src/HOL/Tools/meson.ML
author wenzelm
Sun Jul 29 14:29:56 2007 +0200 (2007-07-29)
changeset 24040 0d5cf52ebf87
parent 23894 1a4167d761ac
child 24300 e170cee91c66
permissions -rw-r--r--
proper simproc_setup for "neq", "let_simp";
removed dead code;
wenzelm@9869
     1
(*  Title:      HOL/Tools/meson.ML
paulson@9840
     2
    ID:         $Id$
paulson@9840
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
paulson@9840
     4
    Copyright   1992  University of Cambridge
paulson@9840
     5
wenzelm@9869
     6
The MESON resolution proof procedure for HOL.
paulson@9840
     7
paulson@9840
     8
When making clauses, avoids using the rewriter -- instead uses RS recursively
paulson@9840
     9
paulson@9840
    10
NEED TO SORT LITERALS BY # OF VARS, USING ==>I/E.  ELIMINATES NEED FOR
paulson@9840
    11
FUNCTION nodups -- if done to goal clauses too!
paulson@9840
    12
*)
paulson@9840
    13
paulson@15579
    14
signature BASIC_MESON =
paulson@15579
    15
sig
paulson@15579
    16
  val size_of_subgoals	: thm -> int
paulson@15998
    17
  val make_cnf		: thm list -> thm -> thm list
paulson@20417
    18
  val finish_cnf	: thm list -> thm list
paulson@15579
    19
  val make_nnf		: thm -> thm
paulson@17849
    20
  val make_nnf1		: thm -> thm
paulson@15579
    21
  val skolemize		: thm -> thm
paulson@15579
    22
  val make_clauses	: thm list -> thm list
paulson@15579
    23
  val make_horns	: thm list -> thm list
paulson@15579
    24
  val best_prolog_tac	: (thm -> int) -> thm list -> tactic
paulson@15579
    25
  val depth_prolog_tac	: thm list -> tactic
paulson@15579
    26
  val gocls		: thm list -> thm list
paulson@15579
    27
  val skolemize_prems_tac	: thm list -> int -> tactic
paulson@22546
    28
  val MESON		: (thm list -> thm list) -> (thm list -> tactic) -> int -> tactic
paulson@15579
    29
  val best_meson_tac	: (thm -> int) -> int -> tactic
paulson@15579
    30
  val safe_best_meson_tac	: int -> tactic
paulson@15579
    31
  val depth_meson_tac	: int -> tactic
paulson@15579
    32
  val prolog_step_tac'	: thm list -> int -> tactic
paulson@15579
    33
  val iter_deepen_prolog_tac	: thm list -> tactic
paulson@16563
    34
  val iter_deepen_meson_tac	: thm list -> int -> tactic
paulson@15579
    35
  val meson_tac		: int -> tactic
paulson@15579
    36
  val negate_head	: thm -> thm
paulson@15579
    37
  val select_literal	: int -> thm -> thm
paulson@15579
    38
  val skolemize_tac	: int -> tactic
paulson@15579
    39
end
paulson@9840
    40
paulson@9840
    41
paulson@15579
    42
structure Meson =
paulson@15579
    43
struct
paulson@9840
    44
paulson@15579
    45
val not_conjD = thm "meson_not_conjD";
paulson@15579
    46
val not_disjD = thm "meson_not_disjD";
paulson@15579
    47
val not_notD = thm "meson_not_notD";
paulson@15579
    48
val not_allD = thm "meson_not_allD";
paulson@15579
    49
val not_exD = thm "meson_not_exD";
paulson@15579
    50
val imp_to_disjD = thm "meson_imp_to_disjD";
paulson@15579
    51
val not_impD = thm "meson_not_impD";
paulson@15579
    52
val iff_to_disjD = thm "meson_iff_to_disjD";
paulson@15579
    53
val not_iffD = thm "meson_not_iffD";
paulson@15579
    54
val conj_exD1 = thm "meson_conj_exD1";
paulson@15579
    55
val conj_exD2 = thm "meson_conj_exD2";
paulson@15579
    56
val disj_exD = thm "meson_disj_exD";
paulson@15579
    57
val disj_exD1 = thm "meson_disj_exD1";
paulson@15579
    58
val disj_exD2 = thm "meson_disj_exD2";
paulson@15579
    59
val disj_assoc = thm "meson_disj_assoc";
paulson@15579
    60
val disj_comm = thm "meson_disj_comm";
paulson@15579
    61
val disj_FalseD1 = thm "meson_disj_FalseD1";
paulson@15579
    62
val disj_FalseD2 = thm "meson_disj_FalseD2";
paulson@9840
    63
paulson@9840
    64
paulson@15579
    65
(**** Operators for forward proof ****)
paulson@15579
    66
paulson@20417
    67
paulson@20417
    68
(** First-order Resolution **)
paulson@20417
    69
paulson@20417
    70
fun typ_pair_of (ix, (sort,ty)) = (TVar (ix,sort), ty);
paulson@20417
    71
fun term_pair_of (ix, (ty,t)) = (Var (ix,ty), t);
paulson@20417
    72
paulson@20417
    73
val Envir.Envir {asol = tenv0, iTs = tyenv0, ...} = Envir.empty 0
paulson@20417
    74
paulson@20417
    75
(*FIXME: currently does not "rename variables apart"*)
paulson@20417
    76
fun first_order_resolve thA thB =
paulson@20417
    77
  let val thy = theory_of_thm thA
paulson@20417
    78
      val tmA = concl_of thA
paulson@20417
    79
      val Const("==>",_) $ tmB $ _ = prop_of thB
paulson@23440
    80
      val (tyenv,tenv) = Pattern.first_order_match thy (tmB,tmA) (tyenv0,tenv0)
paulson@20417
    81
      val ct_pairs = map (pairself (cterm_of thy) o term_pair_of) (Vartab.dest tenv)
paulson@20417
    82
  in  thA RS (cterm_instantiate ct_pairs thB)  end
paulson@20417
    83
  handle _ => raise THM ("first_order_resolve", 0, [thA,thB]);
paulson@18175
    84
paulson@23440
    85
fun flexflex_first_order th = 
paulson@23440
    86
  case (tpairs_of th) of
paulson@23440
    87
      [] => th
paulson@23440
    88
    | pairs =>
paulson@23440
    89
	let val thy = theory_of_thm th
paulson@23440
    90
	    val (tyenv,tenv) = 
paulson@23440
    91
	          foldl (uncurry (Pattern.first_order_match thy)) (tyenv0,tenv0) pairs
paulson@23440
    92
	    val t_pairs = map term_pair_of (Vartab.dest tenv)
paulson@23440
    93
