src/HOL/BNF_Examples/Stream.thy
author blanchet
Mon Aug 18 18:48:39 2014 +0200 (2014-08-18)
changeset 57986 0d60b9e58487
parent 57983 6edc3529bb4e
permissions -rw-r--r--
cleaned up derivation of 'sset_induct'
blanchet@55075
     1
(*  Title:      HOL/BNF_Examples/Stream.thy
traytel@50518
     2
    Author:     Dmitriy Traytel, TU Muenchen
traytel@50518
     3
    Author:     Andrei Popescu, TU Muenchen
blanchet@51778
     4
    Copyright   2012, 2013
traytel@50518
     5
traytel@50518
     6
Infinite streams.
traytel@50518
     7
*)
traytel@50518
     8
traytel@50518
     9
header {* Infinite Streams *}
traytel@50518
    10
traytel@50518
    11
theory Stream
blanchet@55076
    12
imports "~~/src/HOL/Library/Nat_Bijection"
traytel@50518
    13
begin
traytel@50518
    14
blanchet@57206
    15
codatatype (sset: 'a) stream =
traytel@54720
    16
  SCons (shd: 'a) (stl: "'a stream") (infixr "##" 65)
blanchet@57206
    17
for
blanchet@57206
    18
  map: smap
blanchet@57206
    19
  rel: stream_all2
traytel@51409
    20
traytel@51462
    21
(*for code generation only*)
traytel@51462
    22
definition smember :: "'a \<Rightarrow> 'a stream \<Rightarrow> bool" where
traytel@51772
    23
  [code_abbrev]: "smember x s \<longleftrightarrow> x \<in> sset s"
traytel@51462
    24
traytel@54720
    25
lemma smember_code[code, simp]: "smember x (y ## s) = (if x = y then True else smember x s)"
traytel@51462
    26
  unfolding smember_def by auto
traytel@51462
    27
traytel@51462
    28
hide_const (open) smember
traytel@51462
    29
blanchet@57983
    30
lemmas smap_simps[simp] = stream.map_sel
blanchet@57983
    31
lemmas shd_sset = stream.set_sel(1)
blanchet@57983
    32
lemmas stl_sset = stream.set_sel(2)
traytel@50518
    33
blanchet@57986
    34
theorem sset_induct[consumes 1, case_names shd stl, induct set: sset]:
blanchet@57986
    35
  assumes "y \<in> sset s" and "\<And>s. P (shd s) s" and "\<And>s y. \<lbrakk>y \<in> sset (stl s); P y (stl s)\<rbrakk> \<Longrightarrow> P y s"
traytel@50518
    36
  shows "P y s"
blanchet@57986
    37
using assms by induct (metis stream.sel(1), auto)
traytel@50518
    38
traytel@50518
    39
traytel@50518
    40
subsection {* prepend list to stream *}
traytel@50518
    41
traytel@50518
    42
primrec shift :: "'a list \<Rightarrow> 'a stream \<Rightarrow> 'a stream" (infixr "@-" 65) where
traytel@50518
    43
  "shift [] s = s"
traytel@51023
    44
| "shift (x # xs) s = x ## shift xs s"
traytel@50518
    45
traytel@51772
    46
lemma smap_shift[simp]: "smap f (xs @- s) = map f xs @- smap f s"
traytel@51353
    47
  by (induct xs) auto
traytel@51353
    48
traytel@50518
    49
lemma shift_append[simp]: "(xs @ ys) @- s = xs @- ys @- s"
traytel@51141
    50
  by (induct xs) auto
traytel@50518
    51
traytel@50518
    52
lemma shift_simps[simp]:
traytel@50518
    53
   "shd (xs @- s) = (if xs = [] then shd s else hd xs)"
traytel@50518
    54
   "stl (xs @- s) = (if xs = [] then stl s else tl xs @- s)"
traytel@51141
    55
  by (induct xs) auto
traytel@50518
    56
traytel@51772
    57
lemma sset_shift[simp]: "sset (xs @- s) = set xs \<union> sset s"
traytel@51141
    58
  by (induct xs) auto
traytel@50518
    59
traytel@51352
    60
lemma shift_left_inj[simp]: "xs @- s1 = xs @- s2 \<longleftrightarrow> s1 = s2"
traytel@51352
    61
  by (induct xs) auto
traytel@51352
    62
traytel@50518
    63
hoelzl@54469
    64
subsection {* set of streams with elements in some fixed set *}
traytel@50518
    65
traytel@50518
    66
coinductive_set
hoelzl@54469
    67
  streams :: "'a set \<Rightarrow> 'a stream set"
traytel@50518
    68
  for A :: "'a set"
traytel@50518
    69
where
traytel@51023
    70
  Stream[intro!, simp, no_atp]: "\<lbrakk>a \<in> A; s \<in> streams A\<rbrakk> \<Longrightarrow> a ## s \<in> streams A"
traytel@50518
    71
traytel@50518
    72
lemma shift_streams: "\<lbrakk>w \<in> lists A; s \<in> streams A\<rbrakk> \<Longrightarrow> w @- s \<in> streams A"
traytel@51141
    73
  by (induct w) auto
traytel@50518
    74
hoelzl@54469
    75
lemma streams_Stream: "x ## s \<in> streams A \<longleftrightarrow> x \<in> A \<and> s \<in> streams A"
