src/HOL/Auth/OtwayRees_Bad.ML
author paulson
Fri Jul 04 17:34:55 1997 +0200 (1997-07-04)
changeset 3500 0d8ad2f192d8
parent 3466 30791e5a69c4
child 3519 ab0a9fbed4c0
permissions -rw-r--r--
New constant "certificate"--just an abbreviation
paulson@2002
     1
(*  Title:      HOL/Auth/OtwayRees_Bad
paulson@2002
     2
    ID:         $Id$
paulson@2002
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
paulson@2002
     4
    Copyright   1996  University of Cambridge
paulson@2002
     5
paulson@2002
     6
Inductive relation "otway" for the Otway-Rees protocol.
paulson@2002
     7
paulson@2002
     8
The FAULTY version omitting encryption of Nonce NB, as suggested on page 247 of
paulson@2002
     9
  Burrows, Abadi and Needham.  A Logic of Authentication.
paulson@2002
    10
  Proc. Royal Soc. 426 (1989)
paulson@2002
    11
paulson@2002
    12
This file illustrates the consequences of such errors.  We can still prove
paulson@2032
    13
impressive-looking properties such as Spy_not_see_encrypted_key, yet the
paulson@2002
    14
protocol is open to a middleperson attack.  Attempting to prove some key lemmas
paulson@2002
    15
indicates the possibility of this attack.
paulson@2002
    16
*)
paulson@2002
    17
paulson@2002
    18
open OtwayRees_Bad;
paulson@2002
    19
paulson@2002
    20
proof_timing:=true;
paulson@2002
    21
HOL_quantifiers := false;
paulson@2002
    22
paulson@3121
    23
(*Replacing the variable by a constant improves search speed by 50%!*)
paulson@3121
    24
val Says_imp_sees_Spy' = 
paulson@3121
    25
    read_instantiate_sg (sign_of thy) [("lost","lost")] Says_imp_sees_Spy;
paulson@2002
    26
paulson@3121
    27
(*A "possibility property": there are traces that reach the end*)
paulson@2002
    28
goal thy 
paulson@2002
    29
 "!!A B. [| A ~= B; A ~= Server; B ~= Server |]   \
paulson@2002
    30
\        ==> EX K. EX NA. EX evs: otway.          \
paulson@2284
    31
\               Says B A {|Nonce NA, Crypt (shrK A) {|Nonce NA, Key K|}|} \
nipkow@3465
    32
\                 : set evs";
paulson@2002
    33
by (REPEAT (resolve_tac [exI,bexI] 1));
paulson@2032
    34
by (rtac (otway.Nil RS otway.OR1 RS otway.OR2 RS otway.OR3 RS otway.OR4) 2);
paulson@2516
    35
by possibility_tac;
paulson@2002
    36
result();
paulson@2002
    37
paulson@2002
    38
paulson@2002
    39
(**** Inductive proofs about otway ****)
paulson@2002
    40
paulson@2002
    41
(*Nobody sends themselves messages*)
nipkow@3465
    42
goal thy "!!evs. evs : otway ==> ALL A X. Says A A X ~: set evs";
paulson@2032
    43
by (etac otway.induct 1);
paulson@2002
    44
by (Auto_tac());
paulson@2002
    45
qed_spec_mp "not_Says_to_self";
paulson@2002
    46
Addsimps [not_Says_to_self];
paulson@2002
    47
AddSEs   [not_Says_to_self RSN (2, rev_notE)];
paulson@2002
    48
paulson@2002
    49
paulson@2002
    50
(** For reasoning about the encrypted portion of messages **)
paulson@2002
    51
nipkow@3465
    52
goal thy "!!evs. Says A' B {|N, Agent A, Agent B, X|} : set evs ==> \
paulson@2052
    53
\                X : analz (sees lost Spy evs)";