	    val th' = Thm.instantiate ([], map (pairself (cterm_of thy)) t_pairs) th
paulson@23440
    94
	in  th'  end
paulson@23440
    95
	handle THM _ => th;
paulson@23440
    96
paulson@15579
    97
(*raises exception if no rules apply -- unlike RL*)
paulson@18141
    98
fun tryres (th, rls) = 
paulson@18141
    99
  let fun tryall [] = raise THM("tryres", 0, th::rls)
paulson@20417
   100
        | tryall (rl::rls) = (th RS rl handle THM _ => tryall rls)
paulson@18141
   101
  in  tryall rls  end;
paulson@18141
   102
  
paulson@21050
   103
(*Permits forward proof from rules that discharge assumptions. The supplied proof state st,
paulson@21050
   104
  e.g. from conj_forward, should have the form
paulson@21050
   105
    "[| P' ==> ?P; Q' ==> ?Q |] ==> ?P & ?Q"
paulson@21050
   106
  and the effect should be to instantiate ?P and ?Q with normalized versions of P' and Q'.*)
paulson@15579
   107
fun forward_res nf st =
paulson@21050
   108
  let fun forward_tacf [prem] = rtac (nf prem) 1
paulson@21050
   109
        | forward_tacf prems = 
paulson@21050
   110
            error ("Bad proof state in forward_res, please inform lcp@cl.cam.ac.uk:\n" ^
paulson@21050
   111
                   string_of_thm st ^
paulson@21050
   112
                   "\nPremises:\n" ^
paulson@21050
   113
                   cat_lines (map string_of_thm prems))
paulson@21050
   114
  in
paulson@21050
   115
    case Seq.pull (ALLGOALS (METAHYPS forward_tacf) st)
paulson@21050
   116
    of SOME(th,_) => th
paulson@21050
   117
     | NONE => raise THM("forward_res", 0, [st])
paulson@21050
   118
  end;
paulson@15579
   119
paulson@20134
   120
(*Are any of the logical connectives in "bs" present in the term?*)
paulson@20134
   121
fun has_conns bs =
paulson@20134
   122
  let fun has (Const(a,_)) = false
paulson@20134
   123
        | has (Const("Trueprop",_) $ p) = has p
paulson@20134
   124
        | has (Const("Not",_) $ p) = has p
paulson@20134
   125
        | has (Const("op |",_) $ p $ q) = member (op =) bs "op |" orelse has p orelse has q
paulson@20134
   126
        | has (Const("op &",_) $ p $ q) = member (op =) bs "op &" orelse has p orelse has q
paulson@20134
   127
        | has (Const("All",_) $ Abs(_,_,p)) = member (op =) bs "All" orelse has p
paulson@20134
   128
        | has (Const("Ex",_) $ Abs(_,_,p)) = member (op =) bs "Ex" orelse has p
paulson@15579
   129
	| has _ = false
paulson@15579
   130
  in  has  end;
paulson@17716
   131
  
paulson@9840
   132
paulson@15579
   133
(**** Clause handling ****)
paulson@9840
   134
paulson@15579
   135
fun literals (Const("Trueprop",_) $ P) = literals P
paulson@15579
   136
  | literals (Const("op |",_) $ P $ Q) = literals P @ literals Q
paulson@15579
   137
  | literals (Const("Not",_) $ P) = [(false,P)]
paulson@15579
   138
  | literals P = [(true,P)];
paulson@9840
   139
paulson@15579
   140
(*number of literals in a term*)
paulson@15579
   141
val nliterals = length o literals;
paulson@9840
   142
paulson@18389
   143
paulson@18389
   144
(*** Tautology Checking ***)
paulson@18389
   145
paulson@18389
   146
fun signed_lits_aux (Const ("op |", _) $ P $ Q) (poslits, neglits) = 
paulson@18389
   147
      signed_lits_aux Q (signed_lits_aux P (poslits, neglits))
paulson@18389
   148
  | signed_lits_aux (Const("Not",_) $ P) (poslits, neglits) = (poslits, P::neglits)
paulson@18389
   149
  | signed_lits_aux P (poslits, neglits) = (P::poslits, neglits);
paulson@18389
   150
  
paulson@18389
   151
fun signed_lits th = signed_lits_aux (HOLogic.dest_Trueprop (concl_of th)) ([],[]);
paulson@18389
   152
paulson@18389
   153
(*Literals like X=X are tautologous*)
paulson@18389
   154
fun taut_poslit (Const("op =",_) $ t $ u) = t aconv u
paulson@18389
   155
  | taut_poslit (Const("True",_)) = true
paulson@18389
   156
  | taut_poslit _ = false;
paulson@18389
   157
paulson@18389
   158
fun is_taut th =
paulson@18389
   159
  let val (poslits,neglits) = signed_lits th
paulson@18389
   160
  in  exists taut_poslit poslits
paulson@18389
   161
      orelse
wenzelm@20073
   162
      exists (member (op aconv) neglits) (HOLogic.false_const :: poslits)
paulson@19894
   163
  end
paulson@19894
   164
  handle TERM _ => false;	(*probably dest_Trueprop on a weird theorem*)		      
paulson@18389
   165
paulson@18389
   166
paulson@18389
   167
(*** To remove trivial negated equality literals from clauses ***)
paulson@18389
   168
paulson@18389
   169
(*They are typically functional reflexivity axioms and are the converses of
paulson@18389
   170
  injectivity equivalences*)
paulson@18389
   171
  
paulson@18389
   172
val not_refl_disj_D = thm"meson_not_refl_disj_D";
paulson@18389
   173
paulson@20119
   174
(*Is either term a Var that does not properly occur in the other term?*)
paulson@20119
   175
fun eliminable (t as Var _, u) = t aconv u orelse not (Logic.occs(t,u))
paulson@20119
   176
  | eliminable (u, t as Var _) = t aconv u orelse not (Logic.occs(t,u))
paulson@20119
   177
  | eliminable _ = false;
paulson@20119
   178
paulson@18389
   179
fun refl_clause_aux 0 th = th
paulson@18389
   180
  | refl_clause_aux n th =
paulson@18389
   181
       case HOLogic.dest_Trueprop (concl_of th) of
paulson@18389
   182
	  (Const ("op |", _) $ (Const ("op |", _) $ _ $ _) $ _) => 
paulson@18389
   183
            refl_clause_aux n (th RS disj_assoc)    (*isolate an atom as first disjunct*)