hoelzl@54469
    76
  by (auto elim: streams.cases)
hoelzl@54469
    77
hoelzl@54469
    78
lemma streams_stl: "s \<in> streams A \<Longrightarrow> stl s \<in> streams A"
hoelzl@54469
    79
  by (cases s) (auto simp: streams_Stream)
hoelzl@54469
    80
hoelzl@54469
    81
lemma streams_shd: "s \<in> streams A \<Longrightarrow> shd s \<in> A"
hoelzl@54469
    82
  by (cases s) (auto simp: streams_Stream)
hoelzl@54469
    83
traytel@51772
    84
lemma sset_streams:
traytel@51772
    85
  assumes "sset s \<subseteq> A"
traytel@50518
    86
  shows "s \<in> streams A"
traytel@54027
    87
using assms proof (coinduction arbitrary: s)
traytel@54027
    88
  case streams then show ?case by (cases s) simp
traytel@50518
    89
qed
traytel@50518
    90
hoelzl@54469
    91
lemma streams_sset:
hoelzl@54469
    92
  assumes "s \<in> streams A"
hoelzl@54469
    93
  shows "sset s \<subseteq> A"
hoelzl@54469
    94
proof
hoelzl@54469
    95
  fix x assume "x \<in> sset s" from this `s \<in> streams A` show "x \<in> A"
hoelzl@54469
    96
    by (induct s) (auto intro: streams_shd streams_stl)
hoelzl@54469
    97
qed
hoelzl@54469
    98
hoelzl@54469
    99
lemma streams_iff_sset: "s \<in> streams A \<longleftrightarrow> sset s \<subseteq> A"
hoelzl@54469
   100
  by (metis sset_streams streams_sset)
hoelzl@54469
   101
hoelzl@54469
   102
lemma streams_mono:  "s \<in> streams A \<Longrightarrow> A \<subseteq> B \<Longrightarrow> s \<in> streams B"
hoelzl@54469
   103
  unfolding streams_iff_sset by auto
hoelzl@54469
   104
hoelzl@54469
   105
lemma smap_streams: "s \<in> streams A \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> f x \<in> B) \<Longrightarrow> smap f s \<in> streams B"
hoelzl@54469
   106
  unfolding streams_iff_sset stream.set_map by auto
hoelzl@54469
   107
hoelzl@54469
   108
lemma streams_empty: "streams {} = {}"
hoelzl@54469
   109
  by (auto elim: streams.cases)
hoelzl@54469
   110
hoelzl@54469
   111
lemma streams_UNIV[simp]: "streams UNIV = UNIV"
hoelzl@54469
   112
  by (auto simp: streams_iff_sset)
traytel@50518
   113
traytel@51141
   114
subsection {* nth, take, drop for streams *}
traytel@51141
   115
traytel@51141
   116
primrec snth :: "'a stream \<Rightarrow> nat \<Rightarrow> 'a" (infixl "!!" 100) where
traytel@51141
   117
  "s !! 0 = shd s"
traytel@51141
   118
| "s !! Suc n = stl s !! n"
traytel@51141
   119
traytel@51772
   120
lemma snth_smap[simp]: "smap f s !! n = f (s !! n)"
traytel@51141
   121
  by (induct n arbitrary: s) auto
traytel@51141
   122
traytel@51141
   123
lemma shift_snth_less[simp]: "p < length xs \<Longrightarrow> (xs @- s) !! p = xs ! p"
traytel@51141
   124
  by (induct p arbitrary: xs) (auto simp: hd_conv_nth nth_tl)
traytel@51141
   125
traytel@51141
   126
lemma shift_snth_ge[simp]: "p \<ge> length xs \<Longrightarrow> (xs @- s) !! p = s !! (p - length xs)"
traytel@51141
   127
  by (induct p arbitrary: xs) (auto simp: Suc_diff_eq_diff_pred)
traytel@51141
   128
traytel@57175
   129
lemma shift_snth: "(xs @- s) !! n = (if n < length xs then xs ! n else s !! (n - length xs))"
traytel@57175
   130
  by auto
traytel@57175
   131
traytel@51772
   132
lemma snth_sset[simp]: "s !! n \<in> sset s"
traytel@51772
   133
  by (induct n arbitrary: s) (auto intro: shd_sset stl_sset)
traytel@51141
   134
traytel@51772
   135
lemma sset_range: "sset s = range (snth s)"
traytel@51141
   136
proof (intro equalityI subsetI)
traytel@51772
   137
  fix x assume "x \<in> sset s"
traytel@51141
   138
  thus "x \<in> range (snth s)"
traytel@51141
   139
  proof (induct s)
traytel@51141
   140
    case (stl s x)
traytel@51141
   141
    then obtain n where "x = stl s !! n" by auto
traytel@51141
   142
    thus ?case by (auto intro: range_eqI[of _ _ "Suc n"])
traytel@51141
   143
  qed (auto intro: range_eqI[of _ _ 0])
traytel@51141
   144
qed auto
traytel@50518
   145
traytel@50518
   146
primrec stake :: "nat \<Rightarrow> 'a stream \<Rightarrow> 'a list" where
traytel@50518
   147
  "stake 0 s = []"
traytel@50518
   148
| "stake (Suc n) s = shd s # stake n (stl s)"
traytel@50518
   149
traytel@51141
   150
lemma length_stake[simp]: "length (stake n s) = n"
