src/HOL/Tools/inductive.ML
author wenzelm
Sat Jan 14 17:45:04 2012 +0100 (2012-01-14)
changeset 46215 0da9433f959e
parent 45740 132a3e1c0fe5
child 46218 ecf6375e2abb
permissions -rw-r--r--
discontinued old-style Term.list_all_free in favour of plain Logic.all;
haftmann@31723
     1
(*  Title:      HOL/Tools/inductive.ML
berghofe@5094
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
wenzelm@21367
     3
    Author:     Stefan Berghofer and Markus Wenzel, TU Muenchen
berghofe@5094
     4
wenzelm@6424
     5
(Co)Inductive Definition module for HOL.
berghofe@5094
     6
berghofe@5094
     7
Features:
wenzelm@6424
     8
  * least or greatest fixedpoints
wenzelm@6424
     9
  * mutually recursive definitions
wenzelm@6424
    10
  * definitions involving arbitrary monotone operators
wenzelm@6424
    11
  * automatically proves introduction and elimination rules
berghofe@5094
    12
berghofe@5094
    13
  Introduction rules have the form
berghofe@21024
    14
  [| M Pj ti, ..., Q x, ... |] ==> Pk t
berghofe@5094
    15
  where M is some monotone operator (usually the identity)
berghofe@21024
    16
  Q x is any side condition on the free variables
berghofe@5094
    17
  ti, t are any terms
berghofe@21024
    18
  Pj, Pk are two of the predicates being defined in mutual recursion
berghofe@5094
    19
*)
berghofe@5094
    20
haftmann@31723
    21
signature BASIC_INDUCTIVE =
berghofe@5094
    22
sig
wenzelm@33458
    23
  type inductive_result =
wenzelm@33458
    24
    {preds: term list, elims: thm list, raw_induct: thm,
bulwahn@37734
    25
     induct: thm, inducts: thm list, intrs: thm list, eqs: thm list}
wenzelm@45290
    26
  val transform_result: morphism -> inductive_result -> inductive_result
wenzelm@33458
    27
  type inductive_info = {names: string list, coind: bool} * inductive_result
wenzelm@21526
    28
  val the_inductive: Proof.context -> string -> inductive_info
wenzelm@21367
    29
  val print_inductives: Proof.context -> unit
wenzelm@45651
    30
  val get_monos: Proof.context -> thm list
wenzelm@18728
    31
  val mono_add: attribute
wenzelm@18728
    32
  val mono_del: attribute
wenzelm@21367
    33
  val mk_cases: Proof.context -> term -> thm
wenzelm@10910
    34
  val inductive_forall_def: thm
wenzelm@10910
    35
  val rulify: thm -> thm
wenzelm@28839
    36
  val inductive_cases: (Attrib.binding * string list) list -> local_theory ->
wenzelm@28084
    37
    thm list list * local_theory
wenzelm@28839
    38
  val inductive_cases_i: (Attrib.binding * term list) list -> local_theory ->
wenzelm@28084
    39
    thm list list * local_theory
wenzelm@33458
    40
  type inductive_flags =
wenzelm@33669
    41
    {quiet_mode: bool, verbose: bool, alt_name: binding, coind: bool,
wenzelm@33669
    42
      no_elim: bool, no_ind: bool, skip_mono: bool, fork_mono: bool}
wenzelm@24815
    43
  val add_inductive_i:
haftmann@29581
    44
    inductive_flags -> ((binding * typ) * mixfix) list ->
wenzelm@28084
    45
    (string * typ) list -> (Attrib.binding * term) list -> thm list -> local_theory ->
wenzelm@28084
    46
    inductive_result * local_theory
wenzelm@28083
    47
  val add_inductive: bool -> bool ->
haftmann@29581
    48
    (binding * string option * mixfix) list ->
haftmann@29581
    49
    (binding * string option * mixfix) list ->
wenzelm@28084
    50
    (Attrib.binding * string) list ->
wenzelm@28083
    51
    (Facts.ref * Attrib.src list) list ->
wenzelm@29388
    52
    bool -> local_theory -> inductive_result * local_theory
wenzelm@33726
    53
  val add_inductive_global: inductive_flags ->
haftmann@29581
    54
    ((binding * typ) * mixfix) list -> (string * typ) list -> (Attrib.binding * term) list ->
wenzelm@28084
    55
    thm list -> theory -> inductive_result * theory
berghofe@22789
    56
  val arities_of: thm -> (string * int) list
berghofe@22789
    57
  val params_of: thm -> term list
berghofe@22789
    58
  val partition_rules: thm -> thm list -> (string * thm list) list
berghofe@25822
    59
  val partition_rules': thm -> (thm * 'a) list -> (string * (thm * 'a) list) list
berghofe@22789
    60
  val unpartition_rules: thm list -> (string * 'a list) list -> 'a list
berghofe@22789
    61
  val infer_intro_vars: thm -> int -> thm list -> term list list
wenzelm@18708
    62
  val setup: theory -> theory
berghofe@5094
    63
end;
berghofe@5094
    64
haftmann@31723
    65
signature INDUCTIVE =
berghofe@23762
    66
sig
haftmann@31723
    67
  include BASIC_INDUCTIVE
wenzelm@33458
    68
  type add_ind_def =
wenzelm@33458
    69
    inductive_flags ->
wenzelm@33458
    70
    term list -> (Attrib.binding * term) list -> thm list ->
wenzelm@33458
    71
    term list -> (binding * mixfix) list ->
wenzelm@33458
    72
    local_theory -> inductive_result * local_theory
bulwahn@35757
    73
  val declare_rules: binding -> bool -> bool -> string list -> term list ->
berghofe@34986
    74
    thm list -> binding list -> Attrib.src list list -> (thm * string list * int) list ->
bulwahn@37734
    75
    thm list -> thm -> local_theory -> thm list * thm list * thm list * thm * thm list * local_theory
berghofe@23762
    76
  val add_ind_def: add_ind_def
wenzelm@28083
    77
  val gen_add_inductive_i: add_ind_def -> inductive_flags ->
haftmann@29581
    78
    ((binding * typ) * mixfix) list -> (string * typ) list -> (Attrib.binding * term) list ->
wenzelm@28084
    79
    thm list -> local_theory -> inductive_result * local_theory
wenzelm@28083
    80
  val gen_add_inductive: add_ind_def -> bool -> bool ->
haftmann@29581
    81
    (binding * string option * mixfix) list ->
haftmann@29581
    82
    (binding * string option * mixfix) list ->
wenzelm@28084
    83
    (Attrib.binding * string) list -> (Facts.ref * Attrib.src list) list ->
wenzelm@29388
    84
    bool -> local_theory -> inductive_result * local_theory
wenzelm@36958
    85
  val gen_ind_decl: add_ind_def -> bool -> (bool -> local_theory -> local_theory) parser
berghofe@23762
    86
end;
berghofe@23762
    87
haftmann@31723
    88
structure Inductive: INDUCTIVE =
berghofe@5094
    89
struct
berghofe@5094
    90
wenzelm@10729
    91
(** theory context references **)
wenzelm@10729
    92
haftmann@32602
    93
val inductive_forall_def = @{thm induct_forall_def};
wenzelm@11991
    94
val inductive_conj_name = "HOL.induct_conj";
haftmann@32602
    95
val inductive_conj_def = @{thm induct_conj_def};
haftmann@32602
    96
val inductive_conj = @{thms induct_conj};
haftmann@32602
    97
val inductive_atomize = @{thms induct_atomize};
haftmann@32602
    98
val inductive_rulify = @{thms induct_rulify};
haftmann@32602
    99
val inductive_rulify_fallback = @{thms induct_rulify_fallback};
wenzelm@10729
   100
wenzelm@45649
   101
val simp_thms1 =
wenzelm@45649
   102
  map mk_meta_eq
wenzelm@45649
   103
    @{lemma "(~ True) = False" "(~ False) = True"
wenzelm@45649
   104
        "(True --> P) = P" "(False --> P) = True"
wenzelm@45649
   105
        "(P & True) = P" "(True & P) = P"
wenzelm@45649
   106
      by (fact simp_thms)+};
berghofe@21024
   107
wenzelm@45649
   108
val simp_thms2 =
wenzelm@45649
   109
  map mk_meta_eq [@{thm inf_fun_def}, @{thm inf_bool_def}] @ simp_thms1;
haftmann@32652
   110
wenzelm@45649
   111
val simp_thms3 =
wenzelm@45649
   112
  map mk_meta_eq [@{thm le_fun_def}, @{thm le_bool_def}, @{thm sup_fun_def}, @{thm sup_bool_def}];
wenzelm@10729
   113
wenzelm@10729
   114
wenzelm@45647
   115
wenzelm@10735
   116
(** misc utilities **)
wenzelm@6424
   117
wenzelm@26477
   118
fun message quiet_mode s = if quiet_mode then () else writeln s;
wenzelm@26477
   119
fun clean_message quiet_mode s = if ! quick_and_dirty then () else message quiet_mode s;
berghofe@5662
   120
wenzelm@6424
   121
fun coind_prefix true = "co"
wenzelm@6424
   122
  | coind_prefix false = "";
wenzelm@6424
   123
wenzelm@45651
   124
fun log (b: int) m n = if m >= n then 0 else 1 + log b (b * m) n;
wenzelm@6424
   125
berghofe@21024
   126
fun make_bool_args f g [] i = []
berghofe@21024
   127
  | make_bool_args f g (x :: xs) i =
berghofe@21024
   128
      (if i mod 2 = 0 then f x else g x) :: make_bool_args f g xs (i div 2);
berghofe@21024
   129
berghofe@21024
   130
fun make_bool_args' xs =
wenzelm@45740
   131
  make_bool_args (K @{term False}) (K @{term True}) xs;
berghofe@21024
   132
haftmann@33957
   133
fun arg_types_of k c = drop k (binder_types (fastype_of c));
haftmann@33077
   134
wenzelm@40316
   135
fun find_arg T x [] = raise Fail "find_arg"
berghofe@21024
   136
  | find_arg T x ((p as (_, (SOME _, _))) :: ps) =
berghofe@21024
   137
      apsnd (cons p) (find_arg T x ps)
berghofe@21024
