src/HOL/Nominal/nominal_permeq.ML
author wenzelm
Thu Mar 20 00:20:44 2008 +0100 (2008-03-20)
changeset 26343 0dd2eab7b296
parent 26338 f8ed02f22433
child 26806 40b411ec05aa
permissions -rw-r--r--
simplified get_thm(s): back to plain name argument;
berghofe@19494
     1
(*  Title:      HOL/Nominal/nominal_permeq.ML
berghofe@19494
     2
    ID:         $Id$
urbanc@22418
     3
    Authors:    Christian Urban, Julien Narboux, TU Muenchen
berghofe@17870
     4
berghofe@19494
     5
Methods for simplifying permutations and
berghofe@19494
     6
for analysing equations involving permutations.
berghofe@19494
     7
*)
berghofe@17870
     8
urbanc@20431
     9
(*
urbanc@20431
    10
FIXMES:
urbanc@20431
    11
urbanc@20431
    12
 - allow the user to give an explicit set S in the
urbanc@20431
    13
   fresh_guess tactic which is then verified
urbanc@20431
    14
urbanc@20431
    15
 - the perm_compose tactic does not do an "outermost
urbanc@20431
    16
   rewriting" and can therefore not deal with goals
urbanc@20431
    17
   like
urbanc@20431
    18
urbanc@20431
    19
      [(a,b)] o pi1 o pi2 = ....
urbanc@20431
    20
urbanc@20431
    21
   rather it tries to permute pi1 over pi2, which 
urbanc@20431
    22
   results in a failure when used with the 
urbanc@20431
    23
   perm_(full)_simp tactics
urbanc@20431
    24
urbanc@20431
    25
*)
urbanc@20431
    26
urbanc@20431
    27
berghofe@19987
    28
signature NOMINAL_PERMEQ =
berghofe@19987
    29
sig
berghofe@25997
    30
  val perm_simproc_fun : simproc
berghofe@25997
    31
  val perm_simproc_app : simproc
berghofe@25997
    32
berghofe@19987
    33
  val perm_simp_tac : simpset -> int -> tactic
berghofe@19987
    34
  val perm_full_simp_tac : simpset -> int -> tactic
berghofe@19987
    35
  val supports_tac : simpset -> int -> tactic
berghofe@19987
    36
  val finite_guess_tac : simpset -> int -> tactic
berghofe@19987
    37
  val fresh_guess_tac : simpset -> int -> tactic
berghofe@17870
    38
urbanc@22418
    39
  val perm_simp_meth : Method.src -> Proof.context -> Proof.method
urbanc@22418
    40
  val perm_simp_meth_debug : Method.src -> Proof.context -> Proof.method
urbanc@22418
    41
  val perm_full_simp_meth : Method.src -> Proof.context -> Proof.method
urbanc@22418
    42
  val perm_full_simp_meth_debug : Method.src -> Proof.context -> Proof.method
wenzelm@20289
    43
  val supports_meth : Method.src -> Proof.context -> Proof.method
wenzelm@20289
    44
  val supports_meth_debug : Method.src -> Proof.context -> Proof.method
urbanc@22418
    45
  val finite_guess_meth : Method.src -> Proof.context -> Proof.method
urbanc@22418
    46
  val finite_guess_meth_debug : Method.src -> Proof.context -> Proof.method
urbanc@22418
    47
  val fresh_guess_meth : Method.src -> Proof.context -> Proof.method
urbanc@22418
    48
  val fresh_guess_meth_debug : Method.src -> Proof.context -> Proof.method
berghofe@19987
    49
end
berghofe@19987
    50
berghofe@19987
    51
structure NominalPermeq : NOMINAL_PERMEQ =
berghofe@19987
    52
struct
berghofe@19987
    53
urbanc@22418
    54
(* some lemmas needed below *)
urbanc@24519
    55
val finite_emptyI = @{thm "finite.emptyI"};
urbanc@24519
    56