paulson@18389
   184
	| (Const ("op |", _) $ (Const("Not",_) $ (Const("op =",_) $ t $ u)) $ _) => 
paulson@20119
   185
	    if eliminable(t,u) 
paulson@20119
   186
	    then refl_clause_aux (n-1) (th RS not_refl_disj_D)  (*Var inequation: delete*)
paulson@18389
   187
	    else refl_clause_aux (n-1) (th RS disj_comm)  (*not between Vars: ignore*)
paulson@18389
   188
	| (Const ("op |", _) $ _ $ _) => refl_clause_aux n (th RS disj_comm)
paulson@18752
   189
	| _ => (*not a disjunction*) th;
paulson@18389
   190
paulson@18389
   191
fun notequal_lits_count (Const ("op |", _) $ P $ Q) = 
paulson@18389
   192
      notequal_lits_count P + notequal_lits_count Q
paulson@18389
   193
  | notequal_lits_count (Const("Not",_) $ (Const("op =",_) $ _ $ _)) = 1
paulson@18389
   194
  | notequal_lits_count _ = 0;
paulson@18389
   195
paulson@18389
   196
(*Simplify a clause by applying reflexivity to its negated equality literals*)
paulson@18389
   197
fun refl_clause th = 
paulson@18389
   198
  let val neqs = notequal_lits_count (HOLogic.dest_Trueprop (concl_of th))
paulson@19894
   199
  in  zero_var_indexes (refl_clause_aux neqs th)  end
paulson@19894
   200
  handle TERM _ => th;	(*probably dest_Trueprop on a weird theorem*)		      
paulson@18389
   201
paulson@18389
   202
paulson@18389
   203
(*** The basic CNF transformation ***)
paulson@18389
   204
paulson@21900
   205
val max_clauses = ref 40;
paulson@21069
   206
paulson@21069
   207
fun sum x y = if x < !max_clauses andalso y < !max_clauses then x+y else !max_clauses;
paulson@21069
   208
fun prod x y = if x < !max_clauses andalso y < !max_clauses then x*y else !max_clauses;
paulson@21069
   209
paulson@19894
   210
(*Estimate the number of clauses in order to detect infeasible theorems*)
paulson@21069
   211
fun signed_nclauses b (Const("Trueprop",_) $ t) = signed_nclauses b t
paulson@21069
   212
  | signed_nclauses b (Const("Not",_) $ t) = signed_nclauses (not b) t
paulson@21069
   213
  | signed_nclauses b (Const("op &",_) $ t $ u) = 
paulson@21069
   214
      if b then sum (signed_nclauses b t) (signed_nclauses b u)
paulson@21069
   215
           else prod (signed_nclauses b t) (signed_nclauses b u)
paulson@21069
   216
  | signed_nclauses b (Const("op |",_) $ t $ u) = 
paulson@21069
   217
      if b then prod (signed_nclauses b t) (signed_nclauses b u)
paulson@21069
   218
           else sum (signed_nclauses b t) (signed_nclauses b u)
paulson@21069
   219
  | signed_nclauses b (Const("op -->",_) $ t $ u) = 
paulson@21069
   220
      if b then prod (signed_nclauses (not b) t) (signed_nclauses b u)
paulson@21069
   221
           else sum (signed_nclauses (not b) t) (signed_nclauses b u)
paulson@21616
   222
  | signed_nclauses b (Const("op =", Type ("fun", [T, _])) $ t $ u) = 
paulson@21616
   223
      if T = HOLogic.boolT then (*Boolean equality is if-and-only-if*)
paulson@21616
   224
	  if b then sum (prod (signed_nclauses (not b) t) (signed_nclauses b u))
paulson@21616
   225
			(prod (signed_nclauses (not b) u) (signed_nclauses b t))
paulson@21616
   226
	       else sum (prod (signed_nclauses b t) (signed_nclauses b u))
paulson@21616
   227
			(prod (signed_nclauses (not b) t) (signed_nclauses (not b) u))
paulson@21616
   228
      else 1 
paulson@21069
   229
  | signed_nclauses b (Const("Ex", _) $ Abs (_,_,t)) = signed_nclauses b t
paulson@21069
   230
  | signed_nclauses b (Const("All",_) $ Abs (_,_,t)) = signed_nclauses b t
paulson@21069
   231
  | signed_nclauses _ _ = 1; (* literal *)
paulson@21069
   232
paulson@21069
   233
val nclauses = signed_nclauses true;
paulson@21069
   234
paulson@21069
   235
fun too_many_clauses t = nclauses t >= !max_clauses;
paulson@19894
   236
paulson@15579
   237
(*Replaces universally quantified variables by FREE variables -- because
paulson@22515
   238
  assumptions may not contain scheme variables.  Later, we call "generalize". *)
paulson@15579
   239
fun freeze_spec th =
paulson@20361
   240
  let val newname = gensym "mes_"
paulson@19154
   241
      val spec' = read_instantiate [("x", newname)] spec
paulson@19154
   242
  in  th RS spec'  end;
paulson@9840
   243
paulson@15998
   244
(*Used with METAHYPS below. There is one assumption, which gets bound to prem
paulson@15998
   245
  and then normalized via function nf. The normal form is given to resolve_tac,
paulson@22515
   246
  instantiate a Boolean variable created by resolution with disj_forward. Since
paulson@22515
   247
  (nf prem) returns a LIST of theorems, we can backtrack to get all combinations.*)
paulson@15579
   248
fun resop nf [prem] = resolve_tac (nf prem) 1;
paulson@9840
   249
paulson@20822
   250
(*Any need to extend this list with 
haftmann@23262
   251
  "HOL.type_class","HOL.eq_class","ProtoPure.term"?*)
paulson@18389
   252
val has_meta_conn = 
wenzelm@22871
   253
    exists_Const (member (op =) ["==", "==>", "all", "prop"] o #1);
paulson@20417
   254
paulson@20417
   255
fun apply_skolem_ths (th, rls) = 
paulson@20417
   256
  let fun tryall [] = raise THM("apply_skolem_ths", 0, th::rls)
paulson@20417
   257
        | tryall (rl::rls) = (first_order_resolve th rl handle THM _ => tryall rls)
paulson@20417
   258
  in  tryall rls  end;
paulson@22515
   259
paulson@15998
   260
(*Conjunctive normal form, adding clauses from th in front of ths (for foldr).