   138
  | find_arg T x ((p as (U, (NONE, y))) :: ps) =
wenzelm@23577
   139
      if (T: typ) = U then (y, (U, (SOME x, y)) :: ps)
berghofe@21024
   140
      else apsnd (cons p) (find_arg T x ps);
berghofe@7020
   141
berghofe@21024
   142
fun make_args Ts xs =
haftmann@28524
   143
  map (fn (T, (NONE, ())) => Const (@{const_name undefined}, T) | (_, (SOME t, ())) => t)
berghofe@21024
   144
    (fold (fn (t, T) => snd o find_arg T t) xs (map (rpair (NONE, ())) Ts));
berghofe@7020
   145
berghofe@21024
   146
fun make_args' Ts xs Us =
berghofe@21024
   147
  fst (fold_map (fn T => find_arg T ()) Us (Ts ~~ map (pair NONE) xs));
berghofe@7020
   148
berghofe@21024
   149
fun dest_predicate cs params t =
berghofe@5094
   150
  let
berghofe@21024
   151
    val k = length params;
berghofe@21024
   152
    val (c, ts) = strip_comb t;
berghofe@21024
   153
    val (xs, ys) = chop k ts;
haftmann@31986
   154
    val i = find_index (fn c' => c' = c) cs;
berghofe@21024
   155
  in
berghofe@21024
   156
    if xs = params andalso i >= 0 then
haftmann@33077
   157
      SOME (c, i, ys, chop (length ys) (arg_types_of k c))
berghofe@21024
   158
    else NONE
berghofe@5094
   159
  end;
berghofe@5094
   160
berghofe@21024
   161
fun mk_names a 0 = []
berghofe@21024
   162
  | mk_names a 1 = [a]
berghofe@21024
   163
  | mk_names a n = map (fn i => a ^ string_of_int i) (1 upto n);
berghofe@10988
   164
bulwahn@37734
   165
fun select_disj 1 1 = []
bulwahn@37734
   166
  | select_disj _ 1 = [rtac disjI1]
wenzelm@45647
   167
  | select_disj n i = rtac disjI2 :: select_disj (n - 1) (i - 1);
wenzelm@45647
   168
wenzelm@6424
   169
wenzelm@6424
   170
wenzelm@45651
   171
(** context data **)
wenzelm@45651
   172
wenzelm@45651
   173
type inductive_result =
wenzelm@45651
   174
  {preds: term list, elims: thm list, raw_induct: thm,
wenzelm@45651
   175
   induct: thm, inducts: thm list, intrs: thm list, eqs: thm list};
wenzelm@45651
   176
wenzelm@45651
   177
fun transform_result phi {preds, elims, raw_induct: thm, induct, inducts, intrs, eqs} =
wenzelm@45651
   178
  let
wenzelm@45651
   179
    val term = Morphism.term phi;
wenzelm@45651
   180
    val thm = Morphism.thm phi;
wenzelm@45651
   181
    val fact = Morphism.fact phi;
wenzelm@45651
   182
  in
wenzelm@45651
   183
   {preds = map term preds, elims = fact elims, raw_induct = thm raw_induct,
wenzelm@45651
   184
    induct = thm induct, inducts = fact inducts, intrs = fact intrs, eqs = fact eqs}
wenzelm@45651
   185
  end;
wenzelm@45651
   186
wenzelm@45651
   187
type inductive_info = {names: string list, coind: bool} * inductive_result;
wenzelm@45651
   188
wenzelm@45651
   189
val empty_equations =
wenzelm@45652
   190
  Item_Net.init Thm.eq_thm_prop
wenzelm@45652
   191
    (single o fst o HOLogic.dest_eq o HOLogic.dest_Trueprop o Thm.prop_of);
wenzelm@45651
   192
wenzelm@45651
   193
datatype data = Data of
wenzelm@45651
   194
 {infos: inductive_info Symtab.table,
wenzelm@45651
   195
  monos: thm list,
wenzelm@45651
   196
  equations: thm Item_Net.T};
wenzelm@45651
   197
wenzelm@45651
   198
fun make_data (infos, monos, equations) =
wenzelm@45651
   199
  Data {infos = infos, monos = monos, equations = equations};
wenzelm@45651
   200
wenzelm@45651
   201
structure Data = Generic_Data
wenzelm@45651
   202
(
wenzelm@45651
   203
  type T = data;
wenzelm@45651
   204
  val empty = make_data (Symtab.empty, [], empty_equations);
wenzelm@45651
   205
  val extend = I;
wenzelm@45651
   206
  fun merge (Data {infos = infos1, monos = monos1, equations = equations1},
wenzelm@45651
   207
      Data {infos = infos2, monos = monos2, equations = equations2}) =
wenzelm@45651
   208
    make_data (Symtab.merge (K true) (infos1, infos2),
wenzelm@45651
   209
      Thm.merge_thms (monos1, monos2),
wenzelm@45651
   210
      Item_Net.merge (equations1, equations2));
wenzelm@45651
   211
);
wenzelm@45651
   212
wenzelm@45651
   213
fun map_data f =
wenzelm@45651
   214
  Data.map (fn Data {infos, monos, equations} => make_data (f (infos, monos, equations)));
wenzelm@45651
   215
wenzelm@45651
   216
fun rep_data ctxt = Data.get (Context.Proof ctxt) |> (fn Data rep => rep);
wenzelm@45651
   217
wenzelm@45651
   218
fun print_inductives ctxt =
wenzelm@45651
   219
  let
wenzelm@45651
   220
    val {infos, monos, ...} = rep_data ctxt;
wenzelm@45651
   221
    val space = Consts.space_of (Proof_Context.consts_of ctxt);
wenzelm@45651
   222
  in
wenzelm@45651
   223
    [Pretty.strs ("(co)inductives:" :: map #1 (Name_Space.extern_table ctxt (space, infos))),
wenzelm@45651
   224
     Pretty.big_list "monotonicity rules:" (map (Display.pretty_thm ctxt) monos)]
wenzelm@45651
   225
    |> Pretty.chunks |> Pretty.writeln
wenzelm@45651
   226
  end;
wenzelm@45651
   227
wenzelm@45651
   228
wenzelm@45651
   229
(* inductive info *)
wenzelm@45651
   230
wenzelm@45651
   231
fun the_inductive ctxt name =
wenzelm@45651
   232
  (case Symtab.lookup (#infos (rep_data ctxt)) name of
wenzelm@45651
   233
    NONE => error ("Unknown (co)inductive predicate " ^ quote name)
wenzelm@45651
   234
  | SOME info => info);
wenzelm@45651
   235
wenzelm@45651
   236
fun put_inductives names info =
wenzelm@45651
   237
  map_data (fn (infos, monos, equations) =>
wenzelm@45651
   238
    (fold (fn name => Symtab.update (name, info)) names infos, monos, equations));
wenzelm@45651
   239
wenzelm@45651
   240
wenzelm@45651
   241
(* monotonicity rules *)
wenzelm@45651
   242
wenzelm@45651
   243
val get_monos = #monos o rep_data;
wenzelm@45651
   244
wenzelm@45651
   245
fun mk_mono ctxt thm =
wenzelm@45651
   246
  let
wenzelm@45651
   247
    fun eq_to_mono thm' = thm' RS (thm' RS @{thm eq_to_mono});
wenzelm@45651
   248
    fun dest_less_concl thm = dest_less_concl (thm RS @{thm le_funD})
wenzelm@45651
   249
      handle THM _ => thm RS @{thm le_boolD}
wenzelm@45651
   250
  in
wenzelm@45651
   251
    (case concl_of thm of
wenzelm@45651
   252
      Const ("==", _) $ _ $ _ => eq_to_mono (thm RS meta_eq_to_obj_eq)
wenzelm@45651
   253
    | _ $ (Const (@{const_name HOL.eq}, _) $ _ $ _) => eq_to_mono thm
wenzelm@45651
   254
    | _ $ (Const (@{const_name Orderings.less_eq}, _) $ _ $ _) =>
wenzelm@45651
   255
      dest_less_concl (Seq.hd (REPEAT (FIRSTGOAL
wenzelm@45651
   256
        (resolve_tac [@{thm le_funI}, @{thm le_boolI'}])) thm))
wenzelm@45651
   257
    | _ => thm)
wenzelm@45651
   258
  end handle THM _ => error ("Bad monotonicity theorem:\n" ^ Display.string_of_thm ctxt thm);
wenzelm@45651
   259
wenzelm@45651
   260
val mono_add =
wenzelm@45651
   261
  Thm.declaration_attribute (fn thm => fn context =>
wenzelm@45651
   262
    map_data (fn (infos, monos, equations) =>
wenzelm@45651
   263
      (infos, Thm.add_thm (mk_mono (Context.proof_of context) thm) monos, equations)) context);
wenzelm@45651
   264
wenzelm@45651
   265
val mono_del =
wenzelm@45651
   266
  Thm.declaration_attribute (fn thm => fn context =>
wenzelm@45651
   267
    map_data (fn (infos, monos, equations) =>
wenzelm@45651
   268
      (infos, Thm.del_thm (mk_mono (Context.proof_of context) thm) monos, equations)) context);
wenzelm@45651
   269
wenzelm@45651
   270
wenzelm@45651
   271
(* equations *)
wenzelm@45651
   272
wenzelm@45651
   273
val get_equations = #equations o rep_data;
wenzelm@45651
   274
wenzelm@45652
   275
val equation_add_permissive =
wenzelm@45651
   276
  Thm.declaration_attribute (fn thm =>
wenzelm@45652
   277
    map_data (fn (infos, monos, equations) =>
wenzelm@45652
   278
      (infos, monos, perhaps (try (Item_Net.update thm)) equations)));
wenzelm@45651
   279
wenzelm@45651
   280
wenzelm@45651
   281
wenzelm@10729
   282
(** process rules **)
wenzelm@10729
   283
wenzelm@10729
   284
local
berghofe@5094
   285
berghofe@23762
   286
fun err_in_rule ctxt name t msg =
wenzelm@42381
   287
  error (cat_lines ["Ill-formed introduction rule " ^ Binding.print name,
wenzelm@24920
   288
    Syntax.string_of_term ctxt t, msg]);
wenzelm@10729
   289
berghofe@23762
   290
fun err_in_prem ctxt name t p msg =
wenzelm@24920
   291
  error (cat_lines ["Ill-formed premise", Syntax.string_of_term ctxt p,
wenzelm@42381
   292
    "in introduction rule " ^ Binding.print name, Syntax.string_of_term ctxt t, msg]);
berghofe@5094
   293
berghofe@21024
   294
val bad_concl = "Conclusion of introduction rule must be an inductive predicate";
wenzelm@10729
   295
berghofe@21024
   296
val bad_ind_occ = "Inductive predicate occurs in argument of inductive predicate";
berghofe@21024
   297
berghofe@21024
   298
val bad_app = "Inductive predicate must be applied to parameter(s) ";
