src/HOL/Rat.thy
author hoelzl
Wed Jun 18 07:31:12 2014 +0200 (2014-06-18)
changeset 57275 0ddb5b755cdc
parent 57136 653e56c6c963
child 57512 cc97b347b301
permissions -rw-r--r--
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
haftmann@35372
     1
(*  Title:  HOL/Rat.thy
paulson@14365
     2
    Author: Markus Wenzel, TU Muenchen
paulson@14365
     3
*)
paulson@14365
     4
wenzelm@14691
     5
header {* Rational numbers *}
paulson@14365
     6
haftmann@35372
     7
theory Rat
huffman@30097
     8
imports GCD Archimedean_Field
nipkow@15131
     9
begin
paulson@14365
    10
haftmann@27551
    11
subsection {* Rational numbers as quotient *}
paulson@14365
    12
haftmann@27551
    13
subsubsection {* Construction of the type of rational numbers *}
huffman@18913
    14
wenzelm@21404
    15
definition
huffman@47906
    16
  ratrel :: "(int \<times> int) \<Rightarrow> (int \<times> int) \<Rightarrow> bool" where
huffman@47906
    17
  "ratrel = (\<lambda>x y. snd x \<noteq> 0 \<and> snd y \<noteq> 0 \<and> fst x * snd y = fst y * snd x)"
paulson@14365
    18
huffman@18913
    19
lemma ratrel_iff [simp]:
huffman@47906
    20
  "ratrel x y \<longleftrightarrow> snd x \<noteq> 0 \<and> snd y \<noteq> 0 \<and> fst x * snd y = fst y * snd x"
haftmann@27551
    21
  by (simp add: ratrel_def)
paulson@14365
    22
huffman@47906
    23
lemma exists_ratrel_refl: "\<exists>x. ratrel x x"
huffman@47906
    24
  by (auto intro!: one_neq_zero)
huffman@18913
    25
huffman@47906
    26
lemma symp_ratrel: "symp ratrel"
huffman@47906
    27
  by (simp add: ratrel_def symp_def)
paulson@14365
    28
huffman@47906
    29
lemma transp_ratrel: "transp ratrel"
huffman@47906
    30
proof (rule transpI, unfold split_paired_all)
haftmann@27551
    31
  fix a b a' b' a'' b'' :: int
huffman@47906
    32
  assume A: "ratrel (a, b) (a', b')"
huffman@47906
    33
  assume B: "ratrel (a', b') (a'', b'')"
haftmann@27551
    34
  have "b' * (a * b'') = b'' * (a * b')" by simp
haftmann@27551
    35
  also from A have "a * b' = a' * b" by auto
haftmann@27551
    36
  also have "b'' * (a' * b) = b * (a' * b'')" by simp
haftmann@27551
    37
  also from B have "a' * b'' = a'' * b'" by auto
haftmann@27551
    38
  also have "b * (a'' * b') = b' * (a'' * b)" by simp
haftmann@27551
    39
  finally have "b' * (a * b'') = b' * (a'' * b)" .
haftmann@27551
    40
  moreover from B have "b' \<noteq> 0" by auto
haftmann@27551
    41
  ultimately have "a * b'' = a'' * b" by simp
huffman@47906
    42
  with A B show "ratrel (a, b) (a'', b'')" by auto
haftmann@27551
    43
qed
haftmann@27551
    44
huffman@47906
    45
lemma part_equivp_ratrel: "part_equivp ratrel"
huffman@47906
    46
  by (rule part_equivpI [OF exists_ratrel_refl symp_ratrel transp_ratrel])
huffman@47906
    47
huffman@47906
    48
quotient_type rat = "int \<times> int" / partial: "ratrel"
huffman@47906
    49
  morphisms Rep_Rat Abs_Rat
huffman@47906
    50
  by (rule part_equivp_ratrel)
haftmann@27551
    51
kuncar@53012
    52
lemma Domainp_cr_rat [transfer_domain_rule]: "Domainp pcr_rat = (\<lambda>x. snd x \<noteq> 0)"
kuncar@53012
    53
by (simp add: rat.domain_eq)
haftmann@27551
    54
haftmann@27551
    55
subsubsection {* Representation and basic operations *}
haftmann@27551
    56
huffman@47906
    57
lift_definition Fract :: "int \<Rightarrow> int \<Rightarrow> rat"
huffman@47906
    58
  is "\<lambda>a b. if b = 0 then (0, 1) else (a, b)"
huffman@47906
    59
  by simp
haftmann@27551
    60
haftmann@27551
    61
lemma eq_rat:
haftmann@27551
    62
  shows "\<And>a b c d. b \<noteq> 0 \<Longrightarrow> d \<noteq> 0 \<Longrightarrow> Fract a b = Fract c d \<longleftrightarrow> a * d = c * b"
haftmann@27652
    63
  and "\<And>a. Fract a 0 = Fract 0 1"
haftmann@27652
    64
  and "\<And>a c. Fract 0 a = Fract 0 c"
huffman@47906
    65
  by (transfer, simp)+
haftmann@27551
    66
haftmann@35369
    67
lemma Rat_cases [case_names Fract, cases type: rat]:
haftmann@35369
    68
  assumes "\<And>a b. q = Fract a b \<Longrightarrow> b > 0 \<Longrightarrow> coprime a b \<Longrightarrow> C"
haftmann@35369
    69
  shows C
haftmann@35369
    70
proof -
haftmann@35369
    71
  obtain a b :: int where "q = Fract a b" and "b \<noteq> 0"
huffman@47906
    72
    by transfer simp
haftmann@35369
    73
  let ?a = "a div gcd a b"
haftmann@35369
    74
  let ?b = "b div gcd a b"
haftmann@35369
    75
  from `b \<noteq> 0` have "?b * gcd a b = b"
haftmann@35369
    76
    by (simp add: dvd_div_mult_self)
haftmann@35369
    77
  with `b \<noteq> 0` have "?b \<noteq> 0" by auto
haftmann@35369
    78
  from `q = Fract a b` `b \<noteq> 0` `?b \<noteq> 0` have q: "q = Fract ?a ?b"
haftmann@35369
    79
    by (simp add: eq_rat dvd_div_mult mult_commute [of a])
haftmann@35369
    80
  from `b \<noteq> 0` have coprime: "coprime ?a ?b"
haftmann@35369
    81
    by (auto intro: div_gcd_coprime_int)
haftmann@35369
    82
  show C proof (cases "b > 0")
haftmann@35369
    83
    case True
haftmann@35369
    84
    note assms
haftmann@35369
    85
    moreover note q
haftmann@35369
    86
    moreover from True have "?b > 0" by (simp add: nonneg1_imp_zdiv_pos_iff)
haftmann@35369
    87
    moreover note coprime
haftmann@35369
    88
    ultimately show C .
haftmann@35369
    89
  next
haftmann@35369
    90
    case False
haftmann@35369
    91
    note assms
huffman@47906
    92
    moreover have "q = Fract (- ?a) (- ?b)" unfolding q by transfer simp
haftmann@35369
    93
    moreover from False `b \<noteq> 0` have "- ?b > 0" by (simp add: pos_imp_zdiv_neg_iff)
haftmann@35369
    94
    moreover from coprime have "coprime (- ?a) (- ?b)" by simp
haftmann@35369
    95
    ultimately show C .