paulson@15998
   261
  Strips universal quantifiers and breaks up conjunctions.
paulson@15998
   262
  Eliminates existential quantifiers using skoths: Skolemization theorems.*)
paulson@15998
   263
fun cnf skoths (th,ths) =
paulson@18389
   264
  let fun cnf_aux (th,ths) =
wenzelm@21174
   265
  	if not (can HOLogic.dest_Trueprop (prop_of th)) then ths (*meta-level: ignore*)
paulson@20134
   266
        else if not (has_conns ["All","Ex","op &"] (prop_of th))  
paulson@15998
   267
	then th::ths (*no work to do, terminate*)
paulson@16588
   268
	else case head_of (HOLogic.dest_Trueprop (concl_of th)) of
paulson@16588
   269
	    Const ("op &", _) => (*conjunction*)
paulson@20417
   270
		cnf_aux (th RS conjunct1, cnf_aux (th RS conjunct2, ths))
paulson@16588
   271
	  | Const ("All", _) => (*universal quantifier*)
paulson@22515
   272
	        cnf_aux (freeze_spec th, ths)
paulson@16588
   273
	  | Const ("Ex", _) => 
paulson@16588
   274
	      (*existential quantifier: Insert Skolem functions*)
paulson@20417
   275
	      cnf_aux (apply_skolem_ths (th,skoths), ths)
paulson@22515
   276
	  | Const ("op |", _) => 
paulson@22515
   277
	      (*Disjunction of P, Q: Create new goal of proving ?P | ?Q and solve it using
paulson@22515
   278
	        all combinations of converting P, Q to CNF.*)
paulson@16588
   279
	      let val tac =
paulson@18389
   280
		  (METAHYPS (resop cnf_nil) 1) THEN
paulson@19154
   281
		   (fn st' => st' |> METAHYPS (resop cnf_nil) 1)
paulson@16588
   282
	      in  Seq.list_of (tac (th RS disj_forward)) @ ths  end 
paulson@16588
   283
	  | _ => (*no work to do*) th::ths 
paulson@19154
   284
      and cnf_nil th = cnf_aux (th,[])
paulson@15998
   285
  in 
paulson@21069
   286
    if too_many_clauses (concl_of th) 
wenzelm@22130
   287
    then (Output.debug (fn () => ("cnf is ignoring: " ^ string_of_thm th)); ths)
paulson@19894
   288
    else cnf_aux (th,ths)
paulson@15998
   289
  end;
paulson@9840
   290
paulson@22515
   291
fun all_names (Const ("all", _) $ Abs(x,_,P)) = x :: all_names P
paulson@22515
   292
  | all_names _ = [];
paulson@22515
   293
paulson@22515
   294
fun new_names n [] = []
paulson@22515
   295
  | new_names n (x::xs) = 
paulson@22515
   296
      if String.isPrefix "mes_" x then (x, radixstring(26,"A",n)) :: new_names (n+1) xs
paulson@22515
   297
      else new_names n xs;
paulson@22515
   298
paulson@22515
   299
(*The gensym names are ugly, so don't let the user see them. When forall_elim_vars
paulson@22515
   300
  is called, it will ensure that no name clauses ensue.*)
paulson@22515
   301
fun nice_names th =
paulson@22515
   302
  let val old_names = all_names (prop_of th)
paulson@22515
   303
  in  Drule.rename_bvars (new_names 0 old_names) th  end;
paulson@22515
   304
paulson@16012
   305
(*Convert all suitable free variables to schematic variables, 
paulson@16012
   306
  but don't discharge assumptions.*)
paulson@22515
   307
fun generalize th = Thm.varifyT (forall_elim_vars 0 (nice_names (forall_intr_frees th)));
paulson@16012
   308
paulson@20417
   309
fun make_cnf skoths th = cnf skoths (th, []);
paulson@20417
   310
paulson@20417
   311
(*Generalization, removal of redundant equalities, removal of tautologies.*)
paulson@20417
   312
fun finish_cnf ths = filter (not o is_taut) (map (refl_clause o generalize) ths);
paulson@15998
   313
paulson@9840
   314
paulson@15579
   315
(**** Removal of duplicate literals ****)
paulson@9840
   316
paulson@15579
   317
(*Forward proof, passing extra assumptions as theorems to the tactic*)
paulson@15579
   318
fun forward_res2 nf hyps st =
paulson@15579
   319
  case Seq.pull
paulson@15579
   320
	(REPEAT
paulson@15579
   321
	 (METAHYPS (fn major::minors => rtac (nf (minors@hyps) major) 1) 1)
paulson@15579
   322
	 st)
paulson@15579
   323
  of SOME(th,_) => th
paulson@15579
   324
   | NONE => raise THM("forward_res2", 0, [st]);
paulson@9840