paulson@11358
   299
wenzelm@41228
   300
fun atomize_term thy = Raw_Simplifier.rewrite_term thy inductive_atomize [];
wenzelm@10729
   301
wenzelm@10729
   302
in
berghofe@5094
   303
wenzelm@28083
   304
fun check_rule ctxt cs params ((binding, att), rule) =
wenzelm@10729
   305
  let
berghofe@21024
   306
    val params' = Term.variant_frees rule (Logic.strip_params rule);
berghofe@21024
   307
    val frees = rev (map Free params');
berghofe@21024
   308
    val concl = subst_bounds (frees, Logic.strip_assums_concl rule);
berghofe@21024
   309
    val prems = map (curry subst_bounds frees) (Logic.strip_assums_hyp rule);
berghofe@23762
   310
    val rule' = Logic.list_implies (prems, concl);
wenzelm@42361
   311
    val aprems = map (atomize_term (Proof_Context.theory_of ctxt)) prems;
wenzelm@46215
   312
    val arule = fold_rev (Logic.all o Free) params' (Logic.list_implies (aprems, concl));
berghofe@21024
   313
wenzelm@45647
   314
    fun check_ind err t =
wenzelm@45647
   315
      (case dest_predicate cs params t of
berghofe@21024
   316
        NONE => err (bad_app ^
wenzelm@24920
   317
          commas (map (Syntax.string_of_term ctxt) params))
berghofe@21024
   318
      | SOME (_, _, ys, _) =>
berghofe@21024
   319
          if exists (fn c => exists (fn t => Logic.occs (c, t)) ys) cs
wenzelm@45647
   320
          then err bad_ind_occ else ());
berghofe@21024
   321
berghofe@21024
   322
    fun check_prem' prem t =
haftmann@36692
   323
      if member (op =) cs (head_of t) then
wenzelm@42381
   324
        check_ind (err_in_prem ctxt binding rule prem) t
wenzelm@45647
   325
      else
wenzelm@45647
   326
        (case t of
berghofe@21024
   327
          Abs (_, _, t) => check_prem' prem t
berghofe@21024
   328
        | t $ u => (check_prem' prem t; check_prem' prem u)
berghofe@21024
   329
        | _ => ());
berghofe@5094
   330
wenzelm@10729
   331
    fun check_prem (prem, aprem) =
berghofe@21024
   332
      if can HOLogic.dest_Trueprop aprem then check_prem' prem prem
wenzelm@42381
   333
      else err_in_prem ctxt binding rule prem "Non-atomic premise";
wenzelm@45647
   334
wenzelm@45647
   335
    val _ =
wenzelm@45647
   336
      (case concl of
wenzelm@45647
   337
        Const (@{const_name Trueprop}, _) $ t =>
wenzelm@45647
   338
          if member (op =) cs (head_of t) then
wenzelm@42381
   339
           (check_ind (err_in_rule ctxt binding rule') t;
berghofe@21024
   340
            List.app check_prem (prems ~~ aprems))
wenzelm@45647
   341
          else err_in_rule ctxt binding rule' bad_concl
wenzelm@45647
   342
       | _ => err_in_rule ctxt binding rule' bad_concl);
wenzelm@45647
   343
  in
wenzelm@28083
   344
    ((binding, att), arule)
wenzelm@10729
   345
  end;
berghofe@5094
   346
berghofe@24744
   347
val rulify =
wenzelm@18222
   348
  hol_simplify inductive_conj
wenzelm@18463
   349
  #> hol_simplify inductive_rulify
wenzelm@18463
   350
  #> hol_simplify inductive_rulify_fallback
wenzelm@30552
   351
  #> Simplifier.norm_hhf;
wenzelm@10729
   352
wenzelm@10729
   353
end;
wenzelm@10729
   354
berghofe@5094
   355
wenzelm@6424
   356
berghofe@21024
   357
(** proofs for (co)inductive predicates **)
wenzelm@6424
   358
berghofe@26534
   359
(* prove monotonicity *)
berghofe@5094
   360
berghofe@36642
   361
fun prove_mono quiet_mode skip_mono fork_mono predT fp_fun monos ctxt =
wenzelm@29388
   362
 (message (quiet_mode orelse skip_mono andalso !quick_and_dirty orelse fork_mono)
berghofe@26534
   363
    "  Proving monotonicity ...";
wenzelm@32970
   364
  (if skip_mono then Skip_Proof.prove else if fork_mono then Goal.prove_future else Goal.prove) ctxt
berghofe@36642
   365
    [] []
wenzelm@17985
   366
    (HOLogic.mk_Trueprop
wenzelm@24815
   367
      (Const (@{const_name Orderings.mono}, (predT --> predT) --> HOLogic.boolT) $ fp_fun))
wenzelm@25380
   368
    (fn _ => EVERY [rtac @{thm monoI} 1,
haftmann@32652
   369
      REPEAT (resolve_tac [@{thm le_funI}, @{thm le_boolI'}] 1),
berghofe@21024
   370
      REPEAT (FIRST
berghofe@21024
   371
        [atac 1,
wenzelm@42439
   372
         resolve_tac (map (mk_mono ctxt) monos @ get_monos ctxt) 1,
haftmann@32652
   373
         etac @{thm le_funE} 1, dtac @{thm le_boolD} 1])]));
berghofe@5094
   374
wenzelm@6424
   375
wenzelm@10735
   376
(* prove introduction rules *)
berghofe@5094
   377
berghofe@36642
   378
fun prove_intrs quiet_mode coind mono fp_def k intr_ts rec_preds_defs ctxt ctxt' =
berghofe@5094
   379
  let
wenzelm@26477
   380
    val _ = clean_message quiet_mode "  Proving the introduction rules ...";
berghofe@5094
   381
berghofe@21024
   382
    val unfold = funpow k (fn th => th RS fun_cong)
berghofe@21024
   383
      (mono RS (fp_def RS
haftmann@32652
   384
        (if coind then @{thm def_gfp_unfold} else @{thm def_lfp_unfold})));
berghofe@5094
   385
wenzelm@45648
   386
    val rules = [refl, TrueI, @{lemma "~ False" by (rule notI)}, exI, conjI];
berghofe@21024
   387
berghofe@36642
   388
    val intrs = map_index (fn (i, intr) =>
berghofe@36642
   389
      Skip_Proof.prove ctxt [] [] intr (fn _ => EVERY
berghofe@21024
   390
       [rewrite_goals_tac rec_preds_defs,
berghofe@21024
   391
        rtac (unfold RS iffD2) 1,
berghofe@21024
   392
        EVERY1 (select_disj (length intr_ts) (i + 1)),
wenzelm@17985
   393
        (*Not ares_tac, since refl must be tried before any equality assumptions;
wenzelm@17985
   394
          backtracking may occur if the premises have extra variables!*)
berghofe@36642
   395
        DEPTH_SOLVE_1 (resolve_tac rules 1 APPEND assume_tac 1)])
wenzelm@42361
   396
       |> singleton (Proof_Context.export ctxt ctxt')) intr_ts
berghofe@5094
   397
berghofe@5094
   398
  in (intrs, unfold) end;
berghofe@5094
   399
wenzelm@6424
   400
wenzelm@10735
   401
(* prove elimination rules *)
berghofe@5094
   402
berghofe@36642
   403
fun prove_elims quiet_mode cs params intr_ts intr_names unfold rec_preds_defs ctxt ctxt''' =
berghofe@5094
   404
  let
wenzelm@26477
   405
    val _ = clean_message quiet_mode "  Proving the elimination rules ...";
berghofe@5094
   406
berghofe@36642
   407
    val ([pname], ctxt') = Variable.variant_fixes ["P"] ctxt;
berghofe@21024
   408
    val P = HOLogic.mk_Trueprop (Free (pname, HOLogic.boolT));
berghofe@21024
   409
berghofe@21024
   410
    fun dest_intr r =
berghofe@21024
   411
      (the (dest_predicate cs params (HOLogic.dest_Trueprop (Logic.strip_assums_concl r))),
berghofe@21024
   412
       Logic.strip_assums_hyp r, Logic.strip_params r);
berghofe@21024
   413
berghofe@21024
   414
    val intrs = map dest_intr intr_ts ~~ intr_names;
berghofe@21024
   415
berghofe@21024
   416
    val rules1 = [disjE, exE, FalseE];
wenzelm@45648
   417
    val rules2 = [conjE, FalseE, @{lemma "~ True ==> R" by (rule notE [OF _ TrueI])}];
berghofe@21024
   418
berghofe@21024
   419
    fun prove_elim c =
berghofe@21024
   420
      let
haftmann@33077
   421
        val Ts = arg_types_of (length params) c;
berghofe@21024
   422
        val (anames, ctxt'') = Variable.variant_fixes (mk_names "a" (length Ts)) ctxt';
berghofe@21024
   423
        val frees = map Free (anames ~~ Ts);
berghofe@21024
   424
berghofe@21024
   425
        fun mk_elim_prem ((_, _, us, _), ts, params') =
berghofe@21024
   426
          list_all (params',
berghofe@21024
   427
            Logic.list_implies (map (HOLogic.mk_Trueprop o HOLogic.mk_eq)
berghofe@21024
   428
              (frees ~~ us) @ ts, P));
wenzelm@33317
   429
        val c_intrs = filter (equal c o #1 o #1 o #1) intrs;
berghofe@21024
   430
        val prems = HOLogic.mk_Trueprop (list_comb (c, params @ frees)) ::
berghofe@21024
   431
           map mk_elim_prem (map #1 c_intrs)
berghofe@21024
   432
      in
wenzelm@32970
   433
        (Skip_Proof.prove ctxt'' [] prems P
berghofe@21024
   434
          (fn {prems, ...} => EVERY
berghofe@21024
   435
            [cut_facts_tac [hd prems] 1,
berghofe@21024
   436
             rewrite_goals_tac rec_preds_defs,
berghofe@21024
   437
             dtac (unfold RS iffD1) 1,
berghofe@21024
   438
             REPEAT (FIRSTGOAL (eresolve_tac rules1)),
berghofe@21024
   439
             REPEAT (FIRSTGOAL (eresolve_tac rules2)),
berghofe@21024
   440
             EVERY (map (fn prem =>
berghofe@21024
   441
               DEPTH_SOLVE_1 (ares_tac [rewrite_rule rec_preds_defs prem, conjI] 1)) (tl prems))])
wenzelm@42361
   442
          |> singleton (Proof_Context.export ctxt'' ctxt'''),
berghofe@34986
   443
         map #2 c_intrs, length Ts)
berghofe@21024
   444
      end
berghofe@21024
   445
berghofe@21024