paulson@3121
    54
by (blast_tac (!claset addSDs [Says_imp_sees_Spy' RS analz.Inj]) 1);
paulson@2032
    55
qed "OR2_analz_sees_Spy";
paulson@2002
    56
nipkow@3465
    57
goal thy "!!evs. Says S' B {|N, X, Crypt (shrK B) X'|} : set evs ==> \
paulson@2052
    58
\                X : analz (sees lost Spy evs)";
paulson@3121
    59
by (blast_tac (!claset addSDs [Says_imp_sees_Spy' RS analz.Inj]) 1);
paulson@2032
    60
qed "OR4_analz_sees_Spy";
paulson@2002
    61
nipkow@3465
    62
goal thy "!!evs. Says Server B {|NA, X, Crypt K' {|NB,K|}|} : set evs \
paulson@2131
    63
\                 ==> K : parts (sees lost Spy evs)";
paulson@3102
    64
by (blast_tac (!claset addSEs sees_Spy_partsEs) 1);
paulson@2131
    65
qed "Oops_parts_sees_Spy";
paulson@2002
    66
paulson@2002
    67
(*OR2_analz... and OR4_analz... let us treat those cases using the same 
paulson@2002
    68
  argument as for the Fake case.  This is possible for most, but not all,
paulson@2002
    69
  proofs: Fake does not invent new nonces (as in OR2), and of course Fake
paulson@2032
    70
  messages originate from the Spy. *)
paulson@2002
    71
paulson@2052
    72
bind_thm ("OR2_parts_sees_Spy",
paulson@2052
    73
          OR2_analz_sees_Spy RS (impOfSubs analz_subset_parts));
paulson@2052
    74
bind_thm ("OR4_parts_sees_Spy",
paulson@2052
    75
          OR4_analz_sees_Spy RS (impOfSubs analz_subset_parts));
paulson@2052
    76
paulson@3121
    77
(*For proving the easier theorems about X ~: parts (sees lost Spy evs) *)
paulson@3121
    78
val parts_induct_tac = 
paulson@3121
    79
    etac otway.induct 1 THEN 
paulson@2052
    80
    forward_tac [OR2_parts_sees_Spy] 4 THEN 
paulson@2052
    81
    forward_tac [OR4_parts_sees_Spy] 6 THEN
paulson@3121
    82
    forward_tac [Oops_parts_sees_Spy] 7 THEN
paulson@3121
    83
    prove_simple_subgoals_tac 1;
paulson@2002
    84
paulson@2002
    85
paulson@2052
    86
(** Theorems of the form X ~: parts (sees lost Spy evs) imply that NOBODY
paulson@2002
    87
    sends messages containing X! **)
paulson@2002
    88
paulson@2131
    89
(*Spy never sees another agent's shared key! (unless it's lost at start)*)
paulson@2002
    90
goal thy 
paulson@2131
    91
 "!!evs. evs : otway \
paulson@2131
    92
\        ==> (Key (shrK A) : parts (sees lost Spy evs)) = (A : lost)";
paulson@3121
    93
by parts_induct_tac;
paulson@3121
    94
by (Fake_parts_insert_tac 1);
paulson@3121
    95
by (Blast_tac 1);
paulson@2131
    96
qed "Spy_see_shrK";
paulson@2131
    97
Addsimps [Spy_see_shrK];
paulson@2002
    98
paulson@2131
    99
goal thy 
paulson@2131
   100
 "!!evs. evs : otway \
paulson@2131
   101
\        ==> (Key (shrK A) : analz (sees lost Spy evs)) = (A : lost)";
paulson@2131
   102
by (auto_tac(!claset addDs [impOfSubs analz_subset_parts], !simpset));
paulson@2131
   103
qed "Spy_analz_shrK";
paulson@2131
   104
Addsimps [Spy_analz_shrK];
paulson@2002
   105
paulson@2131
   106
goal thy  "!!A. [| Key (shrK A) : parts (sees lost Spy evs);       \
paulson@2131
   107
\                  evs : otway |] ==> A:lost";
paulson@3102