haftmann@35369
    96
  qed
haftmann@35369
    97
qed
haftmann@35369
    98
haftmann@35369
    99
lemma Rat_induct [case_names Fract, induct type: rat]:
haftmann@35369
   100
  assumes "\<And>a b. b > 0 \<Longrightarrow> coprime a b \<Longrightarrow> P (Fract a b)"
haftmann@35369
   101
  shows "P q"
haftmann@35369
   102
  using assms by (cases q) simp
haftmann@35369
   103
huffman@47906
   104
instantiation rat :: field_inverse_zero
haftmann@25571
   105
begin
haftmann@25571
   106
huffman@47906
   107
lift_definition zero_rat :: "rat" is "(0, 1)"
huffman@47906
   108
  by simp
huffman@47906
   109
huffman@47906
   110
lift_definition one_rat :: "rat" is "(1, 1)"
huffman@47906
   111
  by simp
paulson@14365
   112
huffman@47906
   113
lemma Zero_rat_def: "0 = Fract 0 1"
huffman@47906
   114
  by transfer simp
huffman@18913
   115
huffman@47906
   116
lemma One_rat_def: "1 = Fract 1 1"
huffman@47906
   117
  by transfer simp
huffman@47906
   118
huffman@47906
   119
lift_definition plus_rat :: "rat \<Rightarrow> rat \<Rightarrow> rat"
huffman@47906
   120
  is "\<lambda>x y. (fst x * snd y + fst y * snd x, snd x * snd y)"
webertj@49962
   121
  by (clarsimp, simp add: distrib_right, simp add: mult_ac)
haftmann@27551
   122
haftmann@27652
   123
lemma add_rat [simp]:
haftmann@27551
   124
  assumes "b \<noteq> 0" and "d \<noteq> 0"
haftmann@27551
   125
  shows "Fract a b + Fract c d = Fract (a * d + c * b) (b * d)"
huffman@47906
   126
  using assms by transfer simp
huffman@18913
   127
huffman@47906
   128
lift_definition uminus_rat :: "rat \<Rightarrow> rat" is "\<lambda>x. (- fst x, snd x)"
huffman@47906
   129
  by simp
haftmann@27551
   130
haftmann@35369
   131
lemma minus_rat [simp]: "- Fract a b = Fract (- a) b"
huffman@47906
   132
  by transfer simp
haftmann@27551
   133
haftmann@27652
   134
lemma minus_rat_cancel [simp]: "Fract (- a) (- b) = Fract a b"
haftmann@27551
   135
  by (cases "b = 0") (simp_all add: eq_rat)
haftmann@25571
   136
haftmann@25571
   137
definition
haftmann@35369
   138
  diff_rat_def: "q - r = q + - (r::rat)"
huffman@18913
   139
haftmann@27652
   140
lemma diff_rat [simp]:
haftmann@27551
   141
  assumes "b \<noteq> 0" and "d \<noteq> 0"
haftmann@27551
   142
  shows "Fract a b - Fract c d = Fract (a * d - c * b) (b * d)"
haftmann@27652
   143
  using assms by (simp add: diff_rat_def)
haftmann@25571
   144
huffman@47906
   145
lift_definition times_rat :: "rat \<Rightarrow> rat \<Rightarrow> rat"
huffman@47906
   146
  is "\<lambda>x y. (fst x * fst y, snd x * snd y)"
huffman@47906
   147
  by (simp add: mult_ac)
paulson@14365
   148
haftmann@27652
   149
lemma mult_rat [simp]: "Fract a b * Fract c d = Fract (a * c) (b * d)"
huffman@47906
   150
  by transfer simp
paulson@14365
   151
haftmann@27652
   152
lemma mult_rat_cancel:
haftmann@27551
   153
  assumes "c \<noteq> 0"
haftmann@27551
   154
  shows "Fract (c * a) (c * b) = Fract a b"
huffman@47906
   155
  using assms by transfer simp
huffman@47906
   156
huffman@47906
   157
lift_definition inverse_rat :: "rat \<Rightarrow> rat"
huffman@47906
   158
  is "\<lambda>x. if fst x = 0 then (0, 1) else (snd x, fst x)"
huffman@47906
   159
  by (auto simp add: mult_commute)
huffman@47906
   160
huffman@47906
   161
lemma inverse_rat [simp]: "inverse (Fract a b) = Fract b a"
huffman@47906
   162
  by transfer simp
huffman@47906
   163
huffman@47906
   164
definition
huffman@47906
   165
  divide_rat_def: "q / r = q * inverse (r::rat)"
huffman@47906
   166
huffman@47906
   167
lemma divide_rat [simp]: "Fract a b / Fract c d = Fract (a * d) (b * c)"
huffman@47906
   168
  by (simp add: divide_rat_def)
huffman@27509
   169
huffman@27509
   170
instance proof
huffman@47906
   171
  fix q r s :: rat
huffman@47906
   172
  show "(q * r) * s = q * (r * s)"
huffman@47906
   173
    by transfer simp
huffman@47906
   174
  show "q * r = r * q"
huffman@47906
   175
    by transfer simp
huffman@47906
   176
  show "1 * q = q"
huffman@47906
   177
    by transfer simp
huffman@47906
   178
  show "(q + r) + s = q + (r + s)"
huffman@47906
   179
    by transfer (simp add: algebra_simps)
huffman@47906
   180
  show "q + r = r + q"
huffman@47906
   181
    by transfer simp
huffman@47906
   182
  show "0 + q = q"
huffman@47906
   183
    by transfer simp
huffman@47906
   184
  show "- q + q = 0"
huffman@47906
   185
    by transfer simp
huffman@47906
   186
  show "q - r = q + - r"
huffman@47906
   187
    by (fact diff_rat_def)
huffman@47906
   188
  show "(q + r) * s = q * s + r * s"
huffman@47906
   189
    by transfer (simp add: algebra_simps)
huffman@47906
   190
  show "(0::rat) \<noteq> 1"
huffman@47906
   191
    by transfer simp
huffman@47906
   192
  { assume "q \<noteq> 0" thus "inverse q * q = 1"
huffman@47906
   193
    by transfer simp }
huffman@47906
   194
  show "q / r = q * inverse r"
huffman@47906
   195
    by (fact divide_rat_def)
huffman@47906
   196
  show "inverse 0 = (0::rat)"
huffman@47906
   197
    by transfer simp
huffman@27509
   198
qed
huffman@27509
   199
huffman@27509
   200
end
huffman@27509
   201
haftmann@27551
   202
lemma of_nat_rat: "of_nat k = Fract (of_nat k) 1"
haftmann@27652
   203
  by (induct k) (simp_all add: Zero_rat_def One_rat_def)
haftmann@27551
   204
haftmann@27551
   205
lemma of_int_rat: "of_int k = Fract k 1"
haftmann@27652
   206
  by (cases k rule: int_diff_cases) (simp add: of_nat_rat)
haftmann@27551
   207
haftmann@27551
   208
lemma Fract_of_nat_eq: "Fract (of_nat k) 1 = of_nat k"
haftmann@27551
   209
  by (rule of_nat_rat [symmetric])
haftmann@27551
   210
haftmann@27551
   211
lemma Fract_of_int_eq: "Fract k 1 = of_int k"
haftmann@27551