   446
   in map prove_elim cs end;
berghofe@5094
   447
wenzelm@45647
   448
bulwahn@37734
   449
(* prove simplification equations *)
wenzelm@6424
   450
wenzelm@45647
   451
fun prove_eqs quiet_mode cs params intr_ts intrs
wenzelm@45647
   452
    (elims: (thm * bstring list * int) list) ctxt ctxt'' =  (* FIXME ctxt'' ?? *)
bulwahn@37734
   453
  let
bulwahn@37734
   454
    val _ = clean_message quiet_mode "  Proving the simplification rules ...";
wenzelm@45647
   455
bulwahn@37734
   456
    fun dest_intr r =
bulwahn@37734
   457
      (the (dest_predicate cs params (HOLogic.dest_Trueprop (Logic.strip_assums_concl r))),
bulwahn@37734
   458
       Logic.strip_assums_hyp r, Logic.strip_params r);
bulwahn@37734
   459
    val intr_ts' = map dest_intr intr_ts;
wenzelm@45647
   460
wenzelm@37901
   461
    fun prove_eq c (elim: thm * 'a * 'b) =
bulwahn@37734
   462
      let
bulwahn@37734
   463
        val Ts = arg_types_of (length params) c;
bulwahn@37734
   464
        val (anames, ctxt') = Variable.variant_fixes (mk_names "a" (length Ts)) ctxt;
bulwahn@37734
   465
        val frees = map Free (anames ~~ Ts);
bulwahn@37734
   466
        val c_intrs = filter (equal c o #1 o #1 o #1) (intr_ts' ~~ intrs);
bulwahn@37734
   467
        fun mk_intr_conj (((_, _, us, _), ts, params'), _) =
bulwahn@37734
   468
          let
bulwahn@37734
   469
            fun list_ex ([], t) = t
wenzelm@45647
   470
              | list_ex ((a, T) :: vars, t) =
wenzelm@45647
   471
                  HOLogic.exists_const T $ Abs (a, T, list_ex (vars, t));
wenzelm@45647
   472
            val conjs = map2 (curry HOLogic.mk_eq) frees us @ (map HOLogic.dest_Trueprop ts);
bulwahn@37734
   473
          in
bulwahn@37734
   474
            list_ex (params', if null conjs then @{term True} else foldr1 HOLogic.mk_conj conjs)
bulwahn@37734
   475
          end;
wenzelm@45647
   476
        val lhs = list_comb (c, params @ frees);
bulwahn@37734
   477
        val rhs =
wenzelm@45647
   478
          if null c_intrs then @{term False}
wenzelm@45647
   479
          else foldr1 HOLogic.mk_disj (map mk_intr_conj c_intrs);
wenzelm@45647
   480
        val eq = HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs));
bulwahn@37734
   481
        fun prove_intr1 (i, _) = Subgoal.FOCUS_PREMS (fn {params, prems, ...} =>
bulwahn@37734
   482
            let
wenzelm@45647
   483
              val (prems', last_prem) = split_last prems;
bulwahn@37734
   484
            in
wenzelm@45647
   485
              EVERY1 (select_disj (length c_intrs) (i + 1)) THEN
wenzelm@45647
   486
              EVERY (replicate (length params) (rtac @{thm exI} 1)) THEN
wenzelm@45647
   487
              EVERY (map (fn prem => (rtac @{thm conjI} 1 THEN rtac prem 1)) prems') THEN
wenzelm@45647
   488
              rtac last_prem 1
wenzelm@45647
   489
            end) ctxt' 1;
bulwahn@37734
   490
        fun prove_intr2 (((_, _, us, _), ts, params'), intr) =
wenzelm@45647
   491
          EVERY (replicate (length params') (etac @{thm exE} 1)) THEN
wenzelm@45647
   492
          EVERY (replicate (length ts + length us - 1) (etac @{thm conjE} 1)) THEN
wenzelm@45647
   493
          Subgoal.FOCUS_PREMS (fn {params, prems, ...} =>
bulwahn@37734
   494
            let
wenzelm@45647
   495
              val (eqs, prems') = chop (length us) prems;
wenzelm@45647
   496
              val rew_thms = map (fn th => th RS @{thm eq_reflection}) eqs;
bulwahn@37734
   497
            in
wenzelm@45647
   498
              rewrite_goal_tac rew_thms 1 THEN
wenzelm@45647
   499
              rtac intr 1 THEN
wenzelm@45647
   500
              EVERY (map (fn p => rtac p 1) prems')
wenzelm@45647
   501
            end) ctxt' 1;
bulwahn@37734
   502
      in
wenzelm@45647
   503
        Skip_Proof.prove ctxt' [] [] eq (fn _ =>
wenzelm@45647
   504
          rtac @{thm iffI} 1 THEN etac (#1 elim) 1 THEN
wenzelm@45647
   505
          EVERY (map_index prove_intr1 c_intrs) THEN
wenzelm@45647
   506
          (if null c_intrs then etac @{thm FalseE} 1
wenzelm@45647
   507
           else
bulwahn@37734
   508
            let val (c_intrs', last_c_intr) = split_last c_intrs in
wenzelm@45647
   509
              EVERY (map (fn ci => etac @{thm disjE} 1 THEN prove_intr2 ci) c_intrs') THEN
wenzelm@45647
   510
              prove_intr2 last_c_intr
bulwahn@37734
   511
            end))
bulwahn@37734
   512
        |> rulify
wenzelm@42361
   513
        |> singleton (Proof_Context.export ctxt' ctxt'')
wenzelm@45647
   514
      end;
bulwahn@37734
   515
  in
bulwahn@37734
   516
    map2 prove_eq cs elims
bulwahn@37734
   517
  end;
wenzelm@45647
   518
wenzelm@45647
   519
wenzelm@10735
   520
(* derivation of simplified elimination rules *)
berghofe@5094
   521
wenzelm@11682
   522
local
wenzelm@11682
   523
wenzelm@11682
   524
(*delete needless equality assumptions*)
wenzelm@29064
   525
val refl_thin = Goal.prove_global @{theory HOL} [] [] @{prop "!!P. a = a ==> P ==> P"}
haftmann@22838
   526
  (fn _ => assume_tac 1);
berghofe@21024
   527
val elim_rls = [asm_rl, FalseE, refl_thin, conjE, exE];
wenzelm@11682
   528
val elim_tac = REPEAT o Tactic.eresolve_tac elim_rls;
wenzelm@11682
   529
berghofe@23762
   530
fun simp_case_tac ss i =
berghofe@23762
   531
  EVERY' [elim_tac, asm_full_simp_tac ss, elim_tac, REPEAT o bound_hyp_subst_tac] i;
wenzelm@21367
   532
wenzelm@11682
   533
in
wenzelm@9598
   534
wenzelm@21367
   535
fun mk_cases ctxt prop =
wenzelm@7107
   536
  let
wenzelm@42361
   537
    val thy = Proof_Context.theory_of ctxt;
wenzelm@32149
   538
    val ss = simpset_of ctxt;
wenzelm@21367
   539
wenzelm@21526
   540
    fun err msg =
wenzelm@21526
   541
      error (Pretty.string_of (Pretty.block
wenzelm@24920
   542
        [Pretty.str msg, Pretty.fbrk, Syntax.pretty_term ctxt prop]));
wenzelm@21526
   543
wenzelm@24861
   544
    val elims = Induct.find_casesP ctxt prop;
wenzelm@21367
   545
wenzelm@21367
   546
    val cprop = Thm.cterm_of thy prop;
berghofe@23762
   547
    val tac = ALLGOALS (simp_case_tac ss) THEN prune_params_tac;
wenzelm@21367
   548
    fun mk_elim rl =
wenzelm@36546
   549
      Thm.implies_intr cprop (Tactic.rule_by_tactic ctxt tac (Thm.assume cprop RS rl))
wenzelm@21367
   550
      |> singleton (Variable.export (Variable.auto_fixes prop ctxt) ctxt);
wenzelm@7107
   551
  in
wenzelm@7107
   552
    (case get_first (try mk_elim) elims of
skalberg@15531
   553
      SOME r => r
wenzelm@21526
   554
    | NONE => err "Proposition not an inductive predicate:")
wenzelm@7107
   555
  end;
wenzelm@7107
   556
wenzelm@11682
   557
end;
wenzelm@11682
   558
wenzelm@45647
   559
wenzelm@21367
   560
(* inductive_cases *)
wenzelm@7107
   561
wenzelm@21367
   562
fun gen_inductive_cases prep_att prep_prop args lthy =
wenzelm@9598
   563
  let
wenzelm@42361
   564
    val thy = Proof_Context.theory_of lthy;
wenzelm@37957
   565
    val facts = args |> Par_List.map (fn ((a, atts), props) =>
wenzelm@21367
   566
      ((a, map (prep_att thy) atts),
wenzelm@37957
   567
        Par_List.map (Thm.no_attributes o single o mk_cases lthy o prep_prop lthy) props));
wenzelm@33671
   568
  in lthy |> Local_Theory.notes facts |>> map snd end;
berghofe@5094
   569
wenzelm@24509
   570
val inductive_cases = gen_inductive_cases Attrib.intern_src Syntax.read_prop;
wenzelm@24509
   571
val inductive_cases_i = gen_inductive_cases (K I) Syntax.check_prop;
wenzelm@7107
   572
wenzelm@6424
   573
wenzelm@30722
   574
val ind_cases_setup =
wenzelm@30722
   575
  Method.setup @{binding ind_cases}
wenzelm@30722
   576
    (Scan.lift (Scan.repeat1 Args.name_source --
wenzelm@42491
   577
      Scan.optional (Args.$$$ "for" |-- Scan.repeat1 Args.binding) []) >>
wenzelm@30722
   578
      (fn (raw_props, fixes) => fn ctxt =>
wenzelm@30722
   579
        let
wenzelm@42491
   580
          val (_, ctxt') = Variable.add_fixes_binding fixes ctxt;
wenzelm@30722
   581
          val props = Syntax.read_props ctxt' raw_props;
wenzelm@30722
   582
          val ctxt'' = fold Variable.declare_term props ctxt';
wenzelm@42361
   583
          val rules = Proof_Context.export ctxt'' ctxt (map (mk_cases ctxt'') props)
wenzelm@30722
   584
        in Method.erule 0 rules end))
wenzelm@30722
   585
    "dynamic case analysis on predicates";
wenzelm@9598
   586
wenzelm@45647
   587
bulwahn@37734
   588
(* derivation of simplified equation *)
wenzelm@9598
   589
bulwahn@37734
   590
fun mk_simp_eq ctxt prop =
bulwahn@37734
   591
  let
wenzelm@45647
   592
    val thy = Proof_Context.theory_of ctxt;
wenzelm@45647
   593
    val ctxt' = Variable.auto_fixes prop ctxt;
wenzelm@45647