traytel@51141
   151
  by (induct n arbitrary: s) auto
traytel@51141
   152
traytel@51772
   153
lemma stake_smap[simp]: "stake n (smap f s) = map f (stake n s)"
traytel@51141
   154
  by (induct n arbitrary: s) auto
traytel@51141
   155
traytel@57175
   156
lemma take_stake: "take n (stake m s) = stake (min n m) s"
traytel@57175
   157
proof (induct m arbitrary: s n)
traytel@57175
   158
  case (Suc m) thus ?case by (cases n) auto
traytel@57175
   159
qed simp
traytel@57175
   160
traytel@50518
   161
primrec sdrop :: "nat \<Rightarrow> 'a stream \<Rightarrow> 'a stream" where
traytel@50518
   162
  "sdrop 0 s = s"
traytel@50518
   163
| "sdrop (Suc n) s = sdrop n (stl s)"
traytel@50518
   164
traytel@51141
   165
lemma sdrop_simps[simp]:
traytel@51141
   166
  "shd (sdrop n s) = s !! n" "stl (sdrop n s) = sdrop (Suc n) s"
traytel@51141
   167
  by (induct n arbitrary: s)  auto
traytel@51141
   168
traytel@51772
   169
lemma sdrop_smap[simp]: "sdrop n (smap f s) = smap f (sdrop n s)"
traytel@51141
   170
  by (induct n arbitrary: s) auto
traytel@50518
   171
traytel@51352
   172
lemma sdrop_stl: "sdrop n (stl s) = stl (sdrop n s)"
traytel@51352
   173
  by (induct n) auto
traytel@51352
   174
traytel@57175
   175
lemma drop_stake: "drop n (stake m s) = stake (m - n) (sdrop n s)"
traytel@57175
   176
proof (induct m arbitrary: s n)
traytel@57175
   177
  case (Suc m) thus ?case by (cases n) auto
traytel@57175
   178
qed simp
traytel@57175
   179
traytel@50518
   180
lemma stake_sdrop: "stake n s @- sdrop n s = s"
traytel@51141
   181
  by (induct n arbitrary: s) auto
traytel@51141
   182
traytel@51141
   183
lemma id_stake_snth_sdrop:
traytel@51141
   184
  "s = stake i s @- s !! i ## sdrop (Suc i) s"
traytel@51141
   185
  by (subst stake_sdrop[symmetric, of _ i]) (metis sdrop_simps stream.collapse)
traytel@50518
   186
traytel@51772
   187
lemma smap_alt: "smap f s = s' \<longleftrightarrow> (\<forall>n. f (s !! n) = s' !! n)" (is "?L = ?R")
traytel@51141
   188
proof
traytel@51141
   189
  assume ?R
traytel@54027
   190
  then have "\<And>n. smap f (sdrop n s) = sdrop n s'"
traytel@54027
   191
    by coinduction (auto intro: exI[of _ 0] simp del: sdrop.simps(2))
traytel@54027
   192
  then show ?L using sdrop.simps(1) by metis
traytel@51141
   193
qed auto
traytel@51141
   194
traytel@51141
   195
lemma stake_invert_Nil[iff]: "stake n s = [] \<longleftrightarrow> n = 0"
traytel@51141
   196
  by (induct n) auto
traytel@50518
   197
traytel@57175
   198
lemma sdrop_shift: "sdrop i (w @- s) = drop i w @- sdrop (i - length w) s"
traytel@57175
   199
  by (induct i arbitrary: w s) (auto simp: drop_tl drop_Suc neq_Nil_conv)
traytel@50518
   200
traytel@57175
   201
lemma stake_shift: "stake i (w @- s) = take i w @ stake (i - length w) s"
traytel@57175
   202
  by (induct i arbitrary: w s) (auto simp: neq_Nil_conv)
traytel@50518
   203
traytel@50518
   204
lemma stake_add[simp]: "stake m s @ stake n (sdrop m s) = stake (m + n) s"
traytel@51141
   205
  by (induct m arbitrary: s) auto
traytel@50518
   206
traytel@50518
   207
lemma sdrop_add[simp]: "sdrop n (sdrop m s) = sdrop (m + n) s"
traytel@51141
   208
  by (induct m arbitrary: s) auto
traytel@51141
   209
traytel@57175
   210
lemma sdrop_snth: "sdrop n s !! m = s !! (n + m)"
traytel@57175
   211
  by (induct n arbitrary: m s) auto
traytel@57175
   212
traytel@51430
   213
partial_function (tailrec) sdrop_while :: "('a \<Rightarrow> bool) \<Rightarrow> 'a stream \<Rightarrow> 'a stream" where 
traytel@51430
   214
  "sdrop_while P s = (if P (shd s) then sdrop_while P (stl s) else s)"
traytel@51430
   215
traytel@54720
   216
lemma sdrop_while_SCons[code]:
traytel@54720
   217
  "sdrop_while P (a ## s) = (if P a then sdrop_while P s else a ## s)"
traytel@51430
   218
  by (subst sdrop_while.simps) simp
traytel@51430
   219
traytel@51430
   220
lemma sdrop_while_sdrop_LEAST:
traytel@51430
   221
  assumes "\<exists>n. P (s !! n)"
traytel@51430
   222
  shows "sdrop_while (Not o P) s = sdrop (LEAST n. P (s !! n)) s"
traytel@51430
   223
proof -
traytel@51430
   224