   212
  by (rule of_int_rat [symmetric])
haftmann@27551
   213
haftmann@35369
   214
lemma rat_number_collapse:
haftmann@27551
   215
  "Fract 0 k = 0"
haftmann@27551
   216
  "Fract 1 1 = 1"
huffman@47108
   217
  "Fract (numeral w) 1 = numeral w"
haftmann@54489
   218
  "Fract (- numeral w) 1 = - numeral w"
haftmann@54489
   219
  "Fract (- 1) 1 = - 1"
haftmann@27551
   220
  "Fract k 0 = 0"
huffman@47108
   221
  using Fract_of_int_eq [of "numeral w"]
haftmann@54489
   222
  using Fract_of_int_eq [of "- numeral w"]
huffman@47108
   223
  by (simp_all add: Zero_rat_def One_rat_def eq_rat)
haftmann@27551
   224
huffman@47108
   225
lemma rat_number_expand:
haftmann@27551
   226
  "0 = Fract 0 1"
haftmann@27551
   227
  "1 = Fract 1 1"
huffman@47108
   228
  "numeral k = Fract (numeral k) 1"
haftmann@54489
   229
  "- 1 = Fract (- 1) 1"
haftmann@54489
   230
  "- numeral k = Fract (- numeral k) 1"
haftmann@27551
   231
  by (simp_all add: rat_number_collapse)
haftmann@27551
   232
haftmann@27551
   233
lemma Rat_cases_nonzero [case_names Fract 0]:
haftmann@35369
   234
  assumes Fract: "\<And>a b. q = Fract a b \<Longrightarrow> b > 0 \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> coprime a b \<Longrightarrow> C"
haftmann@27551
   235
  assumes 0: "q = 0 \<Longrightarrow> C"
haftmann@27551
   236
  shows C
haftmann@27551
   237
proof (cases "q = 0")
haftmann@27551
   238
  case True then show C using 0 by auto
haftmann@27551
   239
next
haftmann@27551
   240
  case False
haftmann@35369
   241
  then obtain a b where "q = Fract a b" and "b > 0" and "coprime a b" by (cases q) auto
wenzelm@53374
   242
  with False have "0 \<noteq> Fract a b" by simp
haftmann@35369
   243
  with `b > 0` have "a \<noteq> 0" by (simp add: Zero_rat_def eq_rat)
haftmann@35369
   244
  with Fract `q = Fract a b` `b > 0` `coprime a b` show C by blast
haftmann@27551
   245
qed
haftmann@27551
   246
nipkow@33805
   247
subsubsection {* Function @{text normalize} *}
nipkow@33805
   248
haftmann@35369
   249
lemma Fract_coprime: "Fract (a div gcd a b) (b div gcd a b) = Fract a b"
haftmann@35369
   250
proof (cases "b = 0")
haftmann@35369
   251
  case True then show ?thesis by (simp add: eq_rat)
haftmann@35369
   252
next
haftmann@35369
   253
  case False
haftmann@35369
   254
  moreover have "b div gcd a b * gcd a b = b"
haftmann@35369
   255
    by (rule dvd_div_mult_self) simp
haftmann@35369
   256
  ultimately have "b div gcd a b \<noteq> 0" by auto
haftmann@35369
   257
  with False show ?thesis by (simp add: eq_rat dvd_div_mult mult_commute [of a])
haftmann@35369
   258
qed
nipkow@33805
   259
haftmann@35369
   260
definition normalize :: "int \<times> int \<Rightarrow> int \<times> int" where
haftmann@35369
   261
  "normalize p = (if snd p > 0 then (let a = gcd (fst p) (snd p) in (fst p div a, snd p div a))
haftmann@35369
   262
    else if snd p = 0 then (0, 1)
haftmann@35369
   263
    else (let a = - gcd (fst p) (snd p) in (fst p div a, snd p div a)))"
haftmann@35369
   264
haftmann@35369
   265
lemma normalize_crossproduct:
haftmann@35369
   266
  assumes "q \<noteq> 0" "s \<noteq> 0"
haftmann@35369
   267
  assumes "normalize (p, q) = normalize (r, s)"
haftmann@35369
   268
  shows "p * s = r * q"
haftmann@35369
   269
proof -
haftmann@35369
   270
  have aux: "p * gcd r s = sgn (q * s) * r * gcd p q \<Longrightarrow> q * gcd r s = sgn (q * s) * s * gcd p q \<Longrightarrow> p * s = q * r"
haftmann@35369
   271
  proof -
haftmann@35369
   272
    assume "p * gcd r s = sgn (q * s) * r * gcd p q" and "q * gcd r s = sgn (q * s) * s * gcd p q"
haftmann@35369
   273
    then have "(p * gcd r s) * (sgn (q * s) * s * gcd p q) = (q * gcd r s) * (sgn (q * s) * r * gcd p q)" by simp
haftmann@35369
   274
    with assms show "p * s = q * r" by (auto simp add: mult_ac sgn_times sgn_0_0)
haftmann@35369
   275
  qed
haftmann@35369
   276
  from assms show ?thesis
haftmann@35369
   277
    by (auto simp add: normalize_def Let_def dvd_div_div_eq_mult mult_commute sgn_times split: if_splits intro: aux)
nipkow@33805
   278
qed
nipkow@33805
   279
haftmann@35369
   280
lemma normalize_eq: "normalize (a, b) = (p, q) \<Longrightarrow> Fract p q = Fract a b"
haftmann@35369
   281
  by (auto simp add: normalize_def Let_def Fract_coprime dvd_div_neg rat_number_collapse
haftmann@35369
   282
    split:split_if_asm)
haftmann@35369
   283
haftmann@35369
   284
lemma normalize_denom_pos: "normalize r = (p, q) \<Longrightarrow> q > 0"
haftmann@35369
   285
  by (auto simp add: normalize_def Let_def dvd_div_neg pos_imp_zdiv_neg_iff nonneg1_imp_zdiv_pos_iff
haftmann@35369
   286
    split:split_if_asm)
haftmann@35369
   287
haftmann@35369
   288
lemma normalize_coprime: "normalize r = (p, q) \<Longrightarrow> coprime p q"
haftmann@35369
   289
  by (auto simp add: normalize_def Let_def dvd_div_neg div_gcd_coprime_int
haftmann@35369
   290
    split:split_if_asm)
haftmann@35369
   291
haftmann@35369
   292
lemma normalize_stable [simp]:
haftmann@35369
   293
  "q > 0 \<Longrightarrow> coprime p q \<Longrightarrow> normalize (p, q) = (p, q)"
haftmann@35369
   294
  by (simp add: normalize_def)
haftmann@35369
   295
haftmann@35369
   296
lemma normalize_denom_zero [simp]:
haftmann@35369
   297
  "normalize (p, 0) = (0, 1)"
haftmann@35369
   298
  by (simp add: normalize_def)
haftmann@35369
   299
haftmann@35369
   300
lemma normalize_negative [simp]:
haftmann@35369
   301
  "q < 0 \<Longrightarrow> normalize (p, q) = normalize (- p, - q)"
haftmann@35369
   302
  by (simp add: normalize_def Let_def dvd_div_neg dvd_neg_div)
haftmann@35369
   303
haftmann@35369
   304
text{*
haftmann@35369
   305