   594
    val lhs_of = fst o HOLogic.dest_eq o HOLogic.dest_Trueprop o Thm.prop_of;
wenzelm@45647
   595
    val substs =
wenzelm@45649
   596
      Item_Net.retrieve (get_equations ctxt) (HOLogic.dest_Trueprop prop)
bulwahn@38665
   597
      |> map_filter
bulwahn@38665
   598
        (fn eq => SOME (Pattern.match thy (lhs_of eq, HOLogic.dest_Trueprop prop)
bulwahn@38665
   599
            (Vartab.empty, Vartab.empty), eq)
wenzelm@45647
   600
          handle Pattern.MATCH => NONE);
wenzelm@45647
   601
    val (subst, eq) =
wenzelm@45647
   602
      (case substs of
bulwahn@38665
   603
        [s] => s
bulwahn@38665
   604
      | _ => error
wenzelm@45647
   605
        ("equations matching pattern " ^ Syntax.string_of_term ctxt prop ^ " is not unique"));
wenzelm@45647
   606
    val inst =
wenzelm@45647
   607
      map (fn v => (cterm_of thy (Var v), cterm_of thy (Envir.subst_term subst (Var v))))
wenzelm@45647
   608
        (Term.add_vars (lhs_of eq) []);
wenzelm@45647
   609
  in
wenzelm@45651
   610
    Drule.cterm_instantiate inst eq
wenzelm@45647
   611
    |> Conv.fconv_rule (Conv.arg_conv (Conv.arg_conv (Simplifier.full_rewrite (simpset_of ctxt))))
bulwahn@37734
   612
    |> singleton (Variable.export ctxt' ctxt)
bulwahn@37734
   613
  end
bulwahn@37734
   614
wenzelm@45647
   615
bulwahn@37734
   616
(* inductive simps *)
bulwahn@37734
   617
bulwahn@37734
   618
fun gen_inductive_simps prep_att prep_prop args lthy =
bulwahn@37734
   619
  let
wenzelm@42361
   620
    val thy = Proof_Context.theory_of lthy;
bulwahn@37734
   621
    val facts = args |> map (fn ((a, atts), props) =>
bulwahn@37734
   622
      ((a, map (prep_att thy) atts),
bulwahn@37734
   623
        map (Thm.no_attributes o single o mk_simp_eq lthy o prep_prop lthy) props));
bulwahn@37734
   624
  in lthy |> Local_Theory.notes facts |>> map snd end;
bulwahn@37734
   625
bulwahn@37734
   626
val inductive_simps = gen_inductive_simps Attrib.intern_src Syntax.read_prop;
bulwahn@37734
   627
val inductive_simps_i = gen_inductive_simps (K I) Syntax.check_prop;
bulwahn@40902
   628
wenzelm@45647
   629
wenzelm@10735
   630
(* prove induction rule *)
berghofe@5094
   631
wenzelm@26477
   632
fun prove_indrule quiet_mode cs argTs bs xs rec_const params intr_ts mono
wenzelm@45647
   633
    fp_def rec_preds_defs ctxt ctxt''' =  (* FIXME ctxt''' ?? *)
berghofe@5094
   634
  let
wenzelm@26477
   635
    val _ = clean_message quiet_mode "  Proving the induction rule ...";
berghofe@5094
   636
berghofe@21024
   637
    (* predicates for induction rule *)
berghofe@21024
   638
berghofe@36642
   639
    val (pnames, ctxt') = Variable.variant_fixes (mk_names "P" (length cs)) ctxt;
wenzelm@45647
   640
    val preds =
wenzelm@45647
   641
      map2 (curry Free) pnames
wenzelm@45647
   642
        (map (fn c => arg_types_of (length params) c ---> HOLogic.boolT) cs);
berghofe@21024
   643
berghofe@21024
   644
    (* transform an introduction rule into a premise for induction rule *)
berghofe@21024
   645
berghofe@21024
   646
    fun mk_ind_prem r =
berghofe@21024
   647
      let
wenzelm@33669
   648
        fun subst s =
wenzelm@33669
   649
          (case dest_predicate cs params s of
berghofe@21024
   650
            SOME (_, i, ys, (_, Ts)) =>
berghofe@21024
   651
              let
berghofe@21024
   652
                val k = length Ts;
berghofe@21024
   653
                val bs = map Bound (k - 1 downto 0);
wenzelm@42364
   654
                val P = list_comb (nth preds i, map (incr_boundvars k) ys @ bs);
berghofe@21024
   655
                val Q = list_abs (mk_names "x" k ~~ Ts,
berghofe@23762
   656
                  HOLogic.mk_binop inductive_conj_name
wenzelm@45647
   657
                    (list_comb (incr_boundvars k s, bs), P));
berghofe@21024
   658
              in (Q, case Ts of [] => SOME (s, P) | _ => NONE) end
wenzelm@33669
   659
          | NONE =>
wenzelm@33669
   660
              (case s of
wenzelm@45647
   661
                t $ u => (fst (subst t) $ fst (subst u), NONE)
wenzelm@45647
   662
              | Abs (a, T, t) => (Abs (a, T, fst (subst t)), NONE)
wenzelm@33669
   663
              | _ => (s, NONE)));
berghofe@7293
   664
wenzelm@33338
   665
        fun mk_prem s prems =
wenzelm@33338
   666
          (case subst s of
wenzelm@33338
   667
            (_, SOME (t, u)) => t :: u :: prems
wenzelm@33338
   668
          | (t, _) => t :: prems);
berghofe@21024
   669
wenzelm@45647
   670
        val SOME (_, i, ys, _) =
wenzelm@45647
   671
          dest_predicate cs params (HOLogic.dest_Trueprop (Logic.strip_assums_concl r));
wenzelm@42364
   672
      in
wenzelm@46215
   673
        fold_rev (Logic.all o Free) (Logic.strip_params r)
wenzelm@46215
   674
          (Logic.list_implies (map HOLogic.mk_Trueprop (fold_rev mk_prem
wenzelm@42364
   675
            (map HOLogic.dest_Trueprop (Logic.strip_assums_hyp r)) []),
wenzelm@42364
   676
              HOLogic.mk_Trueprop (list_comb (nth preds i, ys))))
berghofe@21024
   677
      end;
berghofe@21024
   678
berghofe@21024
   679
    val ind_prems = map mk_ind_prem intr_ts;
berghofe@21024
   680
wenzelm@21526
   681
berghofe@21024
   682
    (* make conclusions for induction rules *)
berghofe@21024
   683
berghofe@21024
   684
    val Tss = map (binder_types o fastype_of) preds;
wenzelm@45647
   685
    val (xnames, ctxt'') = Variable.variant_fixes (mk_names "x" (length (flat Tss))) ctxt';
wenzelm@45647
   686
    val mutual_ind_concl =
wenzelm@45647
   687
      HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj
berghofe@21024
   688
        (map (fn (((xnames, Ts), c), P) =>
wenzelm@45647
   689
          let val frees = map Free (xnames ~~ Ts)
wenzelm@45647
   690
          in HOLogic.mk_imp (list_comb (c, params @ frees), list_comb (P, frees)) end)
wenzelm@45647
   691
        (unflat Tss xnames ~~ Tss ~~ cs ~~ preds)));
berghofe@5094
   692
paulson@13626
   693
berghofe@5094
   694
    (* make predicate for instantiation of abstract induction rule *)
berghofe@5094
   695
wenzelm@45647
   696
    val ind_pred =
wenzelm@45647
   697
      fold_rev lambda (bs @ xs) (foldr1 HOLogic.mk_conj
wenzelm@45647
   698
        (map_index (fn (i, P) => fold_rev (curry HOLogic.mk_imp)
wenzelm@45647
   699
           (make_bool_args HOLogic.mk_not I bs i)
wenzelm@45647
   700
           (list_comb (P, make_args' argTs xs (binder_types (fastype_of P))))) preds));
berghofe@5094
   701
wenzelm@45647
   702
    val ind_concl =
wenzelm@45647
   703
      HOLogic.mk_Trueprop
wenzelm@45647
   704
        (HOLogic.mk_binrel @{const_name Orderings.less_eq} (rec_const, ind_pred));
berghofe@5094
   705
wenzelm@45647
   706
    val raw_fp_induct = mono RS (fp_def RS @{thm def_lfp_induct});
paulson@13626
   707
wenzelm@32970
   708
    val induct = Skip_Proof.prove ctxt'' [] ind_prems ind_concl
wenzelm@20248
   709
      (fn {prems, ...} => EVERY
wenzelm@17985
   710
        [rewrite_goals_tac [inductive_conj_def],
berghofe@21024
   711
         DETERM (rtac raw_fp_induct 1),
haftmann@32652
   712
         REPEAT (resolve_tac [@{thm le_funI}, @{thm le_boolI}] 1),
wenzelm@45649
   713
         rewrite_goals_tac simp_thms2,
berghofe@21024
   714
         (*This disjE separates out the introduction rules*)
berghofe@21024
   715
         REPEAT (FIRSTGOAL (eresolve_tac [disjE, exE, FalseE])),
berghofe@5094
   716
         (*Now break down the individual cases.  No disjE here in case
berghofe@5094
   717
           some premise involves disjunction.*)
paulson@13747
   718
         REPEAT (FIRSTGOAL (etac conjE ORELSE' bound_hyp_subst_tac)),
berghofe@21024
   719
         REPEAT (FIRSTGOAL
berghofe@21024
   720
           (resolve_tac [conjI, impI] ORELSE' (etac notE THEN' atac))),
berghofe@21024
   721
         EVERY (map (fn prem => DEPTH_SOLVE_1 (ares_tac [rewrite_rule
wenzelm@45649
   722
             (inductive_conj_def :: rec_preds_defs @ simp_thms2) prem,
berghofe@22980
   723
           conjI, refl] 1)) prems)]);
berghofe@5094
   724
wenzelm@32970
   725
    val lemma = Skip_Proof.prove ctxt'' [] []
wenzelm@17985
   726
      (Logic.mk_implies (ind_concl, mutual_ind_concl)) (fn _ => EVERY
berghofe@21024
   727
        [rewrite_goals_tac rec_preds_defs,
berghofe@5094
   728
         REPEAT (EVERY
berghofe@5094
   729
           [REPEAT (resolve_tac [conjI, impI] 1),
haftmann@32652
   730
            REPEAT (eresolve_tac [@{thm le_funE}, @{thm le_boolE}] 1),
berghofe@21024
   731
            atac 1,
wenzelm@45649
   732
            rewrite_goals_tac simp_thms1,
wenzelm@45647
   733
            atac 1])]);
berghofe@5094
   734
wenzelm@42361