   325
paulson@15579
   326
(*Remove duplicates in P|Q by assuming ~P in Q
paulson@15579
   327
  rls (initially []) accumulates assumptions of the form P==>False*)
paulson@15579
   328
fun nodups_aux rls th = nodups_aux rls (th RS disj_assoc)
paulson@15579
   329
    handle THM _ => tryres(th,rls)
paulson@15579
   330
    handle THM _ => tryres(forward_res2 nodups_aux rls (th RS disj_forward2),
paulson@15579
   331
			   [disj_FalseD1, disj_FalseD2, asm_rl])
paulson@15579
   332
    handle THM _ => th;
paulson@9840
   333
paulson@15579
   334
(*Remove duplicate literals, if there are any*)
paulson@15579
   335
fun nodups th =
haftmann@20972
   336
  if has_duplicates (op =) (literals (prop_of th))
haftmann@20972
   337
    then nodups_aux [] th
haftmann@20972
   338
    else th;
paulson@9840
   339
paulson@9840
   340
paulson@15579
   341
(**** Generation of contrapositives ****)
paulson@9840
   342
paulson@21102
   343
fun is_left (Const ("Trueprop", _) $ 
paulson@21102
   344
               (Const ("op |", _) $ (Const ("op |", _) $ _ $ _) $ _)) = true
paulson@21102
   345
  | is_left _ = false;
paulson@21102
   346
               
paulson@15579
   347
(*Associate disjuctions to right -- make leftmost disjunct a LITERAL*)
paulson@21102
   348
fun assoc_right th = 
paulson@21102
   349
  if is_left (prop_of th) then assoc_right (th RS disj_assoc)
paulson@21102
   350
  else th;
paulson@9840
   351
paulson@15579
   352
(*Must check for negative literal first!*)
paulson@15579
   353
val clause_rules = [disj_assoc, make_neg_rule, make_pos_rule];
paulson@9840
   354
paulson@15579
   355
(*For ordinary resolution. *)
paulson@15579
   356
val resolution_clause_rules = [disj_assoc, make_neg_rule', make_pos_rule'];
paulson@9840
   357
paulson@15579
   358
(*Create a goal or support clause, conclusing False*)
paulson@15579
   359
fun make_goal th =   (*Must check for negative literal first!*)
paulson@15579
   360
    make_goal (tryres(th, clause_rules))
paulson@15579
   361
  handle THM _ => tryres(th, [make_neg_goal, make_pos_goal]);
paulson@9840
   362
paulson@15579
   363
(*Sort clauses by number of literals*)
paulson@15579
   364
fun fewerlits(th1,th2) = nliterals(prop_of th1) < nliterals(prop_of th2);
paulson@9840
   365
paulson@18389
   366
fun sort_clauses ths = sort (make_ord fewerlits) ths;
paulson@9840
   367
paulson@15581
   368
(*True if the given type contains bool anywhere*)
paulson@15581
   369
fun has_bool (Type("bool",_)) = true
paulson@15581
   370
  | has_bool (Type(_, Ts)) = exists has_bool Ts
paulson@15581
   371
  | has_bool _ = false;
paulson@15581
   372
  
paulson@20524
   373
(*Is the string the name of a connective? Really only | and Not can remain, 
paulson@20524
   374
  since this code expects to be called on a clause form.*)  
wenzelm@19875
   375
val is_conn = member (op =)
paulson@20524
   376
    ["Trueprop", "op &", "op |", "op -->", "Not", 
paulson@15613
   377
     "All", "Ex", "Ball", "Bex"];
paulson@15613
   378
paulson@20524
   379
(*True if the term contains a function--not a logical connective--where the type 
paulson@20524
   380
  of any argument contains bool.*)
paulson@15613
   381
val has_bool_arg_const = 
paulson@15613
   382
    exists_Const
paulson@15613
   383
      (fn (c,T) => not(is_conn c) andalso exists (has_bool) (binder_types T));
paulson@22381
   384
paulson@22381
   385
(*A higher-order instance of a first-order constant? Example is the definition of 
paulson@22381
   386
  HOL.one, 1, at a function type in theory SetsAndFunctions.*)
paulson@22381
   387
fun higher_inst_const thy (c,T) = 
paulson@22381
   388
  case binder_types T of
paulson@22381
   389
      [] => false (*not a function type, OK*)
paulson@22381
   390
    | Ts => length (binder_types (Sign.the_const_type thy c)) <> length Ts;
paulson@22381
   391
paulson@21102
   392
(*Raises an exception if any Vars in the theorem mention type bool. 