  Decompose a fraction into normalized, i.e. coprime numerator and denominator:
haftmann@35369
   306
*}
haftmann@35369
   307
haftmann@35369
   308
definition quotient_of :: "rat \<Rightarrow> int \<times> int" where
haftmann@35369
   309
  "quotient_of x = (THE pair. x = Fract (fst pair) (snd pair) &
haftmann@35369
   310
                   snd pair > 0 & coprime (fst pair) (snd pair))"
haftmann@35369
   311
haftmann@35369
   312
lemma quotient_of_unique:
haftmann@35369
   313
  "\<exists>!p. r = Fract (fst p) (snd p) \<and> snd p > 0 \<and> coprime (fst p) (snd p)"
haftmann@35369
   314
proof (cases r)
haftmann@35369
   315
  case (Fract a b)
haftmann@35369
   316
  then have "r = Fract (fst (a, b)) (snd (a, b)) \<and> snd (a, b) > 0 \<and> coprime (fst (a, b)) (snd (a, b))" by auto
haftmann@35369
   317
  then show ?thesis proof (rule ex1I)
haftmann@35369
   318
    fix p
haftmann@35369
   319
    obtain c d :: int where p: "p = (c, d)" by (cases p)
haftmann@35369
   320
    assume "r = Fract (fst p) (snd p) \<and> snd p > 0 \<and> coprime (fst p) (snd p)"
haftmann@35369
   321
    with p have Fract': "r = Fract c d" "d > 0" "coprime c d" by simp_all
haftmann@35369
   322
    have "c = a \<and> d = b"
haftmann@35369
   323
    proof (cases "a = 0")
haftmann@35369
   324
      case True with Fract Fract' show ?thesis by (simp add: eq_rat)
haftmann@35369
   325
    next
haftmann@35369
   326
      case False
haftmann@35369
   327
      with Fract Fract' have *: "c * b = a * d" and "c \<noteq> 0" by (auto simp add: eq_rat)
haftmann@35369
   328
      then have "c * b > 0 \<longleftrightarrow> a * d > 0" by auto
haftmann@35369
   329
      with `b > 0` `d > 0` have "a > 0 \<longleftrightarrow> c > 0" by (simp add: zero_less_mult_iff)
haftmann@35369
   330
      with `a \<noteq> 0` `c \<noteq> 0` have sgn: "sgn a = sgn c" by (auto simp add: not_less)
haftmann@35369
   331
      from `coprime a b` `coprime c d` have "\<bar>a\<bar> * \<bar>d\<bar> = \<bar>c\<bar> * \<bar>b\<bar> \<longleftrightarrow> \<bar>a\<bar> = \<bar>c\<bar> \<and> \<bar>d\<bar> = \<bar>b\<bar>"
haftmann@35369
   332
        by (simp add: coprime_crossproduct_int)
haftmann@35369
   333
      with `b > 0` `d > 0` have "\<bar>a\<bar> * d = \<bar>c\<bar> * b \<longleftrightarrow> \<bar>a\<bar> = \<bar>c\<bar> \<and> d = b" by simp
haftmann@35369
   334
      then have "a * sgn a * d = c * sgn c * b \<longleftrightarrow> a * sgn a = c * sgn c \<and> d = b" by (simp add: abs_sgn)
haftmann@35369
   335
      with sgn * show ?thesis by (auto simp add: sgn_0_0)
nipkow@33805
   336
    qed
haftmann@35369
   337
    with p show "p = (a, b)" by simp
nipkow@33805
   338
  qed
nipkow@33805
   339
qed
nipkow@33805
   340
haftmann@35369
   341
lemma quotient_of_Fract [code]:
haftmann@35369
   342
  "quotient_of (Fract a b) = normalize (a, b)"
haftmann@35369
   343
proof -
haftmann@35369
   344
  have "Fract a b = Fract (fst (normalize (a, b))) (snd (normalize (a, b)))" (is ?Fract)
haftmann@35369
   345
    by (rule sym) (auto intro: normalize_eq)
wenzelm@52146
   346
  moreover have "0 < snd (normalize (a, b))" (is ?denom_pos)
haftmann@35369
   347
    by (cases "normalize (a, b)") (rule normalize_denom_pos, simp)
haftmann@35369
   348
  moreover have "coprime (fst (normalize (a, b))) (snd (normalize (a, b)))" (is ?coprime)
haftmann@35369
   349
    by (rule normalize_coprime) simp
haftmann@35369
   350
  ultimately have "?Fract \<and> ?denom_pos \<and> ?coprime" by blast
haftmann@35369
   351
  with quotient_of_unique have
haftmann@35369
   352
    "(THE p. Fract a b = Fract (fst p) (snd p) \<and> 0 < snd p \<and> coprime (fst p) (snd p)) = normalize (a, b)"
haftmann@35369
   353
    by (rule the1_equality)
haftmann@35369
   354
  then show ?thesis by (simp add: quotient_of_def)
haftmann@35369
   355
qed
haftmann@35369
   356
haftmann@35369
   357
lemma quotient_of_number [simp]:
haftmann@35369
   358
  "quotient_of 0 = (0, 1)"
haftmann@35369
   359
  "quotient_of 1 = (1, 1)"
huffman@47108
   360
  "quotient_of (numeral k) = (numeral k, 1)"
haftmann@54489
   361
  "quotient_of (- 1) = (- 1, 1)"
haftmann@54489
   362
  "quotient_of (- numeral k) = (- numeral k, 1)"
haftmann@35369
   363
  by (simp_all add: rat_number_expand quotient_of_Fract)
nipkow@33805
   364
haftmann@35369
   365
lemma quotient_of_eq: "quotient_of (Fract a b) = (p, q) \<Longrightarrow> Fract p q = Fract a b"
haftmann@35369
   366
  by (simp add: quotient_of_Fract normalize_eq)
haftmann@35369
   367
haftmann@35369
   368
lemma quotient_of_denom_pos: "quotient_of r = (p, q) \<Longrightarrow> q > 0"
haftmann@35369
   369
  by (cases r) (simp add: quotient_of_Fract normalize_denom_pos)
haftmann@35369
   370
haftmann@35369
   371
lemma quotient_of_coprime: "quotient_of r = (p, q) \<Longrightarrow> coprime p q"
haftmann@35369
   372
  by (cases r) (simp add: quotient_of_Fract normalize_coprime)
nipkow@33805
   373
haftmann@35369
   374
lemma quotient_of_inject:
haftmann@35369
   375
  assumes "quotient_of a = quotient_of b"
haftmann@35369
   376
  shows "a = b"
haftmann@35369
   377
proof -
haftmann@35369
   378
  obtain p q r s where a: "a = Fract p q"
haftmann@35369
   379
    and b: "b = Fract r s"
haftmann@35369
   380
    and "q > 0" and "s > 0" by (cases a, cases b)
haftmann@35369
   381
  with assms show ?thesis by (simp add: eq_rat quotient_of_Fract normalize_crossproduct)
haftmann@35369
   382
qed
haftmann@35369
   383
haftmann@35369
   384
lemma quotient_of_inject_eq:
haftmann@35369
   385
  "quotient_of a = quotient_of b \<longleftrightarrow> a = b"
haftmann@35369
   386
  by (auto simp add: quotient_of_inject)
nipkow@33805
   387
haftmann@27551