   735
  in singleton (Proof_Context.export ctxt'' ctxt''') (induct RS lemma) end;
berghofe@5094
   736
wenzelm@6424
   737
wenzelm@6424
   738
berghofe@21024
   739
(** specification of (co)inductive predicates **)
wenzelm@10729
   740
wenzelm@33458
   741
fun mk_ind_def quiet_mode skip_mono fork_mono alt_name coind
wenzelm@33458
   742
    cs intr_ts monos params cnames_syn lthy =
wenzelm@33458
   743
  let
haftmann@24915
   744
    val fp_name = if coind then @{const_name Inductive.gfp} else @{const_name Inductive.lfp};
berghofe@5094
   745
haftmann@33077
   746
    val argTs = fold (combine (op =) o arg_types_of (length params)) cs [];
berghofe@21024
   747
    val k = log 2 1 (length cs);
berghofe@21024
   748
    val predT = replicate k HOLogic.boolT ---> argTs ---> HOLogic.boolT;
wenzelm@45647
   749
    val p :: xs =
wenzelm@45647
   750
      map Free (Variable.variant_frees lthy intr_ts
wenzelm@45647
   751
        (("p", predT) :: (mk_names "x" (length argTs) ~~ argTs)));
wenzelm@45647
   752
    val bs =
wenzelm@45647
   753
      map Free (Variable.variant_frees lthy (p :: xs @ intr_ts)
wenzelm@45647
   754
        (map (rpair HOLogic.boolT) (mk_names "b" k)));
berghofe@21024
   755
wenzelm@33458
   756
    fun subst t =
wenzelm@33458
   757
      (case dest_predicate cs params t of
berghofe@21024
   758
        SOME (_, i, ts, (Ts, Us)) =>
berghofe@23762
   759
          let
berghofe@23762
   760
            val l = length Us;
wenzelm@33669
   761
            val zs = map Bound (l - 1 downto 0);
berghofe@21024
   762
          in
berghofe@21024
   763
            list_abs (map (pair "z") Us, list_comb (p,
berghofe@23762
   764
              make_bool_args' bs i @ make_args argTs
berghofe@23762
   765
                ((map (incr_boundvars l) ts ~~ Ts) @ (zs ~~ Us))))
berghofe@21024
   766
          end
wenzelm@33669
   767
      | NONE =>
wenzelm@33669
   768
          (case t of
wenzelm@33669
   769
            t1 $ t2 => subst t1 $ subst t2
wenzelm@33669
   770
          | Abs (x, T, u) => Abs (x, T, subst u)
wenzelm@33669
   771
          | _ => t));
berghofe@5149
   772
berghofe@5094
   773
    (* transform an introduction rule into a conjunction  *)
berghofe@21024
   774
    (*   [| p_i t; ... |] ==> p_j u                       *)
berghofe@5094
   775
    (* is transformed into                                *)
berghofe@21024
   776
    (*   b_j & x_j = u & p b_j t & ...                    *)
berghofe@5094
   777
berghofe@5094
   778
    fun transform_rule r =
berghofe@5094
   779
      let
wenzelm@45647
   780
        val SOME (_, i, ts, (Ts, _)) =
wenzelm@45647
   781
          dest_predicate cs params (HOLogic.dest_Trueprop (Logic.strip_assums_concl r));
wenzelm@45647
   782
        val ps =
wenzelm@45647
   783
          make_bool_args HOLogic.mk_not I bs i @
berghofe@21048
   784
          map HOLogic.mk_eq (make_args' argTs xs Ts ~~ ts) @
wenzelm@45647
   785
          map (subst o HOLogic.dest_Trueprop) (Logic.strip_assums_hyp r);
wenzelm@33338
   786
      in
wenzelm@33338
   787
        fold_rev (fn (x, T) => fn P => HOLogic.exists_const T $ Abs (x, T, P))
wenzelm@33338
   788
          (Logic.strip_params r)
wenzelm@45740
   789
          (if null ps then @{term True} else foldr1 HOLogic.mk_conj ps)
wenzelm@45647
   790
      end;
berghofe@5094
   791
berghofe@5094
   792
    (* make a disjunction of all introduction rules *)
berghofe@5094
   793
wenzelm@45647
   794
    val fp_fun =
wenzelm@45647
   795
      fold_rev lambda (p :: bs @ xs)
wenzelm@45740
   796
        (if null intr_ts then @{term False}
wenzelm@45647
   797
         else foldr1 HOLogic.mk_disj (map transform_rule intr_ts));
berghofe@5094
   798
berghofe@21024
   799
    (* add definiton of recursive predicates to theory *)
berghofe@5094
   800
wenzelm@28083
   801
    val rec_name =
haftmann@28965
   802
      if Binding.is_empty alt_name then
wenzelm@30223
   803
        Binding.name (space_implode "_" (map (Binding.name_of o fst) cnames_syn))
wenzelm@28083
   804
      else alt_name;
berghofe@5094
   805
wenzelm@33458
   806
    val ((rec_const, (_, fp_def)), lthy') = lthy
wenzelm@33671
   807
      |> Local_Theory.conceal
wenzelm@33766
   808
      |> Local_Theory.define
berghofe@21024
   809
        ((rec_name, case cnames_syn of [(_, syn)] => syn | _ => NoSyn),
wenzelm@45592
   810
         ((Binding.empty, @{attributes [nitpick_unfold]}),
wenzelm@45592
   811
           fold_rev lambda params
wenzelm@45592
   812
             (Const (fp_name, (predT --> predT) --> predT) $ fp_fun)))
wenzelm@33671
   813
      ||> Local_Theory.restore_naming lthy;
wenzelm@45647
   814
    val fp_def' =
wenzelm@45647
   815
      Simplifier.rewrite (HOL_basic_ss addsimps [fp_def])
wenzelm@45647
   816
        (cterm_of (Proof_Context.theory_of lthy') (list_comb (rec_const, params)));
wenzelm@33278
   817
    val specs =
wenzelm@33278
   818
      if length cs < 2 then []
wenzelm@33278
   819
      else
wenzelm@33278
   820
        map_index (fn (i, (name_mx, c)) =>
wenzelm@33278
   821
          let
wenzelm@33278
   822
            val Ts = arg_types_of (length params) c;
wenzelm@45647
   823
            val xs =
wenzelm@45647
   824
              map Free (Variable.variant_frees lthy intr_ts (mk_names "x" (length Ts) ~~ Ts));
wenzelm@33278
   825
          in
haftmann@39248
   826
            (name_mx, (apfst Binding.conceal Attrib.empty_binding, fold_rev lambda (params @ xs)
wenzelm@33278
   827
              (list_comb (rec_const, params @ make_bool_args' bs i @
wenzelm@33278
   828
                make_args argTs (xs ~~ Ts)))))
wenzelm@33278
   829
          end) (cnames_syn ~~ cs);
wenzelm@33458
   830
    val (consts_defs, lthy'') = lthy'
haftmann@39248
   831
      |> fold_map Local_Theory.define specs;
berghofe@21024
   832
    val preds = (case cs of [_] => [rec_const] | _ => map #1 consts_defs);
berghofe@5094
   833
berghofe@36642
   834
    val (_, lthy''') = Variable.add_fixes (map (fst o dest_Free) params) lthy'';
berghofe@36642
   835
    val mono = prove_mono quiet_mode skip_mono fork_mono predT fp_fun monos lthy''';
berghofe@36642
   836
    val (_, lthy'''') =
berghofe@36642
   837
      Local_Theory.note (apfst Binding.conceal Attrib.empty_binding,
wenzelm@42361
   838
        Proof_Context.export lthy''' lthy'' [mono]) lthy'';
berghofe@5094
   839
berghofe@36642
   840
  in (lthy'''', lthy''', rec_name, mono, fp_def', map (#2 o #2) consts_defs,
berghofe@21024
   841
    list_comb (rec_const, params), preds, argTs, bs, xs)
berghofe@21024
   842
  end;
berghofe@5094
   843
wenzelm@33669
   844
fun declare_rules rec_binding coind no_ind cnames
bulwahn@37734
   845
    preds intrs intr_bindings intr_atts elims eqs raw_induct lthy =
berghofe@23762
   846
  let
wenzelm@30223
   847
    val rec_name = Binding.name_of rec_binding;
haftmann@32773
   848
    fun rec_qualified qualified = Binding.qualify qualified rec_name;
wenzelm@30223
   849
    val intr_names = map Binding.name_of intr_bindings;
wenzelm@33368
   850
    val ind_case_names = Rule_Cases.case_names intr_names;
berghofe@23762
   851
    val induct =
berghofe@23762
   852
      if coind then
wenzelm@33368
   853
        (raw_induct, [Rule_Cases.case_names [rec_name],
wenzelm@33368
   854
          Rule_Cases.case_conclusion (rec_name, intr_names),
wenzelm@33368
   855
          Rule_Cases.consumes 1, Induct.coinduct_pred (hd cnames)])
berghofe@23762
   856
      else if no_ind orelse length cnames > 1 then
wenzelm@33368
   857
        (raw_induct, [ind_case_names, Rule_Cases.consumes 0])
wenzelm@33368
   858
      else (raw_induct RSN (2, rev_mp), [ind_case_names, Rule_Cases.consumes 1]);
berghofe@23762
   859
wenzelm@33458
   860
    val (intrs', lthy1) =
wenzelm@33458
   861
      lthy |>
bulwahn@35757
   862
      Spec_Rules.add
bulwahn@35757
   863
        (if coind then Spec_Rules.Co_Inductive else Spec_Rules.Inductive) (preds, intrs) |>
wenzelm@33671
   864
      Local_Theory.notes
wenzelm@33278
   865
        (map (rec_qualified false) intr_bindings ~~ intr_atts ~~
wenzelm@33278
   866
          map (fn th => [([th],
blanchet@37264
   867
           [Attrib.internal (K (Context_Rules.intro_query NONE))])]) intrs) |>>
berghofe@24744
   868
      map (hd o snd);
wenzelm@33458
   869
    val (((_, elims'), (_, [induct'])), lthy2) =
wenzelm@33458
   870
      lthy1 |>
wenzelm@33671
   871
      Local_Theory.note ((rec_qualified true (Binding.name "intros"), []), intrs') ||>>
berghofe@34986
   872
      fold_map (fn (name, (elim, cases, k)) =>
wenzelm@33671
   873
        Local_Theory.note
wenzelm@33458
   874