val finite_Un     = @{thm "finite_Un"};
urbanc@24519
    57
val conj_absorb   = @{thm "conj_absorb"};
urbanc@24519
    58
val not_false     = @{thm "not_False_eq_True"}
urbanc@24519
    59
val perm_fun_def  = @{thm "Nominal.perm_fun_def"};
urbanc@24519
    60
val perm_eq_app   = @{thm "Nominal.pt_fun_app_eq"};
urbanc@24519
    61
val supports_def  = @{thm "Nominal.supports_def"};
urbanc@24519
    62
val fresh_def     = @{thm "Nominal.fresh_def"};
urbanc@24519
    63
val fresh_prod    = @{thm "Nominal.fresh_prod"};
urbanc@24519
    64
val fresh_unit    = @{thm "Nominal.fresh_unit"};
urbanc@24519
    65
val supports_rule = @{thm "supports_finite"};
urbanc@24519
    66
val supp_prod     = @{thm "supp_prod"};
urbanc@24519
    67
val supp_unit     = @{thm "supp_unit"};
urbanc@24519
    68
val pt_perm_compose_aux = @{thm "pt_perm_compose_aux"};
urbanc@24519
    69
val cp1_aux             = @{thm "cp1_aux"};
urbanc@24519
    70
val perm_aux_fold       = @{thm "perm_aux_fold"}; 
urbanc@24519
    71
val supports_fresh_rule = @{thm "supports_fresh"};
wenzelm@21669
    72
berghofe@19987
    73
(* pulls out dynamically a thm via the proof state *)
wenzelm@26343
    74
fun dynamic_thms st name = PureThy.get_thms (theory_of_thm st) name;
wenzelm@26343
    75
fun dynamic_thm  st name = PureThy.get_thm  (theory_of_thm st) name;
urbanc@22418
    76
urbanc@18012
    77
urbanc@22418
    78
(* needed in the process of fully simplifying permutations *)
urbanc@24519
    79
val strong_congs = [@{thm "if_cong"}]
urbanc@22418
    80
(* needed to avoid warnings about overwritten congs *)
urbanc@24519
    81
val weak_congs   = [@{thm "if_weak_cong"}]
urbanc@22418
    82
urbanc@24519
    83
(* FIXME comment *)
narboux@22595
    84
(* a tactical which fails if the tactic taken as an argument generates does not solve the sub goal i *)
narboux@22595
    85
fun SOLVEI t = t THEN_ALL_NEW (fn i => no_tac);
urbanc@22418
    86
urbanc@22418
    87
(* debugging *)
urbanc@22418
    88
fun DEBUG_tac (msg,tac) = 
urbanc@22418
    89
    CHANGED (EVERY [print_tac ("before "^msg), tac, print_tac ("after "^msg)]); 
urbanc@22418
    90
fun NO_DEBUG_tac (_,tac) = CHANGED tac; 
urbanc@22418
    91
urbanc@19477
    92
urbanc@22418
    93
(* simproc that deals with instances of permutations in front *)
urbanc@22418
    94
(* of applications; just adding this rule to the simplifier   *)
urbanc@22418
    95
(* would loop; it also needs careful tuning with the simproc  *)
urbanc@22418
    96
(* for functions to avoid further possibilities for looping   *)
berghofe@25997
    97
fun perm_simproc_app' sg ss redex =
urbanc@22418
    98
  let 
urbanc@22418
    99
    (* the "application" case is only applicable when the head of f is not a *)
urbanc@22418
   100
    (* constant or when (f x) is a permuation with two or more arguments     *)
urbanc@22418
   101
    fun applicable_app t = 
urbanc@22418
   102
          (case (strip_comb t) of
urbanc@22418
   103
	      (Const ("Nominal.perm",_),ts) => (length ts) >= 2
urbanc@22418
   104
            | (Const _,_) => false
urbanc@22418
   105
            | _ => true)
urbanc@22418
   106
  in
urbanc@22418
   107
    case redex of 
urbanc@19169
   108