   108
by (blast_tac (!claset addDs [Spy_see_shrK]) 1);
paulson@2131
   109
qed "Spy_see_shrK_D";
paulson@2002
   110
paulson@2131
   111
bind_thm ("Spy_analz_shrK_D", analz_subset_parts RS subsetD RS Spy_see_shrK_D);
paulson@2131
   112
AddSDs [Spy_see_shrK_D, Spy_analz_shrK_D];
paulson@2002
   113
paulson@2002
   114
paulson@2516
   115
(*Nobody can have used non-existent keys!*)
paulson@2516
   116
goal thy "!!evs. evs : otway ==>          \
paulson@2516
   117
\         Key K ~: used evs --> K ~: keysFor (parts (sees lost Spy evs))";
paulson@3121
   118
by parts_induct_tac;
paulson@2516
   119
(*Fake*)
paulson@2516
   120
by (best_tac
paulson@2516
   121
      (!claset addIs [impOfSubs analz_subset_parts]
paulson@2516
   122
               addDs [impOfSubs (analz_subset_parts RS keysFor_mono),
paulson@2516
   123
                      impOfSubs (parts_insert_subset_Un RS keysFor_mono)]
oheimb@3207
   124
               addss (!simpset)) 1);
paulson@2516
   125
(*OR1-3*)
paulson@3121
   126
by (ALLGOALS Blast_tac);
paulson@2160
   127
qed_spec_mp "new_keys_not_used";
paulson@2002
   128
paulson@2002
   129
bind_thm ("new_keys_not_analzd",
paulson@2032
   130
          [analz_subset_parts RS keysFor_mono,
paulson@2032
   131
           new_keys_not_used] MRS contra_subsetD);
paulson@2002
   132
paulson@2002
   133
Addsimps [new_keys_not_used, new_keys_not_analzd];
paulson@2002
   134
paulson@2002
   135
paulson@2131
   136
paulson@2131
   137
(*** Proofs involving analz ***)
paulson@2131
   138
paulson@2131
   139
(*Describes the form of K and NA when the Server sends this message.  Also
paulson@2131
   140
  for Oops case.*)
paulson@2131
   141
goal thy 
paulson@2516
   142
 "!!evs. [| Says Server B                                                 \
paulson@3466
   143
\            {|NA, X, Crypt (shrK B) {|NB, Key K|}|} : set evs;           \
paulson@2516
   144
\           evs : otway |]                                                \
paulson@2516
   145
\     ==> K ~: range shrK & (EX i. NA = Nonce i) & (EX j. NB = Nonce j)";
paulson@2131
   146
by (etac rev_mp 1);
paulson@2131
   147
by (etac otway.induct 1);
paulson@3121
   148
by (prove_simple_subgoals_tac 1);
paulson@3121
   149
by (Blast_tac 1); 
paulson@2131
   150
qed "Says_Server_message_form";
paulson@2131
   151
paulson@2131
   152
paulson@2131
   153
(*For proofs involving analz.*)
paulson@3121
   154
val analz_sees_tac = 
paulson@2131
   155
    dtac OR2_analz_sees_Spy 4 THEN 
paulson@2131
   156
    dtac OR4_analz_sees_Spy 6 THEN
paulson@2516
   157
    forward_tac [Says_Server_message_form] 7 THEN assume_tac 7 THEN 
paulson@2451
   158
    REPEAT ((eresolve_tac [exE, conjE] ORELSE' hyp_subst_tac) 7);
paulson@2002
   159
paulson@2002
   160
paulson@2002
   161
(****
paulson@2002
   162
 The following is to prove theorems of the form
paulson@2002
   163
paulson@2516
   164
  Key K : analz (insert (Key KAB) (sees lost Spy evs)) ==>
paulson@2451
   165
  Key K : analz (sees lost Spy evs)
paulson@2002
   166
paulson@2002
   167
 A more general formula must be proved inductively.