          ((Binding.qualify true (Long_Name.base_name name) (Binding.name "cases"),
wenzelm@33458
   875
            [Attrib.internal (K (Rule_Cases.case_names cases)),
wenzelm@33458
   876
             Attrib.internal (K (Rule_Cases.consumes 1)),
berghofe@34986
   877
             Attrib.internal (K (Rule_Cases.constraints k)),
wenzelm@33458
   878
             Attrib.internal (K (Induct.cases_pred name)),
wenzelm@33458
   879
             Attrib.internal (K (Context_Rules.elim_query NONE))]), [elim]) #>
berghofe@23762
   880
        apfst (hd o snd)) (if null elims then [] else cnames ~~ elims) ||>>
wenzelm@33671
   881
      Local_Theory.note
haftmann@32773
   882
        ((rec_qualified true (Binding.name (coind_prefix coind ^ "induct")),
wenzelm@28107
   883
          map (Attrib.internal o K) (#2 induct)), [rulify (#1 induct)]);
berghofe@23762
   884
wenzelm@45647
   885
    val (eqs', lthy3) = lthy2 |>
bulwahn@37734
   886
      fold_map (fn (name, eq) => Local_Theory.note
bulwahn@38665
   887
          ((Binding.qualify true (Long_Name.base_name name) (Binding.name "simps"),
wenzelm@45652
   888
            [Attrib.internal (K equation_add_permissive)]), [eq])
bulwahn@37734
   889
          #> apfst (hd o snd))
bulwahn@37734
   890
        (if null eqs then [] else (cnames ~~ eqs))
bulwahn@37734
   891
    val (inducts, lthy4) =
bulwahn@37734
   892
      if no_ind orelse coind then ([], lthy3)
wenzelm@33458
   893
      else
bulwahn@37734
   894
        let val inducts = cnames ~~ Project_Rule.projects lthy3 (1 upto length cnames) induct' in
bulwahn@37734
   895
          lthy3 |>
wenzelm@33671
   896
          Local_Theory.notes [((rec_qualified true (Binding.name "inducts"), []),
wenzelm@33458
   897
            inducts |> map (fn (name, th) => ([th],
wenzelm@33458
   898
              [Attrib.internal (K ind_case_names),
wenzelm@33458
   899
               Attrib.internal (K (Rule_Cases.consumes 1)),
berghofe@35646
   900
               Attrib.internal (K (Induct.induct_pred name))])))] |>> snd o hd
wenzelm@33458
   901
        end;
bulwahn@37734
   902
  in (intrs', elims', eqs', induct', inducts, lthy4) end;
berghofe@23762
   903
berghofe@26534
   904
type inductive_flags =
wenzelm@33669
   905
  {quiet_mode: bool, verbose: bool, alt_name: binding, coind: bool,
wenzelm@33669
   906
    no_elim: bool, no_ind: bool, skip_mono: bool, fork_mono: bool};
berghofe@26534
   907
berghofe@26534
   908
type add_ind_def =
berghofe@26534
   909
  inductive_flags ->
wenzelm@28084
   910
  term list -> (Attrib.binding * term) list -> thm list ->
haftmann@29581
   911
  term list -> (binding * mixfix) list ->
wenzelm@33458
   912
  local_theory -> inductive_result * local_theory;
berghofe@23762
   913
wenzelm@33669
   914
fun add_ind_def {quiet_mode, verbose, alt_name, coind, no_elim, no_ind, skip_mono, fork_mono}
wenzelm@33458
   915
    cs intros monos params cnames_syn lthy =
berghofe@9072
   916
  let
wenzelm@25288
   917
    val _ = null cnames_syn andalso error "No inductive predicates given";
wenzelm@30223
   918
    val names = map (Binding.name_of o fst) cnames_syn;
wenzelm@26477
   919
    val _ = message (quiet_mode andalso not verbose)
wenzelm@28083
   920
      ("Proofs for " ^ coind_prefix coind ^ "inductive predicate(s) " ^ commas_quote names);
berghofe@9072
   921
wenzelm@33671
   922
    val cnames = map (Local_Theory.full_name lthy o #1) cnames_syn;  (* FIXME *)
berghofe@23762
   923
    val ((intr_names, intr_atts), intr_ts) =
wenzelm@33458
   924
      apfst split_list (split_list (map (check_rule lthy cs params) intros));
berghofe@21024
   925
berghofe@36642
   926
    val (lthy1, lthy2, rec_name, mono, fp_def, rec_preds_defs, rec_const, preds,
wenzelm@29388
   927
      argTs, bs, xs) = mk_ind_def quiet_mode skip_mono fork_mono alt_name coind cs intr_ts
wenzelm@33458
   928
        monos params cnames_syn lthy;
berghofe@9072
   929
wenzelm@26477
   930
    val (intrs, unfold) = prove_intrs quiet_mode coind mono fp_def (length bs + length xs)
berghofe@36642
   931
      intr_ts rec_preds_defs lthy2 lthy1;
wenzelm@33459
   932
    val elims =
wenzelm@33459
   933
      if no_elim then []
wenzelm@33459
   934
      else
wenzelm@33459
   935
        prove_elims quiet_mode cs params intr_ts (map Binding.name_of intr_names)
berghofe@36642
   936
          unfold rec_preds_defs lthy2 lthy1;
berghofe@22605
   937
    val raw_induct = zero_var_indexes
wenzelm@33459
   938
      (if no_ind then Drule.asm_rl
wenzelm@33459
   939
       else if coind then
wenzelm@42361
   940
         singleton (Proof_Context.export lthy2 lthy1)
wenzelm@35625
   941
           (rotate_prems ~1 (Object_Logic.rulify
wenzelm@28839
   942
             (fold_rule rec_preds_defs
wenzelm@45649
   943
               (rewrite_rule simp_thms3
haftmann@32652
   944
                (mono RS (fp_def RS @{thm def_coinduct}))))))
berghofe@21024
   945
       else
wenzelm@26477
   946
         prove_indrule quiet_mode cs argTs bs xs rec_const params intr_ts mono fp_def
berghofe@36642
   947
           rec_preds_defs lthy2 lthy1);
bulwahn@37734
   948
    val eqs =
wenzelm@45647
   949
      if no_elim then [] else prove_eqs quiet_mode cs params intr_ts intrs elims lthy2 lthy1;
berghofe@5094
   950
wenzelm@45647
   951
    val elims' = map (fn (th, ns, i) => (rulify th, ns, i)) elims;
wenzelm@45647
   952
    val intrs' = map rulify intrs;
bulwahn@37734
   953
wenzelm@45647
   954
    val (intrs'', elims'', eqs', induct, inducts, lthy3) =
wenzelm@45647
   955
      declare_rules rec_name coind no_ind
wenzelm@45647
   956
        cnames preds intrs' intr_names intr_atts elims' eqs raw_induct lthy1;
berghofe@21048
   957
berghofe@21048
   958
    val result =
berghofe@21048
   959
      {preds = preds,
bulwahn@37734
   960
       intrs = intrs'',
bulwahn@37734
   961
       elims = elims'',
berghofe@21048
   962
       raw_induct = rulify raw_induct,
berghofe@35646
   963
       induct = induct,
bulwahn@37734
   964
       inducts = inducts,
bulwahn@37734
   965
       eqs = eqs'};
wenzelm@21367
   966
berghofe@36642
   967
    val lthy4 = lthy3
wenzelm@45291
   968
      |> Local_Theory.declaration {syntax = false, pervasive = false} (fn phi =>
wenzelm@45290
   969
        let val result' = transform_result phi result;
wenzelm@25380
   970
        in put_inductives cnames (*global names!?*) ({names = cnames, coind = coind}, result') end);
berghofe@36642
   971
  in (result, lthy4) end;
berghofe@5094
   972
wenzelm@6424
   973
wenzelm@10735
   974
(* external interfaces *)
berghofe@5094
   975
wenzelm@26477
   976
fun gen_add_inductive_i mk_def
wenzelm@33669
   977
    (flags as {quiet_mode, verbose, alt_name, coind, no_elim, no_ind, skip_mono, fork_mono})
wenzelm@25029
   978
    cnames_syn pnames spec monos lthy =
berghofe@5094
   979
  let
wenzelm@42361
   980
    val thy = Proof_Context.theory_of lthy;
wenzelm@6424
   981
    val _ = Theory.requires thy "Inductive" (coind_prefix coind ^ "inductive definitions");
berghofe@5094
   982
berghofe@21766
   983
wenzelm@25029
   984
    (* abbrevs *)
wenzelm@25029
   985
wenzelm@30223
   986
    val (_, ctxt1) = Variable.add_fixes (map (Binding.name_of o fst o fst) cnames_syn) lthy;
berghofe@21766
   987
wenzelm@25029
   988
    fun get_abbrev ((name, atts), t) =
wenzelm@25029
   989
      if can (Logic.strip_assums_concl #> Logic.dest_equals) t then
wenzelm@25029
   990
        let
haftmann@29006
   991
          val _ = Binding.is_empty name andalso null atts orelse
wenzelm@25029
   992
            error "Abbreviations may not have names or attributes";
wenzelm@35624
   993
          val ((x, T), rhs) = Local_Defs.abs_def (snd (Local_Defs.cert_def ctxt1 t));
wenzelm@28083
   994
          val var =
wenzelm@30223
   995
            (case find_first (fn ((c, _), _) => Binding.name_of c = x) cnames_syn of
wenzelm@25029
   996
              NONE => error ("Undeclared head of abbreviation " ^ quote x)
wenzelm@28083
   997
            | SOME ((b, T'), mx) =>
wenzelm@25029
   998
                if T <> T' then error ("Bad type specification for abbreviation " ^ quote x)
wenzelm@28083
   999
                else (b, mx));
wenzelm@28083
  1000
        in SOME (var, rhs) end
wenzelm@25029
  1001
      else NONE;
berghofe@21766
  1002
wenzelm@25029
  1003
    val abbrevs = map_filter get_abbrev spec;
wenzelm@30223
  1004
    val bs = map (Binding.name_of o fst o fst) abbrevs;
wenzelm@25029
  1005
berghofe@21766
  1006
wenzelm@25029
  1007
    (* predicates *)
berghofe@21766
  1008
wenzelm@25029
  1009
    val pre_intros = filter_out (is_some o get_abbrev) spec;
wenzelm@30223
  1010
