OK Clist, OK Clist]),
kleing@13214
   330
    (                       [Clist, Clist], [OK Clist, OK Clist, OK Clist]),
kleing@13214
   331
    (                         [PrimT Void], [OK Clist, OK Clist, OK Clist])]"
kleing@13214
   332
kleing@13214
   333
lemma bounded_makelist [simp]: "check_bounded make_list_ins []"
kleing@13214
   334
  apply (simp add: check_bounded_def)
kleing@13214
   335
  apply (simp add: nat_number make_list_ins_def)
kleing@13214
   336
  apply (rule allI, rule impI)
kleing@13214
   337
  apply (elim pc_end pc_next pc_0)
kleing@13214
   338
  apply auto
kleing@13214
   339
  done
kleing@13214
   340
kleing@13214
   341
lemma types_makelist [simp]: "check_types E 3 (Suc (Suc (Suc 0))) (map OK \<phi>\<^sub>m)"
kleing@13214
   342
  apply (auto simp add: check_types_def phi_makelist_def JVM_states_unfold)
kleing@13214
   343
  apply (unfold list_def)
kleing@13214
   344
  apply auto
kleing@13214
   345
  done
kleing@12951
   346
kleing@12951
   347
lemma wt_makelist [simp]:
kleing@12951
   348
  "wt_method E test_name [] (PrimT Void) 3 2 make_list_ins [] \<phi>\<^sub>m"
kleing@13214
   349
  apply (simp add: wt_method_def)
kleing@13214
   350
  apply (simp add: make_list_ins_def phi_makelist_def)
wenzelm@13043
   351
  apply (simp add: wt_start_def nat_number)
kleing@12951
   352
  apply (simp add: wt_instr_def)
kleing@12951
   353
  apply clarify
kleing@12951
   354
  apply (elim pc_end pc_next pc_0)
kleing@12951
   355
  apply (simp add: match_exception_entry_def)
kleing@12951
   356
  apply simp
kleing@12951
   357
  apply simp
kleing@12951
   358
  apply simp
kleing@12951
   359
  apply (simp add: match_exception_entry_def)
kleing@12951
   360
  apply (simp add: match_exception_entry_def) 
kleing@12951
   361
  apply simp
kleing@12951
   362
  apply simp
kleing@12951
   363
  apply simp
kleing@12951
   364
  apply (simp add: match_exception_entry_def)
kleing@12951
   365
  apply (simp add: match_exception_entry_def) 
kleing@12951
   366
  apply simp
kleing@12951
   367
  apply simp
kleing@12951
   368
  apply simp
kleing@12951
   369
  apply (simp add: match_exception_entry_def)
kleing@12951
   370
  apply (simp add: match_exception_entry_def) 
kleing@12951
   371
  apply simp
kleing@12951
   372
  apply (simp add: app_def xcpt_app_def)
kleing@13101
   373
  apply simp 
kleing@12951
   374
  apply simp
kleing@12951
   375
  apply simp
kleing@13101
   376
  apply (simp add: app_def xcpt_app_def) 
kleing@12951
   377
  apply simp
kleing@12951
   378
  done
kleing@12951
   379
kleing@12951
   380
text {* The whole program is welltyped: *}
kleing@12951
   381
constdefs 
kleing@12951
   382
  Phi :: prog_type ("\<Phi>")
kleing@13101
   383
  "\<Phi> C sg \<equiv> if C = test_name \<and> sg = (makelist_name, []) then \<phi>\<^sub>m else          
kleing@13101
   384
             if C = list_name \<and> sg = (append_name, [Class list_name]) then \<phi>\<^sub>a else []"
kleing@13139
   385
kleing@12951
   386
lemma wf_prog:
kleing@13101
   387
  "wt_jvm_prog E \<Phi>" 
kleing@12951
   388
  apply (unfold wt_jvm_prog_def)
kleing@12951
   389
  apply (rule wf_mb'E [OF wf_struct])
kleing@12951
   390
  apply (simp add: E_def)
kleing@12951
   391
  apply clarify
kleing@12951
   392
  apply (fold E_def)
kleing@13101
   393
  apply (simp add: system_defs class_defs Phi_def) 
kleing@12951
   394
  apply auto
kleing@13101
   395
  done 
kleing@12951
   396
kleing@12951
   397
kleing@12951
   398
section "Conformance"
kleing@12951
   399
text {* Execution of the program will be typesafe, because its
kleing@12951
   400
  start state conforms to the welltyping: *}
kleing@12951
   401
kleing@13052
   402
lemma "E,\<Phi> \<turnstile>JVM start_state E test_name makelist_name \<surd>"
kleing@13052
   403
  apply (rule BV_correct_initial)