paulson@2002
   168
****)
paulson@2002
   169
paulson@2002
   170
paulson@2002
   171
(** Session keys are not used to encrypt other session keys **)
paulson@2002
   172
paulson@2002
   173
(*The equality makes the induction hypothesis easier to apply*)
paulson@2002
   174
goal thy  
paulson@3466
   175
 "!!evs. evs : otway ==>                                         \
paulson@3466
   176
\  ALL K KK. KK <= Compl (range shrK) -->                        \
paulson@3466
   177
\            (Key K : analz (Key``KK Un (sees lost Spy evs))) =  \
paulson@2516
   178
\            (K : KK | Key K : analz (sees lost Spy evs))";
paulson@2032
   179
by (etac otway.induct 1);
paulson@3121
   180
by analz_sees_tac;
paulson@2516
   181
by (REPEAT_FIRST (resolve_tac [allI, impI]));
paulson@2516
   182
by (REPEAT_FIRST (rtac analz_image_freshK_lemma ));
paulson@2516
   183
by (ALLGOALS (asm_simp_tac analz_image_freshK_ss));
paulson@3451
   184
(*Fake*) 
paulson@3451
   185
by (spy_analz_tac 2);
paulson@2516
   186
(*Base*)
paulson@3121
   187
by (Blast_tac 1);
paulson@2516
   188
qed_spec_mp "analz_image_freshK";
paulson@2002
   189
paulson@2002
   190
paulson@2002
   191
goal thy
paulson@2516
   192
 "!!evs. [| evs : otway;  KAB ~: range shrK |] ==>              \
paulson@2516
   193
\        Key K : analz (insert (Key KAB) (sees lost Spy evs)) = \
paulson@2516
   194
\        (K = KAB | Key K : analz (sees lost Spy evs))";
paulson@2516
   195
by (asm_simp_tac (analz_image_freshK_ss addsimps [analz_image_freshK]) 1);
paulson@2516
   196
qed "analz_insert_freshK";
paulson@2002
   197
paulson@2002
   198
paulson@2131
   199
(*** The Key K uniquely identifies the Server's  message. **)
paulson@2002
   200
paulson@2002
   201
goal thy 
paulson@3466
   202
 "!!evs. evs : otway ==>                                                  \
paulson@3466
   203
\   EX B' NA' NB' X'. ALL B NA NB X.                                      \
paulson@3466
   204
\     Says Server B {|NA, X, Crypt (shrK B) {|NB, K|}|} : set evs -->     \
paulson@2131
   205
\     B=B' & NA=NA' & NB=NB' & X=X'";
paulson@2032
   206
by (etac otway.induct 1);
paulson@2002
   207
by (ALLGOALS (asm_simp_tac (!simpset addsimps [all_conj_distrib])));
paulson@2002
   208
by (Step_tac 1);
paulson@2002
   209
(*Remaining cases: OR3 and OR4*)
paulson@2002
   210
by (ex_strip_tac 2);
paulson@3102
   211
by (Blast_tac 2);
paulson@2107
   212
by (expand_case_tac "K = ?y" 1);
paulson@2107
   213
by (REPEAT (ares_tac [refl,exI,impI,conjI] 2));
paulson@2516
   214
(*...we assume X is a recent message, and handle this case by contradiction*)
paulson@3102
   215
by (blast_tac (!claset addSEs sees_Spy_partsEs
paulson@3121
   216
                      delrules [conjI]    (*no split-up to 4 subgoals*)) 1);
paulson@2002
   217
val lemma = result();
paulson@2002
   218
paulson@2002
   219
goal thy 
paulson@3466
   220
 "!!evs. [| Says Server B {|NA, X, Crypt (shrK B) {|NB, K|}|}   : set evs; \ 