        (* case pi o (f x) == (pi o f) (pi o x)          *)
berghofe@19494
   109
        (Const("Nominal.perm",
urbanc@19169
   110
          Type("fun",[Type("List.list",[Type("*",[Type(n,_),_])]),_])) $ pi $ (f $ x)) => 
urbanc@22418
   111
            (if (applicable_app f) then
urbanc@22418
   112
              let
urbanc@22418
   113
                val name = Sign.base_name n
wenzelm@26343
   114
                val at_inst = PureThy.get_thm sg ("at_" ^ name ^ "_inst")
wenzelm@26343
   115
                val pt_inst = PureThy.get_thm sg ("pt_" ^ name ^ "_inst")
urbanc@22418
   116
              in SOME ((at_inst RS (pt_inst RS perm_eq_app)) RS eq_reflection) end
urbanc@22418
   117
            else NONE)
urbanc@22418
   118
      | _ => NONE
urbanc@22418
   119
  end
urbanc@19139
   120
berghofe@25997
   121
val perm_simproc_app = Simplifier.simproc @{theory} "perm_simproc_app"
berghofe@25997
   122
  ["Nominal.perm pi x"] perm_simproc_app';
berghofe@25997
   123
urbanc@24519
   124
(* a simproc that deals with permutation instances in front of functions  *)
berghofe@25997
   125
fun perm_simproc_fun' sg ss redex = 
urbanc@22418
   126
   let 
urbanc@22418
   127
     fun applicable_fun t =
urbanc@22418
   128
       (case (strip_comb t) of
urbanc@22418
   129
          (Abs _ ,[]) => true
urbanc@22418
   130
	| (Const ("Nominal.perm",_),_) => false
urbanc@22418
   131
        | (Const _, _) => true
urbanc@22418
   132
	| _ => false)
urbanc@22418
   133
   in
urbanc@22418
   134
     case redex of 
urbanc@22418
   135
       (* case pi o f == (%x. pi o (f ((rev pi)o x))) *)     
urbanc@22418
   136
       (Const("Nominal.perm",_) $ pi $ f)  => 
urbanc@22418
   137
          (if (applicable_fun f) then SOME (perm_fun_def) else NONE)
urbanc@22418
   138
      | _ => NONE
urbanc@22418
   139
   end
urbanc@19139
   140
berghofe@25997
   141
val perm_simproc_fun = Simplifier.simproc @{theory} "perm_simproc_fun"
berghofe@25997
   142
  ["Nominal.perm pi x"] perm_simproc_fun';
berghofe@25997
   143
urbanc@22418
   144
(* function for simplyfying permutations *)
urbanc@24571
   145
fun perm_simp_gen dyn_thms eqvt_thms ss i = 
urbanc@22418
   146
    ("general simplification of permutations", fn st =>
urbanc@22418
   147
    let
berghofe@25997
   148
       val ss' = Simplifier.theory_context (theory_of_thm st) ss
wenzelm@26343
   149
         addsimps (maps (dynamic_thms st) dyn_thms @ eqvt_thms)
berghofe@25997
   150
         delcongs weak_congs
berghofe@25997
   151
         addcongs strong_congs
berghofe@25997
   152
         addsimprocs [perm_simproc_fun, perm_simproc_app]
urbanc@19477
   153
    in
urbanc@22418
   154
      asm_full_simp_tac ss' i st
berghofe@19987
   155
    end);
urbanc@19477
   156
urbanc@22418
   157
(* general simplification of permutations and permutation that arose from eqvt-problems *)
urbanc@24571
   158
fun perm_simp ss = 
urbanc@22610
   159
    let val simps = ["perm_swap","perm_fresh_fresh","perm_bij","perm_pi_simp","swap_simps"]
urbanc@22610
   160
    in 
urbanc@24571
   161
	perm_simp_gen simps [] ss
urbanc@22610
   162
    end;
urbanc@22610
   163
urbanc@24571
   164
fun eqvt_simp ss = 
urbanc@22610
   165