  from assms obtain m where "P (s !! m)" "\<And>n. P (s !! n) \<Longrightarrow> m \<le> n"
traytel@51430
   225
    and *: "(LEAST n. P (s !! n)) = m" by atomize_elim (auto intro: LeastI Least_le)
traytel@51430
   226
  thus ?thesis unfolding *
traytel@51430
   227
  proof (induct m arbitrary: s)
traytel@51430
   228
    case (Suc m)
traytel@51430
   229
    hence "sdrop_while (Not \<circ> P) (stl s) = sdrop m (stl s)"
traytel@51430
   230
      by (metis (full_types) not_less_eq_eq snth.simps(2))
traytel@51430
   231
    moreover from Suc(3) have "\<not> (P (s !! 0))" by blast
traytel@51430
   232
    ultimately show ?case by (subst sdrop_while.simps) simp
traytel@51430
   233
  qed (metis comp_apply sdrop.simps(1) sdrop_while.simps snth.simps(1))
traytel@51430
   234
qed
traytel@51430
   235
traytel@54027
   236
primcorec sfilter where
traytel@54027
   237
  "shd (sfilter P s) = shd (sdrop_while (Not o P) s)"
traytel@54027
   238
| "stl (sfilter P s) = sfilter P (stl (sdrop_while (Not o P) s))"
traytel@52905
   239
traytel@52905
   240
lemma sfilter_Stream: "sfilter P (x ## s) = (if P x then x ## sfilter P s else sfilter P s)"
traytel@52905
   241
proof (cases "P x")
traytel@54720
   242
  case True thus ?thesis by (subst sfilter.ctr) (simp add: sdrop_while_SCons)
traytel@52905
   243
next
traytel@54720
   244
  case False thus ?thesis by (subst (1 2) sfilter.ctr) (simp add: sdrop_while_SCons)
traytel@52905
   245
qed
traytel@52905
   246
traytel@51141
   247
traytel@51141
   248
subsection {* unary predicates lifted to streams *}
traytel@51141
   249
traytel@51141
   250
definition "stream_all P s = (\<forall>p. P (s !! p))"
traytel@51141
   251
traytel@51772
   252
lemma stream_all_iff[iff]: "stream_all P s \<longleftrightarrow> Ball (sset s) P"
traytel@51772
   253
  unfolding stream_all_def sset_range by auto
traytel@51141
   254
traytel@51141
   255
lemma stream_all_shift[simp]: "stream_all P (xs @- s) = (list_all P xs \<and> stream_all P s)"
traytel@51141
   256
  unfolding stream_all_iff list_all_iff by auto
traytel@51141
   257
hoelzl@54469
   258
lemma stream_all_Stream: "stream_all P (x ## X) \<longleftrightarrow> P x \<and> stream_all P X"
hoelzl@54469
   259
  by simp
hoelzl@54469
   260
traytel@51141
   261
traytel@51141
   262
subsection {* recurring stream out of a list *}
traytel@51141
   263
traytel@54027
   264
primcorec cycle :: "'a list \<Rightarrow> 'a stream" where
traytel@54027
   265
  "shd (cycle xs) = hd xs"
traytel@54027
   266
| "stl (cycle xs) = cycle (tl xs @ [hd xs])"
traytel@54720
   267
traytel@51141
   268
lemma cycle_decomp: "u \<noteq> [] \<Longrightarrow> cycle u = u @- cycle u"
traytel@54027
   269
proof (coinduction arbitrary: u)
traytel@54027
   270
  case Eq_stream then show ?case using stream.collapse[of "cycle u"]
traytel@54027
   271
    by (auto intro!: exI[of _ "tl u @ [hd u]"])
traytel@54027
   272
qed
traytel@51141
   273
traytel@51409
   274
lemma cycle_Cons[code]: "cycle (x # xs) = x ## cycle (xs @ [x])"
traytel@54027
   275
  by (subst cycle.ctr) simp
traytel@50518
   276
traytel@50518
   277
lemma cycle_rotated: "\<lbrakk>v \<noteq> []; cycle u = v @- s\<rbrakk> \<Longrightarrow> cycle (tl u @ [hd u]) = tl v @- s"
traytel@51141
   278
  by (auto dest: arg_cong[of _ _ stl])
traytel@50518
   279
traytel@50518
   280
lemma stake_append: "stake n (u @- s) = take (min (length u) n) u @ stake (n - length u) s"
traytel@50518
   281
proof (induct n arbitrary: u)
traytel@50518
   282
  case (Suc n) thus ?case by (cases u) auto
traytel@50518
   283
qed auto
traytel@50518
   284
traytel@50518
   285
lemma stake_cycle_le[simp]:
traytel@50518
   286
  assumes "u \<noteq> []" "n < length u"
traytel@50518
   287
  shows "stake n (cycle u) = take n u"
traytel@50518
   288
using min_absorb2[OF less_imp_le_nat[OF assms(2)]]
traytel@51141
   289
  by (subst cycle_decomp[OF assms(1)], subst stake_append) auto
traytel@50518
   290
traytel@50518
   291
lemma stake_cycle_eq[simp]: "u \<noteq> [] \<Longrightarrow> stake (length u) (cycle u) = u"
traytel@57175
   292
  by (subst cycle_decomp) (auto simp: stake_shift)
traytel@50518
   293
traytel@50518
   294