paulson@3466
   221
\           Says Server B' {|NA',X',Crypt (shrK B') {|NB',K|}|} : set evs; \
paulson@2131
   222
\           evs : otway |] ==> X=X' & B=B' & NA=NA' & NB=NB'";
paulson@2417
   223
by (prove_unique_tac lemma 1);
paulson@2002
   224
qed "unique_session_keys";
paulson@2002
   225
paulson@2002
   226
paulson@2131
   227
(*Crucial security property, but not itself enough to guarantee correctness!*)
paulson@2131
   228
goal thy 
paulson@2166
   229
 "!!evs. [| A ~: lost;  B ~: lost;  evs : otway |]                    \
paulson@2166
   230
\        ==> Says Server B                                            \
paulson@2284
   231
\              {|NA, Crypt (shrK A) {|NA, Key K|},                    \
paulson@3466
   232
\                Crypt (shrK B) {|NB, Key K|}|} : set evs -->         \
paulson@3466
   233
\            Says B Spy {|NA, NB, Key K|} ~: set evs -->              \
paulson@2166
   234
\            Key K ~: analz (sees lost Spy evs)";
paulson@2131
   235
by (etac otway.induct 1);
paulson@3121
   236
by analz_sees_tac;
paulson@2131
   237
by (ALLGOALS
paulson@2516
   238
    (asm_simp_tac (!simpset addcongs [conj_cong] 
paulson@3451
   239
                            addsimps [analz_insert_eq, not_parts_not_analz, 
paulson@3451
   240
				      analz_insert_freshK]
paulson@2516
   241
                            setloop split_tac [expand_if])));
paulson@3451
   242
(*Oops*)
paulson@3451
   243
by (blast_tac (!claset addSDs [unique_session_keys]) 4);
paulson@3451
   244
(*OR4*) 
paulson@3451
   245
by (Blast_tac 3);
paulson@2131
   246
(*OR3*)
paulson@3451
   247
by (blast_tac (!claset addSEs sees_Spy_partsEs
paulson@3451
   248
                       addIs [impOfSubs analz_subset_parts]) 2);
paulson@3451
   249
(*Fake*) 
paulson@3451
   250
by (spy_analz_tac 1);
paulson@2131
   251
val lemma = result() RS mp RS mp RSN(2,rev_notE);
paulson@2131
   252
paulson@2131
   253
goal thy 
paulson@3466
   254
 "!!evs. [| Says Server B                                         \
paulson@3466
   255
\            {|NA, Crypt (shrK A) {|NA, Key K|},                  \
paulson@3466
   256
\                  Crypt (shrK B) {|NB, Key K|}|} : set evs;      \
paulson@3466
   257
\           Says B Spy {|NA, NB, Key K|} ~: set evs;              \
paulson@2131
   258
\           A ~: lost;  B ~: lost;  evs : otway |]                \
paulson@2516
   259
\        ==> Key K ~: analz (sees lost Spy evs)";
paulson@2131
   260
by (forward_tac [Says_Server_message_form] 1 THEN assume_tac 1);
paulson@3102
   261
by (blast_tac (!claset addSEs [lemma]) 1);
paulson@2131
   262
qed "Spy_not_see_encrypted_key";
paulson@2131
   263
paulson@2131
   264
paulson@2131
   265
(*** Attempting to prove stronger properties ***)
paulson@2131
   266
paulson@2052
   267
(*Only OR1 can have caused such a part of a message to appear.
paulson@2052
   268
  I'm not sure why A ~= B premise is needed: OtwayRees.ML doesn't need it.