paulson@21102
   393
  Also rejects functions whose arguments are Booleans or other functions.*)
paulson@22381
   394
fun is_fol_term thy t =
paulson@22381
   395
    Term.is_first_order ["all","All","Ex"] t andalso
paulson@19204
   396
    not (exists (has_bool o fastype_of) (term_vars t)  orelse
paulson@19204
   397
	 has_bool_arg_const t  orelse  
paulson@22381
   398
	 exists_Const (higher_inst_const thy) t orelse
paulson@19204
   399
	 has_meta_conn t);
paulson@19204
   400
paulson@21102
   401
fun rigid t = not (is_Var (head_of t));
paulson@21102
   402
paulson@21102
   403
fun ok4horn (Const ("Trueprop",_) $ (Const ("op |", _) $ t $ _)) = rigid t
paulson@21102
   404
  | ok4horn (Const ("Trueprop",_) $ t) = rigid t
paulson@21102
   405
  | ok4horn _ = false;
paulson@21102
   406
paulson@15579
   407
(*Create a meta-level Horn clause*)
paulson@21102
   408
fun make_horn crules th = 
paulson@21102
   409
  if ok4horn (concl_of th) 
paulson@21102
   410
  then make_horn crules (tryres(th,crules)) handle THM _ => th
paulson@21102
   411
  else th;
paulson@9840
   412
paulson@16563
   413
(*Generate Horn clauses for all contrapositives of a clause. The input, th,
paulson@16563
   414
  is a HOL disjunction.*)
paulson@15579
   415
fun add_contras crules (th,hcs) =
paulson@15579
   416
  let fun rots (0,th) = hcs
paulson@15579
   417
	| rots (k,th) = zero_var_indexes (make_horn crules th) ::
paulson@15579
   418
			rots(k-1, assoc_right (th RS disj_comm))
paulson@15862
   419
  in case nliterals(prop_of th) of
paulson@15579
   420
	1 => th::hcs
paulson@15579
   421
      | n => rots(n, assoc_right th)
paulson@15579
   422
  end;
paulson@9840
   423
paulson@15579
   424
(*Use "theorem naming" to label the clauses*)
paulson@15579
   425
fun name_thms label =
paulson@15579
   426
    let fun name1 (th, (k,ths)) =
wenzelm@21646
   427
	  (k-1, PureThy.put_name_hint (label ^ string_of_int k) th :: ths)
paulson@15579
   428
    in  fn ths => #2 (foldr name1 (length ths, []) ths)  end;
paulson@9840
   429
paulson@16563
   430
(*Is the given disjunction an all-negative support clause?*)
paulson@15579
   431
fun is_negative th = forall (not o #1) (literals (prop_of th));
paulson@9840
   432
paulson@15579
   433
val neg_clauses = List.filter is_negative;
paulson@9840
   434
paulson@9840
   435
paulson@15579
   436
(***** MESON PROOF PROCEDURE *****)
paulson@9840
   437
paulson@15579
   438
fun rhyps (Const("==>",_) $ (Const("Trueprop",_) $ A) $ phi,
paulson@15579
   439
	   As) = rhyps(phi, A::As)
paulson@15579
   440
  | rhyps (_, As) = As;
paulson@9840
   441
paulson@15579
   442
(** Detecting repeated assumptions in a subgoal **)
paulson@9840
   443
paulson@15579
   444
(*The stringtree detects repeated assumptions.*)
wenzelm@16801
   445
fun ins_term (net,t) = Net.insert_term (op aconv) (t,t) net;
paulson@9840
   446
paulson@15579
   447
(*detects repetitions in a list of terms*)
paulson@15579
   448
fun has_reps [] = false
paulson@15579
   449
  | has_reps [_] = false
paulson@15579
   450
  | has_reps [t,u] = (t aconv u)
paulson@15579
   451
  | has_reps ts = (Library.foldl ins_term (Net.empty, ts);  false)
wenzelm@19875
   452
		  handle Net.INSERT => true;
paulson@9840
   453
paulson@15579
   454
(*Like TRYALL eq_assume_tac, but avoids expensive THEN calls*)
paulson@18508
   455
fun TRYING_eq_assume_tac 0 st = Seq.single st
paulson@18508
   456
  | TRYING_eq_assume_tac i st =
paulson@18508
   457
       TRYING_eq_assume_tac (i-1) (eq_assumption i st)
paulson@18508
   458
       handle THM _ => TRYING_eq_assume_tac (i-1) st;
paulson@18508
   459
paulson@18508
   460
fun TRYALL_eq_assume_tac st = TRYING_eq_assume_tac (nprems_of st) st;
paulson@9840
   461
paulson@15579
   462
(*Loop checking: FAIL if trying to prove the same thing twice
paulson@15579
   463
  -- if *ANY* subgoal has repeated literals*)
paulson@15579
   464
fun check_tac st =
paulson@15579
   465
  if exists (fn prem => has_reps (rhyps(prem,[]))) (prems_of st)
paulson@15579
   466
  then  Seq.empty  else  Seq.single st;
paulson@9840
   467
paulson@9840
   468
paulson@15579
   469
(* net_resolve_tac actually made it slower... *)
paulson@15579
   470
fun prolog_step_tac horns i =
paulson@15579
   471
    (assume_tac i APPEND resolve_tac horns i) THEN check_tac THEN
paulson@18508
   472
    TRYALL_eq_assume_tac;
paulson@9840
   473
paulson@9840
   474
(*Sums the sizes of the subgoals, ignoring hypotheses (ancestors)*)
paulson@15579
   475
fun addconcl(prem,sz) = size_of_term(Logic.strip_assums_concl prem) + sz
paulson@15579
   476
paulson@15579
   477
fun size_of_subgoals st = foldr addconcl 0 (prems_of st);
paulson@15579
   478
paulson@9840
   479
paulson@9840
   480
(*Negation Normal Form*)
paulson@9840
   481
val nnf_rls = [imp_to_disjD, iff_to_disjD, not_conjD, not_disjD,
wenzelm@9869
   482
               not_impD, not_iffD, not_allD, not_exD, not_notD];
paulson@15581
   483
paulson@21102
   484
fun ok4nnf (Const ("Trueprop",_) $ (Const ("Not", _) $ t)) = rigid t
paulson@21102
   485
  | ok4nnf (Const ("Trueprop",_) $ t) = rigid t
paulson@21102
   486
  | ok4nnf _ = false;
paulson@21102
   487
paulson@21102
   488
fun make_nnf1 th = 
paulson@21102
   489
  if ok4nnf (concl_of th) 
paulson@21102
   490
  then make_nnf1 (tryres(th, nnf_rls))
wenzelm@9869
   491
    handle THM _ =>
paulson@15581
   492
        forward_res make_nnf1
wenzelm@9869
   493
           (tryres(th, [conj_forward,disj_forward,all_forward,ex_forward]))
paulson@21102
   494
    handle THM _ => th
paulson@21102
   495
  else th;
paulson@9840
   496
paulson@20018
   497
(*The simplification removes defined quantifiers and occurrences of True and False. 