lemma sdrop_cycle_eq[simp]: "u \<noteq> [] \<Longrightarrow> sdrop (length u) (cycle u) = cycle u"
traytel@57175
   295
  by (subst cycle_decomp) (auto simp: sdrop_shift)
traytel@50518
   296
traytel@50518
   297
lemma stake_cycle_eq_mod_0[simp]: "\<lbrakk>u \<noteq> []; n mod length u = 0\<rbrakk> \<Longrightarrow>
traytel@50518
   298
   stake n (cycle u) = concat (replicate (n div length u) u)"
traytel@51141
   299
  by (induct "n div length u" arbitrary: n u) (auto simp: stake_add[symmetric])
traytel@50518
   300
traytel@50518
   301
lemma sdrop_cycle_eq_mod_0[simp]: "\<lbrakk>u \<noteq> []; n mod length u = 0\<rbrakk> \<Longrightarrow>
traytel@50518
   302
   sdrop n (cycle u) = cycle u"
traytel@51141
   303
  by (induct "n div length u" arbitrary: n u) (auto simp: sdrop_add[symmetric])
traytel@50518
   304
traytel@50518
   305
lemma stake_cycle: "u \<noteq> [] \<Longrightarrow>
traytel@50518
   306
   stake n (cycle u) = concat (replicate (n div length u) u) @ take (n mod length u) u"
traytel@51141
   307
  by (subst mod_div_equality[of n "length u", symmetric], unfold stake_add[symmetric]) auto
traytel@50518
   308
traytel@50518
   309
lemma sdrop_cycle: "u \<noteq> [] \<Longrightarrow> sdrop n (cycle u) = cycle (rotate (n mod length u) u)"
traytel@51141
   310
  by (induct n arbitrary: u) (auto simp: rotate1_rotate_swap rotate1_hd_tl rotate_conv_mod[symmetric])
traytel@51141
   311
traytel@51141
   312
hoelzl@54497
   313
subsection {* iterated application of a function *}
hoelzl@54497
   314
hoelzl@54497
   315
primcorec siterate where
hoelzl@54497
   316
  "shd (siterate f x) = x"
hoelzl@54497
   317
| "stl (siterate f x) = siterate f (f x)"
hoelzl@54497
   318
hoelzl@54497
   319
lemma stake_Suc: "stake (Suc n) s = stake n s @ [s !! n]"
hoelzl@54497
   320
  by (induct n arbitrary: s) auto
hoelzl@54497
   321
hoelzl@54497
   322
lemma snth_siterate[simp]: "siterate f x !! n = (f^^n) x"
hoelzl@54497
   323
  by (induct n arbitrary: x) (auto simp: funpow_swap1)
hoelzl@54497
   324
hoelzl@54497
   325
lemma sdrop_siterate[simp]: "sdrop n (siterate f x) = siterate f ((f^^n) x)"
hoelzl@54497
   326
  by (induct n arbitrary: x) (auto simp: funpow_swap1)
hoelzl@54497
   327
hoelzl@54497
   328
lemma stake_siterate[simp]: "stake n (siterate f x) = map (\<lambda>n. (f^^n) x) [0 ..< n]"
hoelzl@54497
   329
  by (induct n arbitrary: x) (auto simp del: stake.simps(2) simp: stake_Suc)
hoelzl@54497
   330
hoelzl@54497
   331
lemma sset_siterate: "sset (siterate f x) = {(f^^n) x | n. True}"
hoelzl@54497
   332
  by (auto simp: sset_range)
hoelzl@54497
   333
hoelzl@54497
   334
lemma smap_siterate: "smap f (siterate f x) = siterate f (f x)"
hoelzl@54497
   335
  by (coinduction arbitrary: x) auto
hoelzl@54497
   336
hoelzl@54497
   337
traytel@51141
   338
subsection {* stream repeating a single element *}
traytel@51141
   339
hoelzl@54497
   340
abbreviation "sconst \<equiv> siterate id"
traytel@51141
   341
hoelzl@54497
   342
lemma shift_replicate_sconst[simp]: "replicate n x @- sconst x = sconst x"
hoelzl@54497
   343
  by (subst (3) stake_sdrop[symmetric]) (simp add: map_replicate_trivial)
traytel@51141
   344
traytel@57175
   345
lemma sset_sconst[simp]: "sset (sconst x) = {x}"
hoelzl@54497
   346
  by (simp add: sset_siterate)
traytel@51141
   347
traytel@57175
   348
lemma sconst_alt: "s = sconst x \<longleftrightarrow> sset s = {x}"
traytel@57175
   349
proof
traytel@57175
   350
  assume "sset s = {x}"
traytel@57175
   351
  then show "s = sconst x"
traytel@57175
   352
  proof (coinduction arbitrary: s)
traytel@57175
   353
    case Eq_stream
traytel@57175
   354
    then have "shd s = x" "sset (stl s) \<subseteq> {x}" by (case_tac [!] s) auto
traytel@57175
   355
    then have "sset (stl s) = {x}" by (cases "stl s") auto
traytel@57175
   356
    with `shd s = x` show ?case by auto
traytel@57175
   357
  qed
traytel@57175
   358
qed simp
traytel@57175
   359
hoelzl@54497
   360
lemma same_cycle: "sconst x = cycle [x]"
hoelzl@54497
   361
  by coinduction auto
traytel@51141
   362
hoelzl@54497
   363
lemma smap_sconst: "smap f (sconst x) = sconst (f x)"
hoelzl@54497
   364
  by coinduction auto