    let val simps = ["perm_swap","perm_fresh_fresh","perm_pi_simp"]
urbanc@24571
   166
	val eqvts_thms = NominalThmDecls.get_eqvt_thms (Simplifier.the_context ss);
urbanc@22610
   167
    in 
urbanc@24571
   168
	perm_simp_gen simps eqvts_thms ss
urbanc@22610
   169
    end;
narboux@22562
   170
urbanc@22418
   171
urbanc@22418
   172
(* main simplification tactics for permutations *)
urbanc@22418
   173
fun perm_simp_tac tactical ss i = DETERM (tactical (perm_simp ss i));
urbanc@22418
   174
fun eqvt_simp_tac tactical ss i = DETERM (tactical (eqvt_simp ss i)); 
urbanc@22418
   175
urbanc@22418
   176
urbanc@19477
   177
(* applies the perm_compose rule such that                             *)
urbanc@19477
   178
(*   pi o (pi' o lhs) = rhs                                            *)
urbanc@19477
   179
(* is transformed to                                                   *) 
urbanc@19477
   180
(*  (pi o pi') o (pi' o lhs) = rhs                                     *)
urbanc@19477
   181
(*                                                                     *)
urbanc@19477
   182
(* this rule would loop in the simplifier, so some trick is used with  *)
urbanc@19477
   183
(* generating perm_aux'es for the outermost permutation and then un-   *)
urbanc@19477
   184
(* folding the definition                                              *)
berghofe@25997
   185
berghofe@25997
   186
fun perm_compose_simproc' sg ss redex =
berghofe@25997
   187
  (case redex of
berghofe@25997
   188
     (Const ("Nominal.perm", Type ("fun", [Type ("List.list", 
berghofe@25997
   189
       [Type ("*", [T as Type (tname,_),_])]),_])) $ pi1 $ (Const ("Nominal.perm", 
berghofe@25997
   190
         Type ("fun", [Type ("List.list", [Type ("*", [U as Type (uname,_),_])]),_])) $ 
berghofe@25997
   191
          pi2 $ t)) =>
urbanc@19477
   192
    let
berghofe@25997
   193
      val tname' = Sign.base_name tname
berghofe@25997
   194
      val uname' = Sign.base_name uname
berghofe@25997
   195
    in
berghofe@25997
   196
      if pi1 <> pi2 then  (* only apply the composition rule in this case *)
berghofe@25997
   197
        if T = U then    
berghofe@25997
   198
          SOME (Drule.instantiate'
berghofe@25997
   199
            [SOME (ctyp_of sg (fastype_of t))]
berghofe@25997
   200
            [SOME (cterm_of sg pi1), SOME (cterm_of sg pi2), SOME (cterm_of sg t)]
wenzelm@26343
   201
            (mk_meta_eq ([PureThy.get_thm sg ("pt_"^tname'^"_inst"),
wenzelm@26343
   202
             PureThy.get_thm sg ("at_"^tname'^"_inst")] MRS pt_perm_compose_aux)))
berghofe@25997
   203
        else
berghofe@25997
   204
          SOME (Drule.instantiate'
berghofe@25997
   205
            [SOME (ctyp_of sg (fastype_of t))]
berghofe@25997
   206
            [SOME (cterm_of sg pi1), SOME (cterm_of sg pi2), SOME (cterm_of sg t)]
wenzelm@26343
   207
            (mk_meta_eq (PureThy.get_thm sg ("cp_"^tname'^"_"^uname'^"_inst") RS 
berghofe@25997
   208
             cp1_aux)))
berghofe@25997
   209
      else NONE
berghofe@25997
   210
    end
berghofe@25997
   211
  | _ => NONE);
urbanc@19477
   212
berghofe@25997
   213
val perm_compose_simproc = Simplifier.simproc @{theory} "perm_compose"