paulson@20018
   498
  nnf_ss also includes the one-point simprocs,
paulson@18405
   499
  which are needed to avoid the various one-point theorems from generating junk clauses.*)
paulson@19894
   500
val nnf_simps =
paulson@20018
   501
     [simp_implies_def, Ex1_def, Ball_def, Bex_def, if_True, 
paulson@19894
   502
      if_False, if_cancel, if_eq_cancel, cases_simp];
paulson@19894
   503
val nnf_extra_simps =
paulson@19894
   504
      thms"split_ifs" @ ex_simps @ all_simps @ simp_thms;
paulson@18405
   505
paulson@18405
   506
val nnf_ss =
wenzelm@24040
   507
  HOL_basic_ss addsimps nnf_extra_simps 
wenzelm@24040
   508
    addsimprocs [defALL_regroup,defEX_regroup, @{simproc neq}, @{simproc let_simp}];
paulson@15872
   509
paulson@21050
   510
fun make_nnf th = case prems_of th of
paulson@21050
   511
    [] => th |> rewrite_rule (map safe_mk_meta_eq nnf_simps)
paulson@21102
   512
	     |> simplify nnf_ss  
paulson@21050
   513
	     |> make_nnf1
paulson@21050
   514
  | _ => raise THM ("make_nnf: premises in argument", 0, [th]);
paulson@15581
   515
paulson@15965
   516
(*Pull existential quantifiers to front. This accomplishes Skolemization for
paulson@15965
   517
  clauses that arise from a subgoal.*)
wenzelm@9869
   518
fun skolemize th =
paulson@20134
   519
  if not (has_conns ["Ex"] (prop_of th)) then th
quigley@15773
   520
  else (skolemize (tryres(th, [choice, conj_exD1, conj_exD2,
quigley@15679
   521
                              disj_exD, disj_exD1, disj_exD2])))
wenzelm@9869
   522
    handle THM _ =>
wenzelm@9869
   523
        skolemize (forward_res skolemize
wenzelm@9869
   524
                   (tryres (th, [conj_forward, disj_forward, all_forward])))
paulson@9840
   525
    handle THM _ => forward_res skolemize (th RS ex_forward);
paulson@9840
   526
paulson@9840
   527
paulson@9840
   528
(*Make clauses from a list of theorems, previously Skolemized and put into nnf.
paulson@9840
   529
  The resulting clauses are HOL disjunctions.*)
wenzelm@9869
   530
fun make_clauses ths =
paulson@15998
   531
    (sort_clauses (map (generalize o nodups) (foldr (cnf[]) [] ths)));
quigley@15773
   532
paulson@16563
   533
(*Convert a list of clauses (disjunctions) to Horn clauses (contrapositives)*)
wenzelm@9869
   534
fun make_horns ths =
paulson@9840
   535
    name_thms "Horn#"
wenzelm@22360
   536
      (distinct Thm.eq_thm_prop (foldr (add_contras clause_rules) [] ths));
paulson@9840
   537
paulson@9840
   538
(*Could simply use nprems_of, which would count remaining subgoals -- no
paulson@9840
   539
  discrimination as to their size!  With BEST_FIRST, fails for problem 41.*)
paulson@9840
   540
wenzelm@9869
   541
fun best_prolog_tac sizef horns =
paulson@9840
   542
    BEST_FIRST (has_fewer_prems 1, sizef) (prolog_step_tac horns 1);
paulson@9840
   543
wenzelm@9869
   544
fun depth_prolog_tac horns =
paulson@9840
   545
    DEPTH_FIRST (has_fewer_prems 1) (prolog_step_tac horns 1);
paulson@9840
   546
paulson@9840
   547
(*Return all negative clauses, as possible goal clauses*)
paulson@9840
   548
fun gocls cls = name_thms "Goal#" (map make_goal (neg_clauses cls));
paulson@9840
   549
paulson@15008
   550
fun skolemize_prems_tac prems =
paulson@9840
   551
    cut_facts_tac (map (skolemize o make_nnf) prems)  THEN'
paulson@9840
   552
    REPEAT o (etac exE);
paulson@9840
   553
paulson@22546
   554
(*Basis of all meson-tactics.  Supplies cltac with clauses: HOL disjunctions.
paulson@22546
   555
  Function mkcl converts theorems to clauses.*)
paulson@22546
   556
fun MESON mkcl cltac i st = 
paulson@16588
   557
  SELECT_GOAL
wenzelm@23590
   558
    (EVERY [ObjectLogic.atomize_prems_tac 1,
paulson@23552
   559
            rtac ccontr 1,
paulson@16588
   560
	    METAHYPS (fn negs =>
paulson@16588
   561
		      EVERY1 [skolemize_prems_tac negs,
paulson@22724
   562
			      METAHYPS (cltac o mkcl)]) 1]) i st
paulson@22724
   563
  handle THM _ => no_tac st;	(*probably from make_meta_clause, not first-order*)
paulson@9840
   564
paulson@9840
   565
(** Best-first search versions **)
paulson@9840
   566
paulson@16563
   567
(*ths is a list of additional clauses (HOL disjunctions) to use.*)
wenzelm@9869
   568
fun best_meson_tac sizef =
paulson@22546
   569
  MESON make_clauses 
paulson@22546
   570
    (fn cls =>
paulson@9840
   571
         THEN_BEST_FIRST (resolve_tac (gocls cls) 1)
paulson@9840
   572
                         (has_fewer_prems 1, sizef)
paulson@9840
   573
                         (prolog_step_tac (make_horns cls) 1));
paulson@9840
   574
paulson@9840
   575
(*First, breaks the goal into independent units*)
paulson@9840
   576
val safe_best_meson_tac =
wenzelm@23894
   577
     SELECT_GOAL (TRY (CLASET safe_tac) THEN
paulson@9840
   578
                  TRYALL (best_meson_tac size_of_subgoals));
paulson@9840
   579
paulson@9840
   580
(** Depth-first search version **)
paulson@9840
   581
paulson@9840
   582
val depth_meson_tac =
paulson@22546
   583
  MESON make_clauses
paulson@22546
   584
    (fn cls => EVERY [resolve_tac (gocls cls) 1, depth_prolog_tac (make_horns cls)]);
paulson@9840
   585
paulson@9840
   586
paulson@9840
   587
(** Iterative deepening version **)
paulson@9840
   588
paulson@9840
   589
(*This version does only one inference per call;
paulson@9840
   590