traytel@51141
   365
hoelzl@54497
   366
lemma sconst_streams: "x \<in> A \<Longrightarrow> sconst x \<in> streams A"
hoelzl@54497
   367
  by (simp add: streams_iff_sset)
traytel@51141
   368
traytel@51141
   369
traytel@51141
   370
subsection {* stream of natural numbers *}
traytel@51141
   371
hoelzl@54497
   372
abbreviation "fromN \<equiv> siterate Suc"
hoelzl@54469
   373
traytel@51141
   374
abbreviation "nats \<equiv> fromN 0"
traytel@51141
   375
hoelzl@54497
   376
lemma sset_fromN[simp]: "sset (fromN n) = {n ..}"
traytel@54720
   377
  by (auto simp add: sset_siterate le_iff_add)
hoelzl@54497
   378
traytel@57175
   379
lemma stream_smap_fromN: "s = smap (\<lambda>j. let i = j - n in s !! i) (fromN n)"
traytel@57175
   380
  by (coinduction arbitrary: s n)
traytel@57175
   381
    (force simp: neq_Nil_conv Let_def snth.simps(2)[symmetric] Suc_diff_Suc
traytel@57175
   382
      intro: stream.map_cong split: if_splits simp del: snth.simps(2))
traytel@57175
   383
traytel@57175
   384
lemma stream_smap_nats: "s = smap (snth s) nats"
traytel@57175
   385
  using stream_smap_fromN[where n = 0] by simp
traytel@57175
   386
traytel@51141
   387
traytel@51462
   388
subsection {* flatten a stream of lists *}
traytel@51462
   389
traytel@54027
   390
primcorec flat where
traytel@51462
   391
  "shd (flat ws) = hd (shd ws)"
traytel@54027
   392
| "stl (flat ws) = flat (if tl (shd ws) = [] then stl ws else tl (shd ws) ## stl ws)"
traytel@51462
   393
traytel@51462
   394
lemma flat_Cons[simp, code]: "flat ((x # xs) ## ws) = x ## flat (if xs = [] then ws else xs ## ws)"
traytel@54027
   395
  by (subst flat.ctr) simp
traytel@51462
   396
traytel@51462
   397
lemma flat_Stream[simp]: "xs \<noteq> [] \<Longrightarrow> flat (xs ## ws) = xs @- flat ws"
traytel@51462
   398
  by (induct xs) auto
traytel@51462
   399
traytel@51462
   400
lemma flat_unfold: "shd ws \<noteq> [] \<Longrightarrow> flat ws = shd ws @- flat (stl ws)"
traytel@51462
   401
  by (cases ws) auto
traytel@51462
   402
traytel@51772
   403
lemma flat_snth: "\<forall>xs \<in> sset s. xs \<noteq> [] \<Longrightarrow> flat s !! n = (if n < length (shd s) then 
traytel@51462
   404
  shd s ! n else flat (stl s) !! (n - length (shd s)))"
traytel@51772
   405
  by (metis flat_unfold not_less shd_sset shift_snth_ge shift_snth_less)
traytel@51462
   406
traytel@51772
   407
lemma sset_flat[simp]: "\<forall>xs \<in> sset s. xs \<noteq> [] \<Longrightarrow> 
traytel@51772
   408
  sset (flat s) = (\<Union>xs \<in> sset s. set xs)" (is "?P \<Longrightarrow> ?L = ?R")
traytel@51462
   409
proof safe
traytel@51462
   410
  fix x assume ?P "x : ?L"
traytel@51772
   411
  then obtain m where "x = flat s !! m" by (metis image_iff sset_range)
traytel@51462
   412
  with `?P` obtain n m' where "x = s !! n ! m'" "m' < length (s !! n)"
traytel@51462
   413
  proof (atomize_elim, induct m arbitrary: s rule: less_induct)
traytel@51462
   414
    case (less y)
traytel@51462
   415
    thus ?case
traytel@51462
   416
    proof (cases "y < length (shd s)")
traytel@51462
   417
      case True thus ?thesis by (metis flat_snth less(2,3) snth.simps(1))
traytel@51462
   418
    next
traytel@51462
   419
      case False
traytel@51462
   420
      hence "x = flat (stl s) !! (y - length (shd s))" by (metis less(2,3) flat_snth)
traytel@51462
   421
      moreover
wenzelm@53374
   422
      { from less(2) have *: "length (shd s) > 0" by (cases s) simp_all
wenzelm@53374
   423
        with False have "y > 0" by (cases y) simp_all
wenzelm@53374
   424
        with * have "y - length (shd s) < y" by simp
traytel@51462
   425
      }
traytel@51772
   426
      moreover have "\<forall>xs \<in> sset (stl s). xs \<noteq> []" using less(2) by (cases s) auto
traytel@51462
   427
      ultimately have "\<exists>n m'. x = stl s !! n ! m' \<and> m' < length (stl s !! n)" by (intro less(1)) auto
traytel@51462
   428
      thus ?thesis by (metis snth.simps(2))
traytel@51462
   429
    qed
traytel@51462
   430
  qed
traytel@51772
   431
  thus "x \<in> ?R" by (auto simp: sset_range dest!: nth_mem)
traytel@51462
   432
next
traytel@51772
   433