kleing@13052
   404
    apply (rule wf_prog)
kleing@13052
   405
   apply simp
kleing@13052
   406
  apply simp
kleing@12951
   407
  done
kleing@12951
   408
berghofe@13092
   409
berghofe@13092
   410
section "Example for code generation: inferring method types"
berghofe@13092
   411
berghofe@13092
   412
constdefs
kleing@13214
   413
  test_kil :: "jvm_prog \<Rightarrow> cname \<Rightarrow> ty list \<Rightarrow> ty \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> 
kleing@13214
   414
             exception_table \<Rightarrow> instr list \<Rightarrow> JVMType.state list"
berghofe@13092
   415
  "test_kil G C pTs rT mxs mxl et instr ==
berghofe@13092
   416
   (let first  = Some ([],(OK (Class C))#((map OK pTs))@(replicate mxl Err));
berghofe@13092
   417
        start  = OK first#(replicate (size instr - 1) (OK None))
berghofe@13092
   418
    in  kiljvm G mxs (1+size pTs+mxl) rT et instr start)"
berghofe@13092
   419
berghofe@13092
   420
lemma [code]:
nipkow@15045
   421
  "unstables r step ss = (UN p:{..<size ss}. if \<not>stable r step ss p then {p} else {})"
berghofe@13092
   422
  apply (unfold unstables_def)
berghofe@13092
   423
  apply (rule equalityI)
berghofe@13092
   424
  apply (rule subsetI)
berghofe@13092
   425
  apply (erule CollectE)
berghofe@13092
   426
  apply (erule conjE)
berghofe@13092
   427
  apply (rule UN_I)
berghofe@13092
   428
  apply simp
berghofe@13092
   429
  apply simp
berghofe@13092
   430
  apply (rule subsetI)
berghofe@13092
   431
  apply (erule UN_E)
berghofe@13092
   432
  apply (case_tac "\<not> stable r step ss p")
berghofe@13092
   433
  apply simp+
berghofe@13092
   434
  done
berghofe@13092
   435
berghofe@13092
   436
constdefs
berghofe@13092
   437
  some_elem :: "'a set \<Rightarrow> 'a"
berghofe@13092
   438
  "some_elem == (%S. SOME x. x : S)"
berghofe@13092
   439
berghofe@13092
   440
lemma [code]:
berghofe@13092
   441
"iter f step ss w =
berghofe@13092
   442
 while (%(ss,w). w \<noteq> {})
berghofe@13092
   443
       (%(ss,w). let p = some_elem w
berghofe@13092
   444
                 in propa f (step p (ss!p)) ss (w-{p}))
berghofe@13092
   445
       (ss,w)"
berghofe@13092
   446
  by (unfold iter_def some_elem_def, rule refl)
berghofe@13092
   447
berghofe@13092
   448
consts_code
berghofe@13092
   449
  "some_elem" ("hd")
berghofe@13092
   450
haftmann@20593
   451
code_const some_elem
haftmann@21113
   452
  (SML "hd")
haftmann@20593
   453
berghofe@13092
   454
lemma JVM_sup_unfold [code]:
berghofe@13092
   455
 "JVMType.sup S m n = lift2 (Opt.sup
berghofe@13092
   456
       (Product.sup (Listn.sup (JType.sup S))
berghofe@13092
   457
         (\<lambda>x y. OK (map2 (lift2 (JType.sup S)) x y))))" 
berghofe@13092
   458
  apply (unfold JVMType.sup_def JVMType.sl_def Opt.esl_def Err.sl_def
berghofe@13092
   459
         stk_esl_def reg_sl_def Product.esl_def  
berghofe@13092
   460
         Listn.sl_def upto_esl_def JType.esl_def Err.esl_def) 
berghofe@13092
   461
  by simp
berghofe@13092
   462
berghofe@13092
   463
lemmas [code] =
berghofe@13092
   464
  meta_eq_to_obj_eq [OF JType.sup_def [unfolded exec_lub_def]]
berghofe@13092
   465
  meta_eq_to_obj_eq [OF JVM_le_unfold]
berghofe@13092
   466
berghofe@23757
   467
lemmas [code ind] = rtranclp.rtrancl_refl converse_rtranclp_into_rtranclp
berghofe@13092
   468
berghofe@17145
   469
code_module BV
berghofe@17145
   470
contains
berghofe@13092
   471
  test1 = "test_kil E list_name [Class list_name] (PrimT Void) 3 0
berghofe@13092
   472
    [(Suc 0, 2, 8, Xcpt NullPointer)] append_ins"
berghofe@13092
   473
  test2 = "test_kil E test_name [] (PrimT Void) 3 2 [] make_list_ins"
berghofe@13092
   474
berghofe@17145
   475
ML BV.test1
berghofe@17145
   476
ML BV.test2
berghofe@13092
   477
kleing@13006
   478
end