   388
haftmann@27551
   389
subsubsection {* Various *}
haftmann@27551
   390
haftmann@27551
   391
lemma Fract_of_int_quotient: "Fract k l = of_int k / of_int l"
haftmann@27652
   392
  by (simp add: Fract_of_int_eq [symmetric])
haftmann@27551
   393
huffman@47108
   394
lemma Fract_add_one: "n \<noteq> 0 ==> Fract (m + n) n = Fract m n + 1"
huffman@47108
   395
  by (simp add: rat_number_expand)
haftmann@27551
   396
hoelzl@50178
   397
lemma quotient_of_div:
hoelzl@50178
   398
  assumes r: "quotient_of r = (n,d)"
hoelzl@50178
   399
  shows "r = of_int n / of_int d"
hoelzl@50178
   400
proof -
hoelzl@50178
   401
  from theI'[OF quotient_of_unique[of r], unfolded r[unfolded quotient_of_def]]
hoelzl@50178
   402
  have "r = Fract n d" by simp
hoelzl@50178
   403
  thus ?thesis using Fract_of_int_quotient by simp
hoelzl@50178
   404
qed
haftmann@27551
   405
haftmann@27551
   406
subsubsection {* The ordered field of rational numbers *}
huffman@27509
   407
huffman@47907
   408
lift_definition positive :: "rat \<Rightarrow> bool"
huffman@47907
   409
  is "\<lambda>x. 0 < fst x * snd x"
huffman@47907
   410
proof (clarsimp)
huffman@47907
   411
  fix a b c d :: int
huffman@47907
   412
  assume "b \<noteq> 0" and "d \<noteq> 0" and "a * d = c * b"
huffman@47907
   413
  hence "a * d * b * d = c * b * b * d"
huffman@47907
   414
    by simp
wenzelm@53015
   415
  hence "a * b * d\<^sup>2 = c * d * b\<^sup>2"
huffman@47907
   416
    unfolding power2_eq_square by (simp add: mult_ac)
wenzelm@53015
   417
  hence "0 < a * b * d\<^sup>2 \<longleftrightarrow> 0 < c * d * b\<^sup>2"
huffman@47907
   418
    by simp
huffman@47907
   419
  thus "0 < a * b \<longleftrightarrow> 0 < c * d"
huffman@47907
   420
    using `b \<noteq> 0` and `d \<noteq> 0`
huffman@47907
   421
    by (simp add: zero_less_mult_iff)
huffman@47907
   422
qed
huffman@47907
   423
huffman@47907
   424
lemma positive_zero: "\<not> positive 0"
huffman@47907
   425
  by transfer simp
huffman@47907
   426
huffman@47907
   427
lemma positive_add:
huffman@47907
   428
  "positive x \<Longrightarrow> positive y \<Longrightarrow> positive (x + y)"
huffman@47907
   429
apply transfer
huffman@47907
   430
apply (simp add: zero_less_mult_iff)
huffman@47907
   431
apply (elim disjE, simp_all add: add_pos_pos add_neg_neg
nipkow@56544
   432
  mult_pos_neg mult_neg_pos mult_neg_neg)
huffman@47907
   433
done
huffman@47907
   434
huffman@47907
   435
lemma positive_mult:
huffman@47907
   436
  "positive x \<Longrightarrow> positive y \<Longrightarrow> positive (x * y)"
huffman@47907
   437
by transfer (drule (1) mult_pos_pos, simp add: mult_ac)
huffman@47907
   438
huffman@47907
   439
lemma positive_minus:
huffman@47907
   440
  "\<not> positive x \<Longrightarrow> x \<noteq> 0 \<Longrightarrow> positive (- x)"
huffman@47907
   441
by transfer (force simp: neq_iff zero_less_mult_iff mult_less_0_iff)
huffman@47907
   442
huffman@47907
   443
instantiation rat :: linordered_field_inverse_zero
huffman@27509
   444
begin
huffman@27509
   445
huffman@47907
   446
definition
huffman@47907
   447
  "x < y \<longleftrightarrow> positive (y - x)"
huffman@47907
   448
huffman@47907
   449
definition
huffman@47907
   450
  "x \<le> (y::rat) \<longleftrightarrow> x < y \<or> x = y"
huffman@47907
   451
huffman@47907
   452
definition
huffman@47907
   453
  "abs (a::rat) = (if a < 0 then - a else a)"
huffman@47907
   454
huffman@47907
   455
definition
huffman@47907
   456
  "sgn (a::rat) = (if a = 0 then 0 else if 0 < a then 1 else - 1)"
huffman@47906
   457
huffman@47907
   458
instance proof
huffman@47907
   459
  fix a b c :: rat
huffman@47907
   460
  show "\<bar>a\<bar> = (if a < 0 then - a else a)"
huffman@47907
   461
    by (rule abs_rat_def)
huffman@47907
   462
  show "a < b \<longleftrightarrow> a \<le> b \<and> \<not> b \<le> a"
huffman@47907
   463
    unfolding less_eq_rat_def less_rat_def
huffman@47907
   464
    by (auto, drule (1) positive_add, simp_all add: positive_zero)
huffman@47907
   465
  show "a \<le> a"
huffman@47907
   466
    unfolding less_eq_rat_def by simp
huffman@47907
   467
  show "a \<le> b \<Longrightarrow> b \<le> c \<Longrightarrow> a \<le> c"
huffman@47907
   468
    unfolding less_eq_rat_def less_rat_def
huffman@47907
   469
    by (auto, drule (1) positive_add, simp add: algebra_simps)
huffman@47907
   470
  show "a \<le> b \<Longrightarrow> b \<le> a \<Longrightarrow> a = b"
huffman@47907
   471
    unfolding less_eq_rat_def less_rat_def
huffman@47907
   472
    by (auto, drule (1) positive_add, simp add: positive_zero)
huffman@47907
   473
  show "a \<le> b \<Longrightarrow> c + a \<le> c + b"
haftmann@54230
   474
    unfolding less_eq_rat_def less_rat_def by auto
huffman@47907
   475
  show "sgn a = (if a = 0 then 0 else if 0 < a then 1 else - 1)"
huffman@47907
   476
    by (rule sgn_rat_def)
huffman@47907
   477
  show "a \<le> b \<or> b \<le> a"
huffman@47907
   478
    unfolding less_eq_rat_def less_rat_def
huffman@47907
   479
    by (auto dest!: positive_minus)
huffman@47907
   480
  show "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b"
huffman@47907
   481
    unfolding less_rat_def
huffman@47907
   482
    by (drule (1) positive_mult, simp add: algebra_simps)
huffman@47906
   483
qed
haftmann@27551
   484
huffman@47907
   485
end
huffman@47907
   486
huffman@47907
   487
instantiation rat :: distrib_lattice
huffman@47907
   488
begin
huffman@47907
   489
huffman@47907
   490
definition
huffman@47907
   491
  "(inf :: rat \<Rightarrow> rat \<Rightarrow> rat) = min"
huffman@27509
   492
huffman@27509
   493
definition
huffman@47907
   494