berghofe@25997
   214
  ["Nominal.perm pi1 (Nominal.perm pi2 t)"] perm_compose_simproc';
urbanc@19477
   215
berghofe@25997
   216
fun perm_compose_tac ss i = 
berghofe@25997
   217
  ("analysing permutation compositions on the lhs",
berghofe@25997
   218
   fn st => EVERY
berghofe@25997
   219
     [rtac trans i,
berghofe@25997
   220
      asm_full_simp_tac (Simplifier.theory_context (theory_of_thm st) empty_ss
berghofe@25997
   221
        addsimprocs [perm_compose_simproc]) i,
berghofe@25997
   222
      asm_full_simp_tac (HOL_basic_ss addsimps [perm_aux_fold]) i] st);
urbanc@18012
   223
urbanc@22418
   224
urbanc@18012
   225
(* applying Stefan's smart congruence tac *)
urbanc@18012
   226
fun apply_cong_tac i = 
urbanc@18012
   227
    ("application of congruence",
urbanc@19477
   228
     (fn st => DatatypeAux.cong_tac i st handle Subscript => no_tac st));
berghofe@17870
   229
urbanc@22418
   230
urbanc@19477
   231
(* unfolds the definition of permutations     *)
urbanc@19477
   232
(* applied to functions such that             *)
urbanc@22418
   233
(*     pi o f = rhs                           *)  
urbanc@19477
   234
(* is transformed to                          *)
urbanc@22418
   235
(*     %x. pi o (f ((rev pi) o x)) = rhs      *)
urbanc@24519
   236
fun unfold_perm_fun_def_tac i =
urbanc@24519
   237
    ("unfolding of permutations on functions", 
urbanc@24519
   238
      rtac (perm_fun_def RS meta_eq_to_obj_eq RS trans) i)
berghofe@17870
   239
urbanc@19477
   240
(* applies the ext-rule such that      *)
urbanc@19477
   241
(*                                     *)
urbanc@22418
   242
(*    f = g   goes to  /\x. f x = g x  *)
urbanc@19477
   243
fun ext_fun_tac i = ("extensionality expansion of functions", rtac ext i);
berghofe@17870
   244
berghofe@17870
   245
urbanc@22418
   246
(* perm_full_simp_tac is perm_simp plus additional tactics        *)
urbanc@19477
   247
(* to decide equation that come from support problems             *)
urbanc@19477
   248
(* since it contains looping rules the "recursion" - depth is set *)
urbanc@19477
   249
(* to 10 - this seems to be sufficient in most cases              *)
urbanc@19477
   250
fun perm_full_simp_tac tactical ss =
urbanc@19477
   251
  let fun perm_full_simp_tac_aux tactical ss n = 
urbanc@19477
   252
	  if n=0 then K all_tac
urbanc@19477
   253
	  else DETERM o 
urbanc@19477
   254
	       (FIRST'[fn i => tactical ("splitting conjunctions on the rhs", rtac conjI i),
urbanc@22418
   255
                       fn i => tactical (perm_simp ss i),
urbanc@19477
   256
		       fn i => tactical (perm_compose_tac ss i),
urbanc@19477
   257
		       fn i => tactical (apply_cong_tac i), 
urbanc@19477
   258
                       fn i => tactical (unfold_perm_fun_def_tac i),
urbanc@22418
   259
                       fn i => tactical (ext_fun_tac i)]
urbanc@19477
   260
		      THEN_ALL_NEW (TRY o (perm_full_simp_tac_aux tactical ss (n-1))))
urbanc@19477
   261
  in perm_full_simp_tac_aux tactical ss 10 end;
urbanc@19151
   262
urbanc@22418
   263
urbanc@22418
   264
(* tactic that tries to solve "supports"-goals; first it *)
urbanc@22418
   265