  fix x xs assume "xs \<in> sset s" ?P "x \<in> set xs" thus "x \<in> ?L"
blanchet@57986
   434
    by (induct rule: sset_induct)
traytel@51772
   435
      (metis UnI1 flat_unfold shift.simps(1) sset_shift,
traytel@51772
   436
       metis UnI2 flat_unfold shd_sset stl_sset sset_shift)
traytel@51462
   437
qed
traytel@51462
   438
traytel@51462
   439
traytel@51462
   440
subsection {* merge a stream of streams *}
traytel@51462
   441
traytel@51462
   442
definition smerge :: "'a stream stream \<Rightarrow> 'a stream" where
traytel@51772
   443
  "smerge ss = flat (smap (\<lambda>n. map (\<lambda>s. s !! n) (stake (Suc n) ss) @ stake n (ss !! n)) nats)"
traytel@51462
   444
traytel@51462
   445
lemma stake_nth[simp]: "m < n \<Longrightarrow> stake n s ! m = s !! m"
traytel@51462
   446
  by (induct n arbitrary: s m) (auto simp: nth_Cons', metis Suc_pred snth.simps(2))
traytel@51462
   447
traytel@51772
   448
lemma snth_sset_smerge: "ss !! n !! m \<in> sset (smerge ss)"
traytel@51462
   449
proof (cases "n \<le> m")
traytel@51462
   450
  case False thus ?thesis unfolding smerge_def
traytel@51772
   451
    by (subst sset_flat)
blanchet@53290
   452
      (auto simp: stream.set_map in_set_conv_nth simp del: stake.simps
traytel@51462
   453
        intro!: exI[of _ n, OF disjI2] exI[of _ m, OF mp])
traytel@51462
   454
next
traytel@51462
   455
  case True thus ?thesis unfolding smerge_def
traytel@51772
   456
    by (subst sset_flat)
blanchet@53290
   457
      (auto simp: stream.set_map in_set_conv_nth image_iff simp del: stake.simps snth.simps
traytel@51462
   458
        intro!: exI[of _ m, OF disjI1] bexI[of _ "ss !! n"] exI[of _ n, OF mp])
traytel@51462
   459
qed
traytel@51462
   460
traytel@51772
   461
lemma sset_smerge: "sset (smerge ss) = UNION (sset ss) sset"
traytel@51462
   462
proof safe
traytel@51772
   463
  fix x assume "x \<in> sset (smerge ss)"
traytel@51772
   464
  thus "x \<in> UNION (sset ss) sset"
traytel@51772
   465
    unfolding smerge_def by (subst (asm) sset_flat)
blanchet@53290
   466
      (auto simp: stream.set_map in_set_conv_nth sset_range simp del: stake.simps, fast+)
traytel@51462
   467
next
traytel@51772
   468
  fix s x assume "s \<in> sset ss" "x \<in> sset s"
traytel@51772
   469
  thus "x \<in> sset (smerge ss)" using snth_sset_smerge by (auto simp: sset_range)
traytel@51462
   470
qed
traytel@51462
   471
traytel@51462
   472
traytel@51462
   473
subsection {* product of two streams *}
traytel@51462
   474
traytel@51462
   475
definition sproduct :: "'a stream \<Rightarrow> 'b stream \<Rightarrow> ('a \<times> 'b) stream" where
traytel@51772
   476
  "sproduct s1 s2 = smerge (smap (\<lambda>x. smap (Pair x) s2) s1)"
traytel@51462
   477
traytel@51772
   478
lemma sset_sproduct: "sset (sproduct s1 s2) = sset s1 \<times> sset s2"
blanchet@53290
   479
  unfolding sproduct_def sset_smerge by (auto simp: stream.set_map)
traytel@51462
   480
traytel@51462
   481
traytel@51462
   482
subsection {* interleave two streams *}
traytel@51462
   483
traytel@54027
   484
primcorec sinterleave where
traytel@54027
   485
  "shd (sinterleave s1 s2) = shd s1"
traytel@54027
   486
| "stl (sinterleave s1 s2) = sinterleave s2 (stl s1)"
traytel@51462
   487
traytel@51462
   488
lemma sinterleave_code[code]:
traytel@51462
   489
  "sinterleave (x ## s1) s2 = x ## sinterleave s2 s1"
traytel@54027
   490
  by (subst sinterleave.ctr) simp
traytel@51462
   491
traytel@51462
   492
lemma sinterleave_snth[simp]:
traytel@51462
   493
  "even n \<Longrightarrow> sinterleave s1 s2 !! n = s1 !! (n div 2)"
traytel@51462
   494
   "odd n \<Longrightarrow> sinterleave s1 s2 !! n = s2 !! (n div 2)"
traytel@51462
   495
  by (induct n arbitrary: s1 s2)
traytel@51462
   496
    (auto dest: even_nat_Suc_div_2 odd_nat_plus_one_div_two[folded nat_2])
traytel@51462
   497
traytel@51772
   498
lemma sset_sinterleave: "sset (sinterleave s1 s2) = sset s1 \<union> sset s2"
traytel@51462
   499
proof (intro equalityI subsetI)
traytel@51772
   500
  fix x assume "x \<in> sset (sinterleave s1 s2)"
traytel@51772
   501
  then obtain n where "x = sinterleave s1 s2 !! n" unfolding sset_range by blast