  "(sup :: rat \<Rightarrow> rat \<Rightarrow> rat) = max"
huffman@47907
   495
huffman@47907
   496
instance proof
haftmann@54863
   497
qed (auto simp add: inf_rat_def sup_rat_def max_min_distrib2)
huffman@47907
   498
huffman@47907
   499
end
huffman@47907
   500
huffman@47907
   501
lemma positive_rat: "positive (Fract a b) \<longleftrightarrow> 0 < a * b"
huffman@47907
   502
  by transfer simp
huffman@27509
   503
haftmann@27652
   504
lemma less_rat [simp]:
haftmann@27551
   505
  assumes "b \<noteq> 0" and "d \<noteq> 0"
haftmann@27551
   506
  shows "Fract a b < Fract c d \<longleftrightarrow> (a * d) * (b * d) < (c * b) * (b * d)"
huffman@47907
   507
  using assms unfolding less_rat_def
huffman@47907
   508
  by (simp add: positive_rat algebra_simps)
huffman@27509
   509
huffman@47907
   510
lemma le_rat [simp]:
huffman@47907
   511
  assumes "b \<noteq> 0" and "d \<noteq> 0"
huffman@47907
   512
  shows "Fract a b \<le> Fract c d \<longleftrightarrow> (a * d) * (b * d) \<le> (c * b) * (b * d)"
huffman@47907
   513
  using assms unfolding le_less by (simp add: eq_rat)
haftmann@27551
   514
haftmann@27652
   515
lemma abs_rat [simp, code]: "\<bar>Fract a b\<bar> = Fract \<bar>a\<bar> \<bar>b\<bar>"
huffman@35216
   516
  by (auto simp add: abs_rat_def zabs_def Zero_rat_def not_less le_less eq_rat zero_less_mult_iff)
haftmann@27551
   517
haftmann@27652
   518
lemma sgn_rat [simp, code]: "sgn (Fract a b) = of_int (sgn a * sgn b)"
haftmann@27551
   519
  unfolding Fract_of_int_eq
haftmann@27652
   520
  by (auto simp: zsgn_def sgn_rat_def Zero_rat_def eq_rat)
haftmann@27551
   521
    (auto simp: rat_number_collapse not_less le_less zero_less_mult_iff)
haftmann@27551
   522
haftmann@27551
   523
lemma Rat_induct_pos [case_names Fract, induct type: rat]:
haftmann@27551
   524
  assumes step: "\<And>a b. 0 < b \<Longrightarrow> P (Fract a b)"
haftmann@27551
   525
  shows "P q"
paulson@14365
   526
proof (cases q)
haftmann@27551
   527
  have step': "\<And>a b. b < 0 \<Longrightarrow> P (Fract a b)"
paulson@14365
   528
  proof -
paulson@14365
   529
    fix a::int and b::int
paulson@14365
   530
    assume b: "b < 0"
paulson@14365
   531
    hence "0 < -b" by simp
paulson@14365
   532
    hence "P (Fract (-a) (-b))" by (rule step)
paulson@14365
   533
    thus "P (Fract a b)" by (simp add: order_less_imp_not_eq [OF b])
paulson@14365
   534
  qed
paulson@14365
   535
  case (Fract a b)
paulson@14365
   536
  thus "P q" by (force simp add: linorder_neq_iff step step')
paulson@14365
   537
qed
paulson@14365
   538
paulson@14365
   539
lemma zero_less_Fract_iff:
huffman@30095
   540
  "0 < b \<Longrightarrow> 0 < Fract a b \<longleftrightarrow> 0 < a"
huffman@30095
   541
  by (simp add: Zero_rat_def zero_less_mult_iff)
huffman@30095
   542
huffman@30095
   543
lemma Fract_less_zero_iff:
huffman@30095
   544
  "0 < b \<Longrightarrow> Fract a b < 0 \<longleftrightarrow> a < 0"
huffman@30095
   545
  by (simp add: Zero_rat_def mult_less_0_iff)
huffman@30095
   546
huffman@30095
   547
lemma zero_le_Fract_iff:
huffman@30095
   548
  "0 < b \<Longrightarrow> 0 \<le> Fract a b \<longleftrightarrow> 0 \<le> a"
huffman@30095
   549
  by (simp add: Zero_rat_def zero_le_mult_iff)
huffman@30095
   550
huffman@30095
   551
lemma Fract_le_zero_iff:
huffman@30095
   552
  "0 < b \<Longrightarrow> Fract a b \<le> 0 \<longleftrightarrow> a \<le> 0"
huffman@30095
   553
  by (simp add: Zero_rat_def mult_le_0_iff)
huffman@30095
   554
huffman@30095
   555
lemma one_less_Fract_iff:
huffman@30095
   556
  "0 < b \<Longrightarrow> 1 < Fract a b \<longleftrightarrow> b < a"
huffman@30095
   557
  by (simp add: One_rat_def mult_less_cancel_right_disj)
huffman@30095
   558
huffman@30095
   559
lemma Fract_less_one_iff:
huffman@30095
   560
  "0 < b \<Longrightarrow> Fract a b < 1 \<longleftrightarrow> a < b"
huffman@30095
   561
  by (simp add: One_rat_def mult_less_cancel_right_disj)
huffman@30095
   562
huffman@30095
   563
lemma one_le_Fract_iff:
huffman@30095
   564
  "0 < b \<Longrightarrow> 1 \<le> Fract a b \<longleftrightarrow> b \<le> a"
huffman@30095
   565
  by (simp add: One_rat_def mult_le_cancel_right)
huffman@30095
   566
huffman@30095
   567
lemma Fract_le_one_iff:
huffman@30095
   568
  "0 < b \<Longrightarrow> Fract a b \<le> 1 \<longleftrightarrow> a \<le> b"
huffman@30095
   569
  by (simp add: One_rat_def mult_le_cancel_right)
paulson@14365
   570
paulson@14378
   571
huffman@30097
   572
subsubsection {* Rationals are an Archimedean field *}
huffman@30097
   573
huffman@30097
   574
lemma rat_floor_lemma:
huffman@30097
   575
  shows "of_int (a div b) \<le> Fract a b \<and> Fract a b < of_int (a div b + 1)"
huffman@30097
   576
proof -
huffman@30097
   577
  have "Fract a b = of_int (a div b) + Fract (a mod b) b"
huffman@35293
   578
    by (cases "b = 0", simp, simp add: of_int_rat)
huffman@30097
   579
  moreover have "0 \<le> Fract (a mod b) b \<and> Fract (a mod b) b < 1"
huffman@35293
   580
    unfolding Fract_of_int_quotient
hoelzl@56571
   581
    by (rule linorder_cases [of b 0]) (simp_all add: divide_nonpos_neg)
huffman@30097
   582
  ultimately show ?thesis by simp
huffman@30097
   583
qed
huffman@30097
   584
huffman@30097
   585
instance rat :: archimedean_field
huffman@30097
   586
proof
huffman@30097
   587
  fix r :: rat
huffman@30097
   588
  show "\<exists>z. r \<le> of_int z"
huffman@30097
   589
  proof (induct r)
huffman@30097
   590
    case (Fract a b)
huffman@35293
   591
    have "Fract a b \<le> of_int (a div b + 1)"
huffman@35293
   592
      using rat_floor_lemma [of a b] by simp
huffman@30097
   593
    then show "\<exists>z. Fract a b \<le> of_int z" ..