(* unfolds the support definition and strips off the     *)
urbanc@22418
   266
(* intros, then applies eqvt_simp_tac                    *)
urbanc@18012
   267
fun supports_tac tactical ss i =
urbanc@18012
   268
  let 
urbanc@22418
   269
     val simps        = [supports_def,symmetric fresh_def,fresh_prod]
berghofe@17870
   270
  in
urbanc@19477
   271
      EVERY [tactical ("unfolding of supports   ", simp_tac (HOL_basic_ss addsimps simps) i),
urbanc@19477
   272
             tactical ("stripping of foralls    ", REPEAT_DETERM (rtac allI i)),
urbanc@19477
   273
             tactical ("geting rid of the imps  ", rtac impI i),
urbanc@19477
   274
             tactical ("eliminating conjuncts   ", REPEAT_DETERM (etac  conjE i)),
urbanc@22418
   275
             tactical ("applying eqvt_simp      ", eqvt_simp_tac tactical ss i )]
berghofe@17870
   276
  end;
berghofe@17870
   277
urbanc@19151
   278
urbanc@22418
   279
(* tactic that guesses the finite-support of a goal        *)
urbanc@22418
   280
(* it first collects all free variables and tries to show  *)
urbanc@22418
   281
(* that the support of these free variables (op supports)  *)
urbanc@22418
   282
(* the goal                                                *)
haftmann@20854
   283
fun collect_vars i (Bound j) vs = if j < i then vs else insert (op =) (Bound (j - i)) vs
haftmann@20854
   284
  | collect_vars i (v as Free _) vs = insert (op =) v vs
haftmann@20854
   285
  | collect_vars i (v as Var _) vs = insert (op =) v vs
urbanc@19151
   286
  | collect_vars i (Const _) vs = vs
urbanc@19151
   287
  | collect_vars i (Abs (_, _, t)) vs = collect_vars (i+1) t vs
urbanc@19151
   288
  | collect_vars i (t $ u) vs = collect_vars i u (collect_vars i t vs);
urbanc@19151
   289
urbanc@19151
   290
fun finite_guess_tac tactical ss i st =
urbanc@19151
   291
    let val goal = List.nth(cprems_of st, i-1)
urbanc@19151
   292
    in
urbanc@19151
   293
      case Logic.strip_assums_concl (term_of goal) of
berghofe@22274
   294
          _ $ (Const ("Finite_Set.finite", _) $ (Const ("Nominal.supp", T) $ x)) =>
urbanc@19151
   295
          let
wenzelm@22578
   296
            val cert = Thm.cterm_of (Thm.theory_of_thm st);
urbanc@19151
   297
            val ps = Logic.strip_params (term_of goal);
urbanc@19151
   298
            val Ts = rev (map snd ps);
urbanc@19151
   299
            val vs = collect_vars 0 x [];
haftmann@21078
   300
            val s = Library.foldr (fn (v, s) =>
urbanc@19151
   301
                HOLogic.pair_const (fastype_of1 (Ts, v)) (fastype_of1 (Ts, s)) $ v $ s)
haftmann@21078
   302
              (vs, HOLogic.unit);
urbanc@19151
   303
            val s' = list_abs (ps,
berghofe@19494
   304
              Const ("Nominal.supp", fastype_of1 (Ts, s) --> body_type T) $ s);
urbanc@19151
   305
            val supports_rule' = Thm.lift_rule goal supports_rule;
urbanc@19151
   306
            val _ $ (_ $ S $ _) =
urbanc@19151
   307
              Logic.strip_assums_concl (hd (prems_of supports_rule'));
urbanc@19151
   308
            val supports_rule'' = Drule.cterm_instantiate
urbanc@19151
   309
              [(cert (head_of S), cert s')] supports_rule'
wenzelm@26343
   310