paulson@2052
   269
  Perhaps it's because OR2 has two similar-looking encrypted messages in
paulson@2516
   270
        this version.*)
paulson@2002
   271
goal thy 
paulson@2516
   272
 "!!evs. [| A ~: lost;  A ~= B;  evs : otway |]                \
paulson@2284
   273
\        ==> Crypt (shrK A) {|NA, Agent A, Agent B|}           \
paulson@2052
   274
\             : parts (sees lost Spy evs) -->                  \
paulson@2131
   275
\            Says A B {|NA, Agent A, Agent B,                  \
paulson@3466
   276
\                       Crypt (shrK A) {|NA, Agent A, Agent B|}|}  : set evs";
paulson@3121
   277
by parts_induct_tac;
paulson@3121
   278
by (Fake_parts_insert_tac 1);
paulson@3102
   279
by (Blast_tac 1);
paulson@2002
   280
qed_spec_mp "Crypt_imp_OR1";
paulson@2002
   281
paulson@2002
   282
paulson@2131
   283
(*Crucial property: If the encrypted message appears, and A has used NA
paulson@2131
   284
  to start a run, then it originated with the Server!*)
paulson@2131
   285
(*Only it is FALSE.  Somebody could make a fake message to Server
paulson@2002
   286
          substituting some other nonce NA' for NB.*)
paulson@2002
   287
goal thy 
paulson@3466
   288
 "!!evs. [| A ~: lost;  A ~= Spy;  evs : otway |]                         \
paulson@2284
   289
\        ==> Crypt (shrK A) {|NA, Key K|} : parts (sees lost Spy evs) --> \
paulson@3466
   290
\            Says A B {|NA, Agent A, Agent B,                      \
paulson@2284
   291
\                       Crypt (shrK A) {|NA, Agent A, Agent B|}|}  \
paulson@3466
   292
\             : set evs -->                                    \
paulson@2131
   293
\            (EX B NB. Says Server B                           \
paulson@2131
   294
\                 {|NA,                                        \
paulson@2284
   295
\                   Crypt (shrK A) {|NA, Key K|},              \
paulson@3466
   296
\                   Crypt (shrK B) {|NB, Key K|}|}  : set evs)";
paulson@3121
   297
by parts_induct_tac;
paulson@3121
   298
by (Fake_parts_insert_tac 1);
paulson@2002
   299
(*OR1: it cannot be a new Nonce, contradiction.*)
paulson@3102
   300
by (blast_tac (!claset addSIs [parts_insertI]
paulson@3102
   301
                      addSEs sees_Spy_partsEs) 1);
paulson@2002
   302
(*OR4*)
paulson@2002
   303
by (REPEAT (Safe_step_tac 2));
paulson@3102
   304
by (REPEAT (blast_tac (!claset addSDs [parts_cut]) 3));
paulson@3102
   305
by (blast_tac (!claset addSIs [Crypt_imp_OR1]
paulson@3102
   306
                       addEs  sees_Spy_partsEs) 2);
paulson@2131
   307
(*OR3*)  (** LEVEL 5 **)
paulson@2002
   308
by (ALLGOALS (asm_simp_tac (!simpset addsimps [ex_disj_distrib])));
paulson@2052
   309
by (step_tac (!claset delrules [disjCI, impCE]) 1);
paulson@2002
   310
(*The hypotheses at this point suggest an attack in which nonce NA is used
paulson@2052
   311
  in two different roles:
paulson@2052
   312
          Says B' Server
paulson@2052
   313
           {|Nonce NAa, Agent Aa, Agent A,
paulson@2284
   314
             Crypt (shrK Aa) {|Nonce NAa, Agent Aa, Agent A|}, Nonce NA,
paulson@2284
   315
             Crypt (shrK A) {|Nonce NAa, Agent Aa, Agent A|}|}
nipkow@3465
   316
          : set evsa;
paulson@2052
   317
          Says A B
paulson@2052
   318
           {|Nonce NA, Agent A, Agent B,
paulson@2284
   319
             Crypt (shrK A) {|Nonce NA, Agent A, Agent B|}|}
nipkow@3465
   320
          : set evsa 
paulson@2052
   321
*)
paulson@2131
   322
writeln "GIVE UP! on NA_Crypt_imp_Server_msg";
paulson@2002
   323
paulson@2002
   324
paulson@2052
   325
(*Thus the key property A_can_trust probably fails too.*)