huffman@30097
   594
  qed
huffman@30097
   595
qed
huffman@30097
   596
bulwahn@43732
   597
instantiation rat :: floor_ceiling
bulwahn@43732
   598
begin
bulwahn@43732
   599
bulwahn@43732
   600
definition [code del]:
bulwahn@43732
   601
  "floor (x::rat) = (THE z. of_int z \<le> x \<and> x < of_int (z + 1))"
bulwahn@43732
   602
bulwahn@43732
   603
instance proof
bulwahn@43732
   604
  fix x :: rat
bulwahn@43732
   605
  show "of_int (floor x) \<le> x \<and> x < of_int (floor x + 1)"
bulwahn@43732
   606
    unfolding floor_rat_def using floor_exists1 by (rule theI')
bulwahn@43732
   607
qed
bulwahn@43732
   608
bulwahn@43732
   609
end
bulwahn@43732
   610
huffman@35293
   611
lemma floor_Fract: "floor (Fract a b) = a div b"
huffman@35293
   612
  using rat_floor_lemma [of a b]
huffman@30097
   613
  by (simp add: floor_unique)
huffman@30097
   614
huffman@30097
   615
haftmann@31100
   616
subsection {* Linear arithmetic setup *}
paulson@14387
   617
haftmann@31100
   618
declaration {*
haftmann@31100
   619
  K (Lin_Arith.add_inj_thms [@{thm of_nat_le_iff} RS iffD2, @{thm of_nat_eq_iff} RS iffD2]
haftmann@31100
   620
    (* not needed because x < (y::nat) can be rewritten as Suc x <= y: of_nat_less_iff RS iffD2 *)
haftmann@31100
   621
  #> Lin_Arith.add_inj_thms [@{thm of_int_le_iff} RS iffD2, @{thm of_int_eq_iff} RS iffD2]
haftmann@31100
   622
    (* not needed because x < (y::int) can be rewritten as x + 1 <= y: of_int_less_iff RS iffD2 *)
haftmann@31100
   623
  #> Lin_Arith.add_simps [@{thm neg_less_iff_less},
haftmann@31100
   624
      @{thm True_implies_equals},
wenzelm@55143
   625
      @{thm distrib_left [where a = "numeral v" for v]},
wenzelm@55143
   626
      @{thm distrib_left [where a = "- numeral v" for v]},
haftmann@31100
   627
      @{thm divide_1}, @{thm divide_zero_left},
haftmann@31100
   628
      @{thm times_divide_eq_right}, @{thm times_divide_eq_left},
haftmann@31100
   629
      @{thm minus_divide_left} RS sym, @{thm minus_divide_right} RS sym,
haftmann@31100
   630
      @{thm of_int_minus}, @{thm of_int_diff},
haftmann@31100
   631
      @{thm of_int_of_nat_eq}]
nipkow@57136
   632
  #> Lin_Arith.add_simprocs Numeral_Simprocs.field_divide_cancel_numeral_factor
haftmann@31100
   633
  #> Lin_Arith.add_inj_const (@{const_name of_nat}, @{typ "nat => rat"})
haftmann@31100
   634
  #> Lin_Arith.add_inj_const (@{const_name of_int}, @{typ "int => rat"}))
haftmann@31100
   635
*}
paulson@14387
   636
huffman@23342
   637
huffman@23342
   638
subsection {* Embedding from Rationals to other Fields *}
huffman@23342
   639
haftmann@24198
   640
class field_char_0 = field + ring_char_0
huffman@23342
   641
haftmann@35028
   642
subclass (in linordered_field) field_char_0 ..
huffman@23342
   643
haftmann@27551
   644
context field_char_0
haftmann@27551
   645
begin
haftmann@27551
   646
huffman@47906
   647
lift_definition of_rat :: "rat \<Rightarrow> 'a"
huffman@47906
   648
  is "\<lambda>x. of_int (fst x) / of_int (snd x)"
huffman@23342
   649
apply (clarsimp simp add: nonzero_divide_eq_eq nonzero_eq_divide_eq)
huffman@23342
   650
apply (simp only: of_int_mult [symmetric])
huffman@23342
   651
done
huffman@23342
   652
huffman@47906
   653
end
huffman@47906
   654
haftmann@27551
   655
lemma of_rat_rat: "b \<noteq> 0 \<Longrightarrow> of_rat (Fract a b) = of_int a / of_int b"
huffman@47906
   656
  by transfer simp
huffman@23342
   657
huffman@23342
   658
lemma of_rat_0 [simp]: "of_rat 0 = 0"
huffman@47906
   659
  by transfer simp
huffman@23342
   660
huffman@23342
   661
lemma of_rat_1 [simp]: "of_rat 1 = 1"
huffman@47906
   662
  by transfer simp
huffman@23342
   663
huffman@23342
   664
lemma of_rat_add: "of_rat (a + b) = of_rat a + of_rat b"
huffman@47906
   665
  by transfer (simp add: add_frac_eq)
huffman@23342
   666
huffman@23343
   667
lemma of_rat_minus: "of_rat (- a) = - of_rat a"
hoelzl@56479
   668
  by transfer simp
huffman@23343
   669
haftmann@54489
   670
lemma of_rat_neg_one [simp]:
haftmann@54489
   671
  "of_rat (- 1) = - 1"
haftmann@54489
   672
  by (simp add: of_rat_minus)
haftmann@54489
   673
huffman@23343
   674
lemma of_rat_diff: "of_rat (a - b) = of_rat a - of_rat b"
haftmann@54230
   675
  using of_rat_add [of a "- b"] by (simp add: of_rat_minus)
huffman@23343
   676
huffman@23342
   677
lemma of_rat_mult: "of_rat (a * b) = of_rat a * of_rat b"
huffman@47906
   678
apply transfer
huffman@23342
   679
apply (simp add: divide_inverse nonzero_inverse_mult_distrib mult_ac)
huffman@23342
   680
done
huffman@23342
   681
huffman@23342
   682
lemma nonzero_of_rat_inverse:
huffman@23342
   683
  "a \<noteq> 0 \<Longrightarrow> of_rat (inverse a) = inverse (of_rat a)"
huffman@23343
   684
apply (rule inverse_unique [symmetric])
huffman@23343
   685
apply (simp add: of_rat_mult [symmetric])
huffman@23342
   686
done
huffman@23342
   687
huffman@23342
   688
lemma of_rat_inverse:
haftmann@36409
   689
  "(of_rat (inverse a)::'a::{field_char_0, field_inverse_zero}) =
huffman@23342
   690
   inverse (of_rat a)"
huffman@23342
   691
by (cases "a = 0", simp_all add: nonzero_of_rat_inverse)
huffman@23342
   692
huffman@23342
   693
lemma nonzero_of_rat_divide:
huffman@23342
   694
  "b \<noteq> 0 \<Longrightarrow> of_rat (a / b) = of_rat a / of_rat b"
huffman@23342
   695
by (simp add: divide_inverse of_rat_mult nonzero_of_rat_inverse)
huffman@23342
   696
huffman@23342
   697
lemma of_rat_divide:
haftmann@36409
   698
  "(of_rat (a / b)::'a::{field_char_0, field_inverse_zero})
huffman@23342
   699
   = of_rat a / of_rat b"
haftmann@27652
   700
by (cases "b = 0") (simp_all add: nonzero_of_rat_divide)
huffman@23342
   701
huffman@23343
   702
lemma of_rat_power:
haftmann@31017
   703
  "(of_rat (a ^ n)::'a::field_char_0) = of_rat a ^ n"
huffman@30273
   704
by (induct n) (simp_all add: of_rat_mult)
huffman@23343
   705
huffman@23343
   706
lemma of_rat_eq_iff [simp]: "(of_rat a = of_rat b) = (a = b)"
huffman@47906
   707
apply transfer
huffman@23343
   708