            val fin_supp = dynamic_thms st ("fin_supp")
urbanc@22418
   311
            val ss' = ss addsimps [supp_prod,supp_unit,finite_Un,finite_emptyI,conj_absorb]@fin_supp
urbanc@19151
   312
          in
urbanc@19151
   313
            (tactical ("guessing of the right supports-set",
urbanc@19151
   314
                      EVERY [compose_tac (false, supports_rule'', 2) i,
berghofe@19987
   315
                             asm_full_simp_tac ss' (i+1),
urbanc@19151
   316
                             supports_tac tactical ss i])) st
urbanc@19151
   317
          end
urbanc@19151
   318
        | _ => Seq.empty
urbanc@19151
   319
    end
urbanc@19151
   320
    handle Subscript => Seq.empty
urbanc@19151
   321
narboux@22595
   322
urbanc@22418
   323
(* tactic that guesses whether an atom is fresh for an expression  *)
urbanc@22418
   324
(* it first collects all free variables and tries to show that the *) 
urbanc@22418
   325
(* support of these free variables (op supports) the goal          *)
berghofe@19857
   326
fun fresh_guess_tac tactical ss i st =
berghofe@19857
   327
    let 
berghofe@19857
   328
	val goal = List.nth(cprems_of st, i-1)
wenzelm@26343
   329
        val fin_supp = dynamic_thms st ("fin_supp")
wenzelm@26343
   330
        val fresh_atm = dynamic_thms st ("fresh_atm")
urbanc@22418
   331
	val ss1 = ss addsimps [symmetric fresh_def,fresh_prod,fresh_unit,conj_absorb,not_false]@fresh_atm
urbanc@22418
   332
        val ss2 = ss addsimps [supp_prod,supp_unit,finite_Un,finite_emptyI,conj_absorb]@fin_supp
berghofe@19857
   333
    in
berghofe@19857
   334
      case Logic.strip_assums_concl (term_of goal) of
berghofe@19857
   335
          _ $ (Const ("Nominal.fresh", Type ("fun", [T, _])) $ _ $ t) => 
berghofe@19857
   336
          let
wenzelm@22578
   337
            val cert = Thm.cterm_of (Thm.theory_of_thm st);
berghofe@19857
   338
            val ps = Logic.strip_params (term_of goal);
berghofe@19857
   339
            val Ts = rev (map snd ps);
berghofe@19857
   340
            val vs = collect_vars 0 t [];
haftmann@21078
   341
            val s = Library.foldr (fn (v, s) =>
berghofe@19857
   342
                HOLogic.pair_const (fastype_of1 (Ts, v)) (fastype_of1 (Ts, s)) $ v $ s)
haftmann@21078
   343
              (vs, HOLogic.unit);
berghofe@19857
   344
            val s' = list_abs (ps,
berghofe@19857
   345
              Const ("Nominal.supp", fastype_of1 (Ts, s) --> (HOLogic.mk_setT T)) $ s);
berghofe@19857
   346
            val supports_fresh_rule' = Thm.lift_rule goal supports_fresh_rule;
berghofe@19857
   347
            val _ $ (_ $ S $ _) =
berghofe@19857
   348
              Logic.strip_assums_concl (hd (prems_of supports_fresh_rule'));
berghofe@19857
   349
            val supports_fresh_rule'' = Drule.cterm_instantiate
berghofe@19857
   350
              [(cert (head_of S), cert s')] supports_fresh_rule'
berghofe@19857
   351
          in
urbanc@22418
   352
            (tactical ("guessing of the right set that supports the goal", 
urbanc@22418
   353
                      (EVERY [compose_tac (false, supports_fresh_rule'', 3) i,
urbanc@19993
   354
                             asm_full_simp_tac ss1 (i+2),
urbanc@19993