traytel@51772
   502
  thus "x \<in> sset s1 \<union> sset s2" by (cases "even n") auto
traytel@51462
   503
next
traytel@51772
   504
  fix x assume "x \<in> sset s1 \<union> sset s2"
traytel@51772
   505
  thus "x \<in> sset (sinterleave s1 s2)"
traytel@51462
   506
  proof
traytel@51772
   507
    assume "x \<in> sset s1"
traytel@51772
   508
    then obtain n where "x = s1 !! n" unfolding sset_range by blast
traytel@51462
   509
    hence "sinterleave s1 s2 !! (2 * n) = x" by simp
traytel@51772
   510
    thus ?thesis unfolding sset_range by blast
traytel@51462
   511
  next
traytel@51772
   512
    assume "x \<in> sset s2"
traytel@51772
   513
    then obtain n where "x = s2 !! n" unfolding sset_range by blast
traytel@51462
   514
    hence "sinterleave s1 s2 !! (2 * n + 1) = x" by simp
traytel@51772
   515
    thus ?thesis unfolding sset_range by blast
traytel@51462
   516
  qed
traytel@51462
   517
qed
traytel@51462
   518
traytel@51462
   519
traytel@51141
   520
subsection {* zip *}
traytel@51141
   521
traytel@54027
   522
primcorec szip where
traytel@54027
   523
  "shd (szip s1 s2) = (shd s1, shd s2)"
traytel@54027
   524
| "stl (szip s1 s2) = szip (stl s1) (stl s2)"
traytel@51141
   525
traytel@54720
   526
lemma szip_unfold[code]: "szip (a ## s1) (b ## s2) = (a, b) ## (szip s1 s2)"
traytel@54027
   527
  by (subst szip.ctr) simp
traytel@51409
   528
traytel@51141
   529
lemma snth_szip[simp]: "szip s1 s2 !! n = (s1 !! n, s2 !! n)"
traytel@51141
   530
  by (induct n arbitrary: s1 s2) auto
traytel@51141
   531
traytel@57175
   532
lemma stake_szip[simp]:
traytel@57175
   533
  "stake n (szip s1 s2) = zip (stake n s1) (stake n s2)"
traytel@57175
   534
  by (induct n arbitrary: s1 s2) auto
traytel@57175
   535
traytel@57175
   536
lemma sdrop_szip[simp]: "sdrop n (szip s1 s2) = szip (sdrop n s1) (sdrop n s2)"
traytel@57175
   537
  by (induct n arbitrary: s1 s2) auto
traytel@57175
   538
traytel@57175
   539
lemma smap_szip_fst:
traytel@57175
   540
  "smap (\<lambda>x. f (fst x)) (szip s1 s2) = smap f s1"
traytel@57175
   541
  by (coinduction arbitrary: s1 s2) auto
traytel@57175
   542
traytel@57175
   543
lemma smap_szip_snd:
traytel@57175
   544
  "smap (\<lambda>x. g (snd x)) (szip s1 s2) = smap g s2"
traytel@57175
   545
  by (coinduction arbitrary: s1 s2) auto
traytel@57175
   546
traytel@51141
   547
traytel@51141
   548
subsection {* zip via function *}
traytel@51141
   549
traytel@54027
   550
primcorec smap2 where
traytel@51772
   551
  "shd (smap2 f s1 s2) = f (shd s1) (shd s2)"
traytel@54027
   552
| "stl (smap2 f s1 s2) = smap2 f (stl s1) (stl s2)"
traytel@51141
   553
traytel@51772
   554
lemma smap2_unfold[code]:
traytel@54720
   555
  "smap2 f (a ## s1) (b ## s2) = f a b ## (smap2 f s1 s2)"
traytel@54027
   556
  by (subst smap2.ctr) simp
traytel@51409
   557
traytel@51772
   558
lemma smap2_szip:
traytel@51772
   559
  "smap2 f s1 s2 = smap (split f) (szip s1 s2)"
traytel@54027
   560
  by (coinduction arbitrary: s1 s2) auto
traytel@50518
   561
traytel@57175
   562
lemma smap_smap2[simp]:
traytel@57175
   563
  "smap f (smap2 g s1 s2) = smap2 (\<lambda>x y. f (g x y)) s1 s2"
traytel@57175
   564
  unfolding smap2_szip stream.map_comp o_def split_def ..
traytel@57175
   565
traytel@57175
   566
lemma smap2_alt:
traytel@57175
   567
  "(smap2 f s1 s2 = s) = (\<forall>n. f (s1 !! n) (s2 !! n) = s !! n)"
traytel@57175
   568
  unfolding smap2_szip smap_alt by auto
traytel@57175
   569
traytel@57175
   570
lemma snth_smap2[simp]:
traytel@57175
   571
  "smap2 f s1 s2 !! n = f (s1 !! n) (s2 !! n)"
traytel@57175
   572
  by (induct n arbitrary: s1 s2) auto
traytel@57175
   573
traytel@57175
   574
lemma stake_smap2[simp]:
traytel@57175
   575
  "stake n (smap2 f s1 s2) = map (split f) (zip (stake n s1) (stake n s2))"
traytel@57175
   576
  by (induct n arbitrary: s1 s2) auto
traytel@57175
   577
traytel@57175
   578
lemma sdrop_smap2[simp]:
traytel@57175
   579
  "sdrop n (smap2 f s1 s2) = smap2 f (sdrop n s1) (sdrop n s2)"
traytel@57175
   580
  by (induct n arbitrary: s1 s2) auto
traytel@57175
   581
traytel@50518
   582
end