    val cnames_syn' = filter_out (member (op =) bs o Binding.name_of o fst o fst) cnames_syn;
wenzelm@30223
  1011
    val cs = map (Free o apfst Binding.name_of o fst) cnames_syn';
wenzelm@25029
  1012
    val ps = map Free pnames;
berghofe@5094
  1013
wenzelm@30223
  1014
    val (_, ctxt2) = lthy |> Variable.add_fixes (map (Binding.name_of o fst o fst) cnames_syn');
wenzelm@35624
  1015
    val _ = map (fn abbr => Local_Defs.fixed_abbrev abbr ctxt2) abbrevs;
wenzelm@35624
  1016
    val ctxt3 = ctxt2 |> fold (snd oo Local_Defs.fixed_abbrev) abbrevs;
wenzelm@42361
  1017
    val expand = Assumption.export_term ctxt3 lthy #> Proof_Context.cert_term lthy;
wenzelm@25029
  1018
wenzelm@46215
  1019
    fun close_rule r =
wenzelm@46215
  1020
      fold (Logic.all o Free) (fold_aterms
wenzelm@46215
  1021
        (fn t as Free (v as (s, _)) =>
wenzelm@46215
  1022
            if Variable.is_fixed ctxt1 s orelse
wenzelm@46215
  1023
              member (op =) ps t then I else insert (op =) v
wenzelm@46215
  1024
          | _ => I) r []) r;
berghofe@5094
  1025
haftmann@26736
  1026
    val intros = map (apsnd (Syntax.check_term lthy #> close_rule #> expand)) pre_intros;
wenzelm@25029
  1027
    val preds = map (fn ((c, _), mx) => (c, mx)) cnames_syn';
berghofe@21048
  1028
  in
wenzelm@25029
  1029
    lthy
wenzelm@25029
  1030
    |> mk_def flags cs intros monos ps preds
wenzelm@33671
  1031
    ||> fold (snd oo Local_Theory.abbrev Syntax.mode_default) abbrevs
berghofe@21048
  1032
  end;
berghofe@5094
  1033
wenzelm@29388
  1034
fun gen_add_inductive mk_def verbose coind cnames_syn pnames_syn intro_srcs raw_monos int lthy =
berghofe@5094
  1035
  let
wenzelm@30486
  1036
    val ((vars, intrs), _) = lthy
wenzelm@42361
  1037
      |> Proof_Context.set_mode Proof_Context.mode_abbrev
wenzelm@30486
  1038
      |> Specification.read_spec (cnames_syn @ pnames_syn) intro_srcs;
wenzelm@24721
  1039
    val (cs, ps) = chop (length cnames_syn) vars;
wenzelm@24721
  1040
    val monos = Attrib.eval_thms lthy raw_monos;
wenzelm@33669
  1041
    val flags = {quiet_mode = false, verbose = verbose, alt_name = Binding.empty,
wenzelm@33669
  1042
      coind = coind, no_elim = false, no_ind = false, skip_mono = false, fork_mono = not int};
wenzelm@26128
  1043
  in
wenzelm@26128
  1044
    lthy
wenzelm@30223
  1045
    |> gen_add_inductive_i mk_def flags cs (map (apfst Binding.name_of o fst) ps) intrs monos
wenzelm@26128
  1046
  end;
berghofe@5094
  1047
berghofe@23762
  1048
val add_inductive_i = gen_add_inductive_i add_ind_def;
berghofe@23762
  1049
val add_inductive = gen_add_inductive add_ind_def;
berghofe@23762
  1050
wenzelm@33726
  1051
fun add_inductive_global flags cnames_syn pnames pre_intros monos thy =
wenzelm@25380
  1052
  let
haftmann@29006
  1053
    val name = Sign.full_name thy (fst (fst (hd cnames_syn)));
wenzelm@25380
  1054
    val ctxt' = thy
haftmann@38388
  1055
      |> Named_Target.theory_init
wenzelm@25380
  1056
      |> add_inductive_i flags cnames_syn pnames pre_intros monos |> snd
wenzelm@33671
  1057
      |> Local_Theory.exit;
wenzelm@25380
  1058
    val info = #2 (the_inductive ctxt' name);
wenzelm@42361
  1059
  in (info, Proof_Context.theory_of ctxt') end;
wenzelm@6424
  1060
wenzelm@6424
  1061
berghofe@22789
  1062
(* read off arities of inductive predicates from raw induction rule *)
berghofe@22789
  1063
fun arities_of induct =
berghofe@22789
  1064
  map (fn (_ $ t $ u) =>
berghofe@22789
  1065
      (fst (dest_Const (head_of t)), length (snd (strip_comb u))))
berghofe@22789
  1066
    (HOLogic.dest_conj (HOLogic.dest_Trueprop (concl_of induct)));
berghofe@22789
  1067
berghofe@22789
  1068
(* read off parameters of inductive predicate from raw induction rule *)
berghofe@22789
  1069
fun params_of induct =
berghofe@22789
  1070
  let
wenzelm@45647
  1071
    val (_ $ t $ u :: _) = HOLogic.dest_conj (HOLogic.dest_Trueprop (concl_of induct));
berghofe@22789
  1072
    val (_, ts) = strip_comb t;
wenzelm@45647
  1073
    val (_, us) = strip_comb u;
berghofe@22789
  1074
  in
berghofe@22789
  1075
    List.take (ts, length ts - length us)
berghofe@22789
  1076
  end;
berghofe@22789
  1077
berghofe@22789
  1078
val pname_of_intr =
berghofe@22789
  1079
  concl_of #> HOLogic.dest_Trueprop #> head_of #> dest_Const #> fst;
berghofe@22789
  1080
berghofe@22789
  1081
(* partition introduction rules according to predicate name *)
berghofe@25822
  1082
fun gen_partition_rules f induct intros =
berghofe@25822
  1083
  fold_rev (fn r => AList.map_entry op = (pname_of_intr (f r)) (cons r)) intros
berghofe@22789
  1084
    (map (rpair [] o fst) (arities_of induct));
berghofe@22789
  1085
berghofe@25822
  1086
val partition_rules = gen_partition_rules I;
berghofe@25822
  1087
fun partition_rules' induct = gen_partition_rules fst induct;
berghofe@25822
  1088
berghofe@22789
  1089
fun unpartition_rules intros xs =
berghofe@22789
  1090
  fold_map (fn r => AList.map_entry_yield op = (pname_of_intr r)
berghofe@22789
  1091
    (fn x :: xs => (x, xs)) #>> the) intros xs |> fst;
berghofe@22789
  1092
berghofe@22789
  1093
(* infer order of variables in intro rules from order of quantifiers in elim rule *)
berghofe@22789
  1094
fun infer_intro_vars elim arity intros =
berghofe@22789
  1095
  let
berghofe@22789
  1096
    val thy = theory_of_thm elim;
berghofe@22789
  1097
    val _ :: cases = prems_of elim;
berghofe@22789
  1098
    val used = map (fst o fst) (Term.add_vars (prop_of elim) []);
berghofe@22789
  1099
    fun mtch (t, u) =
berghofe@22789
  1100
      let
berghofe@22789
  1101
        val params = Logic.strip_params t;
wenzelm@45647
  1102
        val vars =
wenzelm@45647
  1103
          map (Var o apfst (rpair 0))
wenzelm@45647
  1104
            (Name.variant_list used (map fst params) ~~ map snd params);
wenzelm@45647
  1105
        val ts =
wenzelm@45647
  1106
          map (curry subst_bounds (rev vars))
wenzelm@45647
  1107
            (List.drop (Logic.strip_assums_hyp t, arity));
berghofe@22789
  1108
        val us = Logic.strip_imp_prems u;
wenzelm@45647
  1109
        val tab =
wenzelm@45647
  1110
          fold (Pattern.first_order_match thy) (ts ~~ us) (Vartab.empty, Vartab.empty);
berghofe@22789
  1111
      in
wenzelm@32035
  1112
        map (Envir.subst_term tab) vars
berghofe@22789
  1113
      end
berghofe@22789
  1114
  in
berghofe@22789
  1115
    map (mtch o apsnd prop_of) (cases ~~ intros)
berghofe@22789
  1116
  end;
berghofe@22789
  1117
berghofe@22789
  1118
wenzelm@25978
  1119
wenzelm@6437
  1120
(** package setup **)
wenzelm@6437
  1121
wenzelm@6437
  1122
(* setup theory *)
wenzelm@6437
  1123
wenzelm@8634
  1124
val setup =
wenzelm@30722
  1125
  ind_cases_setup #>
wenzelm@30528
  1126
  Attrib.setup @{binding mono} (Attrib.add_del mono_add mono_del)
wenzelm@30528
  1127
    "declaration of monotonicity rule";
wenzelm@6437
  1128
wenzelm@6437
  1129
wenzelm@6437
  1130
(* outer syntax *)
wenzelm@6424
  1131
wenzelm@36960
  1132
val _ = Keyword.keyword "monos";
wenzelm@24867
  1133
berghofe@23762
  1134
fun gen_ind_decl mk_def coind =
wenzelm@36960
  1135
  Parse.fixes -- Parse.for_fixes --
wenzelm@36954
  1136
  Scan.optional Parse_Spec.where_alt_specs [] --
wenzelm@36960
  1137
  Scan.optional (Parse.$$$ "monos" |-- Parse.!!! Parse_Spec.xthms1) []
wenzelm@26988
  1138
  >> (fn (((preds, params), specs), monos) =>
wenzelm@30486
  1139
      (snd oo gen_add_inductive mk_def true coind preds params specs monos));
berghofe@23762
  1140
berghofe@23762
  1141
val ind_decl = gen_ind_decl add_ind_def;
wenzelm@6424
  1142
wenzelm@33458
  1143
val _ =
wenzelm@36960
  1144
  Outer_Syntax.local_theory' "inductive" "define inductive predicates" Keyword.thy_decl
wenzelm@33458
  1145
    (ind_decl false);
wenzelm@33458
  1146
wenzelm@33458
  1147
val _ =
wenzelm@36960
  1148
  Outer_Syntax.local_theory' "coinductive" "define coinductive predicates" Keyword.thy_decl
wenzelm@33458
  1149
    (ind_decl true);
wenzelm@6723
  1150
wenzelm@24867
  1151
val _ =
wenzelm@36960
  1152
  Outer_Syntax.local_theory "inductive_cases"
wenzelm@36960
  1153
    "create simplified instances of elimination rules (improper)" Keyword.thy_script
wenzelm@36960
  1154
    (Parse.and_list1 Parse_Spec.specs >> (snd oo inductive_cases));
wenzelm@7107
  1155
bulwahn@37734
  1156
val _ =
bulwahn@37734
  1157
  Outer_Syntax.local_theory "inductive_simps"
bulwahn@37734
  1158
    "create simplification rules for inductive predicates" Keyword.thy_script
bulwahn@37734
  1159
    (Parse.and_list1 Parse_Spec.specs >> (snd oo inductive_simps));
bulwahn@37734
  1160
berghofe@5094
  1161
end;