  having only one eq_assume_tac speeds it up!*)
wenzelm@9869
   591
fun prolog_step_tac' horns =
paulson@9840
   592
    let val (horn0s, hornps) = (*0 subgoals vs 1 or more*)
paulson@9840
   593
            take_prefix Thm.no_prems horns
paulson@9840
   594
        val nrtac = net_resolve_tac horns
paulson@9840
   595
    in  fn i => eq_assume_tac i ORELSE
paulson@9840
   596
                match_tac horn0s i ORELSE  (*no backtracking if unit MATCHES*)
paulson@9840
   597
                ((assume_tac i APPEND nrtac i) THEN check_tac)
paulson@9840
   598
    end;
paulson@9840
   599
wenzelm@9869
   600
fun iter_deepen_prolog_tac horns =
paulson@9840
   601
    ITER_DEEPEN (has_fewer_prems 1) (prolog_step_tac' horns);
paulson@9840
   602
paulson@22546
   603
fun iter_deepen_meson_tac ths = MESON make_clauses 
paulson@21095
   604
 (fn cls =>
paulson@21095
   605
      case (gocls (cls@ths)) of
paulson@21095
   606
	   [] => no_tac  (*no goal clauses*)
paulson@21095
   607
	 | goes => 
paulson@21095
   608
	     let val horns = make_horns (cls@ths)
wenzelm@22130
   609
	         val _ =
wenzelm@22130
   610
	             Output.debug (fn () => ("meson method called:\n" ^ 
paulson@21095
   611
	     	                  space_implode "\n" (map string_of_thm (cls@ths)) ^ 
paulson@21095
   612
	     	                  "\nclauses:\n" ^ 
wenzelm@22130
   613
	     	                  space_implode "\n" (map string_of_thm horns)))
paulson@21095
   614
	     in THEN_ITER_DEEPEN (resolve_tac goes 1) (has_fewer_prems 1) (prolog_step_tac' horns)
paulson@21095
   615
	     end
paulson@21095
   616
 );
paulson@9840
   617
paulson@16563
   618
fun meson_claset_tac ths cs =
paulson@16563
   619
  SELECT_GOAL (TRY (safe_tac cs) THEN TRYALL (iter_deepen_meson_tac ths));
wenzelm@9869
   620
paulson@16563
   621
val meson_tac = CLASET' (meson_claset_tac []);
wenzelm@9869
   622
wenzelm@9869
   623
paulson@14813
   624
(**** Code to support ordinary resolution, rather than Model Elimination ****)
paulson@14744
   625
paulson@15008
   626
(*Convert a list of clauses (disjunctions) to meta-level clauses (==>), 
paulson@15008
   627
  with no contrapositives, for ordinary resolution.*)
paulson@14744
   628
paulson@14744
   629
(*Rules to convert the head literal into a negated assumption. If the head
paulson@14744
   630
  literal is already negated, then using notEfalse instead of notEfalse'
paulson@14744
   631
  prevents a double negation.*)
paulson@14744
   632
val notEfalse = read_instantiate [("R","False")] notE;
paulson@14744
   633
val notEfalse' = rotate_prems 1 notEfalse;
paulson@14744
   634
paulson@15448
   635
fun negated_asm_of_head th = 
paulson@14744
   636
    th RS notEfalse handle THM _ => th RS notEfalse';
paulson@14744
   637
paulson@14744
   638
(*Converting one clause*)
paulson@22646
   639
val make_meta_clause = 
paulson@22646
   640
  zero_var_indexes o negated_asm_of_head o make_horn resolution_clause_rules;
paulson@21102
   641
  
paulson@14744
   642
fun make_meta_clauses ths =
paulson@14744
   643
    name_thms "MClause#"
wenzelm@22360
   644
      (distinct Thm.eq_thm_prop (map make_meta_clause ths));
paulson@14744
   645
paulson@14744
   646
(*Permute a rule's premises to move the i-th premise to the last position.*)
paulson@14744
   647
fun make_last i th =
paulson@14744
   648
  let val n = nprems_of th 
paulson@14744
   649
  in  if 1 <= i andalso i <= n 
paulson@14744
   650
      then Thm.permute_prems (i-1) 1 th
paulson@15118
   651
      else raise THM("select_literal", i, [th])
paulson@14744
   652
  end;
paulson@14744
   653
paulson@14744
   654
(*Maps a rule that ends "... ==> P ==> False" to "... ==> ~P" while suppressing
paulson@14744
   655
  double-negations.*)
paulson@14744
   656
val negate_head = rewrite_rule [atomize_not, not_not RS eq_reflection];
paulson@14744
   657
paulson@14744
   658
(*Maps the clause  [P1,...Pn]==>False to [P1,...,P(i-1),P(i+1),...Pn] ==> ~P*)
paulson@14744
   659
fun select_literal i cl = negate_head (make_last i cl);
paulson@14744
   660
paulson@18508
   661
paulson@14813
   662
(*Top-level Skolemization. Allows part of the conversion to clauses to be
paulson@14813
   663
  expressed as a tactic (or Isar method).  Each assumption of the selected 
paulson@14813
   664
  goal is converted to NNF and then its existential quantifiers are pulled
paulson@14813
   665
  to the front. Finally, all existential quantifiers are eliminated, 
paulson@14813
   666
  leaving !!-quantified variables. Perhaps Safe_tac should follow, but it
paulson@14813
   667
  might generate many subgoals.*)
mengj@18194
   668
paulson@19204
   669
fun skolemize_tac i st = 
paulson@19204
   670
  let val ts = Logic.strip_assums_hyp (List.nth (prems_of st, i-1))
paulson@19204
   671
  in 
paulson@19204
   672
     EVERY' [METAHYPS
quigley@15773
   673
	    (fn hyps => (cut_facts_tac (map (skolemize o make_nnf) hyps) 1
paulson@14813
   674
                         THEN REPEAT (etac exE 1))),
paulson@19204
   675
            REPEAT_DETERM_N (length ts) o (etac thin_rl)] i st
paulson@19204
   676
  end
paulson@19204
   677
  handle Subscript => Seq.empty;
mengj@18194
   678
paulson@9840
   679
end;
wenzelm@9869
   680
paulson@15579
   681
structure BasicMeson: BASIC_MESON = Meson;
paulson@15579
   682
open BasicMeson;