   355
                             asm_full_simp_tac ss2 (i+1), 
urbanc@22418
   356
                             supports_tac tactical ss i]))) st
berghofe@19857
   357
          end
urbanc@22418
   358
          (* when a term-constructor contains more than one binder, it is useful    *) 
urbanc@22418
   359
          (* in nominal_primrecs to try whether the goal can be solved by an hammer *)
urbanc@22418
   360
        | _ => (tactical ("if it is not of the form _\<sharp>_, then try the simplifier",   
urbanc@22418
   361
                          (asm_full_simp_tac (HOL_ss addsimps [fresh_prod]@fresh_atm) i))) st
berghofe@19857
   362
    end
urbanc@22418
   363
    handle Subscript => Seq.empty;
urbanc@22418
   364
urbanc@22418
   365
(* setup so that the simpset is used which is active at the moment when the tactic is called *)
urbanc@22418
   366
fun local_simp_meth_setup tac =
urbanc@18046
   367
  Method.only_sectioned_args (Simplifier.simp_modifiers' @ Splitter.split_modifiers)
urbanc@22418
   368
  (Method.SIMPLE_METHOD' o tac o local_simpset_of) ;
berghofe@17870
   369
narboux@22595
   370
(* uses HOL_basic_ss only and fails if the tactic does not solve the subgoal *)
narboux@22595
   371
narboux@22656
   372
fun basic_simp_meth_setup debug tac =
urbanc@22418
   373
  Method.sectioned_args 
urbanc@22418
   374
   (fn (ctxt,l) => ((),((Simplifier.map_ss (fn _ => HOL_basic_ss) ctxt),l)))
urbanc@22418
   375
   (Simplifier.simp_modifiers' @ Splitter.split_modifiers)
narboux@22656
   376
   (fn _ => Method.SIMPLE_METHOD' o (fn ss => if debug then (tac ss) else SOLVEI (tac ss)) o local_simpset_of);
urbanc@22418
   377
berghofe@17870
   378
urbanc@22418
   379
val perm_simp_meth            = local_simp_meth_setup (perm_simp_tac NO_DEBUG_tac);
urbanc@22418
   380
val perm_simp_meth_debug      = local_simp_meth_setup (perm_simp_tac DEBUG_tac);
urbanc@22418
   381
val perm_full_simp_meth       = local_simp_meth_setup (perm_full_simp_tac NO_DEBUG_tac);
urbanc@22418
   382
val perm_full_simp_meth_debug = local_simp_meth_setup (perm_full_simp_tac DEBUG_tac);
urbanc@22418
   383
val supports_meth             = local_simp_meth_setup (supports_tac NO_DEBUG_tac);
urbanc@22418
   384
val supports_meth_debug       = local_simp_meth_setup (supports_tac DEBUG_tac);
urbanc@24571
   385
narboux@22656
   386
val finite_guess_meth         = basic_simp_meth_setup false (finite_guess_tac NO_DEBUG_tac);
narboux@22656
   387
val finite_guess_meth_debug   = basic_simp_meth_setup true (finite_guess_tac DEBUG_tac);
narboux@22656
   388
val fresh_guess_meth          = basic_simp_meth_setup false (fresh_guess_tac NO_DEBUG_tac);
narboux@22656
   389
val fresh_guess_meth_debug    = basic_simp_meth_setup true (fresh_guess_tac DEBUG_tac);
urbanc@22418
   390
berghofe@19987
   391
val perm_simp_tac = perm_simp_tac NO_DEBUG_tac;
berghofe@19987
   392
val perm_full_simp_tac = perm_full_simp_tac NO_DEBUG_tac;
berghofe@19987
   393
val supports_tac = supports_tac NO_DEBUG_tac;
berghofe@19987
   394
val finite_guess_tac = finite_guess_tac NO_DEBUG_tac;
berghofe@19987
   395
val fresh_guess_tac = fresh_guess_tac NO_DEBUG_tac;
berghofe@17870
   396
wenzelm@20289
   397
end