apply (simp add: nonzero_divide_eq_eq nonzero_eq_divide_eq)
huffman@23343
   709
apply (simp only: of_int_mult [symmetric] of_int_eq_iff)
huffman@23343
   710
done
huffman@23343
   711
hoelzl@54409
   712
lemma of_rat_eq_0_iff [simp]: "(of_rat a = 0) = (a = 0)"
hoelzl@54409
   713
  using of_rat_eq_iff [of _ 0] by simp
hoelzl@54409
   714
hoelzl@54409
   715
lemma zero_eq_of_rat_iff [simp]: "(0 = of_rat a) = (0 = a)"
hoelzl@54409
   716
  by simp
hoelzl@54409
   717
hoelzl@54409
   718
lemma of_rat_eq_1_iff [simp]: "(of_rat a = 1) = (a = 1)"
hoelzl@54409
   719
  using of_rat_eq_iff [of _ 1] by simp
hoelzl@54409
   720
hoelzl@54409
   721
lemma one_eq_of_rat_iff [simp]: "(1 = of_rat a) = (1 = a)"
hoelzl@54409
   722
  by simp
hoelzl@54409
   723
haftmann@27652
   724
lemma of_rat_less:
haftmann@35028
   725
  "(of_rat r :: 'a::linordered_field) < of_rat s \<longleftrightarrow> r < s"
haftmann@27652
   726
proof (induct r, induct s)
haftmann@27652
   727
  fix a b c d :: int
haftmann@27652
   728
  assume not_zero: "b > 0" "d > 0"
nipkow@56544
   729
  then have "b * d > 0" by simp
haftmann@27652
   730
  have of_int_divide_less_eq:
haftmann@27652
   731
    "(of_int a :: 'a) / of_int b < of_int c / of_int d
haftmann@27652
   732
      \<longleftrightarrow> (of_int a :: 'a) * of_int d < of_int c * of_int b"
haftmann@27652
   733
    using not_zero by (simp add: pos_less_divide_eq pos_divide_less_eq)
haftmann@35028
   734
  show "(of_rat (Fract a b) :: 'a::linordered_field) < of_rat (Fract c d)
haftmann@27652
   735
    \<longleftrightarrow> Fract a b < Fract c d"
haftmann@27652
   736
    using not_zero `b * d > 0`
haftmann@27652
   737
    by (simp add: of_rat_rat of_int_divide_less_eq of_int_mult [symmetric] del: of_int_mult)
haftmann@27652
   738
qed
haftmann@27652
   739
haftmann@27652
   740
lemma of_rat_less_eq:
haftmann@35028
   741
  "(of_rat r :: 'a::linordered_field) \<le> of_rat s \<longleftrightarrow> r \<le> s"
haftmann@27652
   742
  unfolding le_less by (auto simp add: of_rat_less)
haftmann@27652
   743
hoelzl@54409
   744
lemma of_rat_le_0_iff [simp]: "((of_rat r :: 'a::linordered_field) \<le> 0) = (r \<le> 0)"
hoelzl@54409
   745
  using of_rat_less_eq [of r 0, where 'a='a] by simp
hoelzl@54409
   746
hoelzl@54409
   747
lemma zero_le_of_rat_iff [simp]: "(0 \<le> (of_rat r :: 'a::linordered_field)) = (0 \<le> r)"
hoelzl@54409
   748
  using of_rat_less_eq [of 0 r, where 'a='a] by simp
hoelzl@54409
   749
hoelzl@54409
   750
lemma of_rat_le_1_iff [simp]: "((of_rat r :: 'a::linordered_field) \<le> 1) = (r \<le> 1)"
hoelzl@54409
   751
  using of_rat_less_eq [of r 1] by simp
hoelzl@54409
   752
hoelzl@54409
   753
lemma one_le_of_rat_iff [simp]: "(1 \<le> (of_rat r :: 'a::linordered_field)) = (1 \<le> r)"
hoelzl@54409
   754
  using of_rat_less_eq [of 1 r] by simp
hoelzl@54409
   755
hoelzl@54409
   756
lemma of_rat_less_0_iff [simp]: "((of_rat r :: 'a::linordered_field) < 0) = (r < 0)"
hoelzl@54409
   757
  using of_rat_less [of r 0, where 'a='a] by simp
hoelzl@54409
   758
hoelzl@54409
   759
lemma zero_less_of_rat_iff [simp]: "(0 < (of_rat r :: 'a::linordered_field)) = (0 < r)"
hoelzl@54409
   760
  using of_rat_less [of 0 r, where 'a='a] by simp
hoelzl@54409
   761
hoelzl@54409
   762
lemma of_rat_less_1_iff [simp]: "((of_rat r :: 'a::linordered_field) < 1) = (r < 1)"
hoelzl@54409
   763
  using of_rat_less [of r 1] by simp
hoelzl@54409
   764
hoelzl@54409
   765
lemma one_less_of_rat_iff [simp]: "(1 < (of_rat r :: 'a::linordered_field)) = (1 < r)"
hoelzl@54409
   766
  using of_rat_less [of 1 r] by simp
huffman@23343
   767
haftmann@27652
   768
lemma of_rat_eq_id [simp]: "of_rat = id"
huffman@23343
   769
proof
huffman@23343
   770
  fix a
huffman@23343
   771
  show "of_rat a = id a"
huffman@23343
   772
  by (induct a)
haftmann@27652
   773
     (simp add: of_rat_rat Fract_of_int_eq [symmetric])
huffman@23343
   774
qed
huffman@23343
   775
huffman@23343
   776
text{*Collapse nested embeddings*}
huffman@23343
   777
lemma of_rat_of_nat_eq [simp]: "of_rat (of_nat n) = of_nat n"
huffman@23343
   778
by (induct n) (simp_all add: of_rat_add)
huffman@23343
   779
huffman@23343
   780
lemma of_rat_of_int_eq [simp]: "of_rat (of_int z) = of_int z"
haftmann@27652
   781
by (cases z rule: int_diff_cases) (simp add: of_rat_diff)
huffman@23343
   782
huffman@47108
   783
lemma of_rat_numeral_eq [simp]:
huffman@47108
   784
  "of_rat (numeral w) = numeral w"
huffman@47108
   785
using of_rat_of_int_eq [of "numeral w"] by simp
huffman@47108
   786
huffman@47108
   787
lemma of_rat_neg_numeral_eq [simp]:
haftmann@54489
   788
  "of_rat (- numeral w) = - numeral w"
haftmann@54489
   789
using of_rat_of_int_eq [of "- numeral w"] by simp
huffman@23343
   790
haftmann@23879
   791
lemmas zero_rat = Zero_rat_def
haftmann@23879
   792
lemmas one_rat = One_rat_def
haftmann@23879
   793
haftmann@24198
   794
abbreviation
haftmann@24198
   795
  rat_of_nat :: "nat \<Rightarrow> rat"
haftmann@24198
   796
where
haftmann@24198
   797
  "rat_of_nat \<equiv> of_nat"
haftmann@24198
   798
haftmann@24198
   799
abbreviation
haftmann@24198
   800
  rat_of_int :: "int \<Rightarrow> rat"
haftmann@24198
   801
where
haftmann@24198
   802
  "rat_of_int \<equiv> of_int"
haftmann@24198
   803
huffman@28010
   804
subsection {* The Set of Rational Numbers *}
berghofe@24533
   805
nipkow@28001
   806
context field_char_0
nipkow@28001
   807
begin
nipkow@28001
   808
nipkow@28001
   809
definition
nipkow@28001
   810
  Rats  :: "'a set" where
haftmann@35369
   811
  "Rats = range of_rat"
nipkow@28001
   812
nipkow@28001
   813
notation (xsymbols)
nipkow@28001
   814
  Rats  ("\<rat>")
nipkow@28001
   815
nipkow@28001
   816
end
nipkow@28001
   817
huffman@28010
   818
lemma Rats_of_rat [simp]: "of_rat r \<in> Rats"
huffman@28010
   819
by (simp add: Rats_def)
huffman@28010
   820
huffman@28010
   821
lemma Rats_of_int [simp]: "of_int z \<in> Rats"
huffman@28010
   822
by (subst of_rat_of_int_eq [symmetric], rule Rats_of_rat)
huffman@28010
   823
huffman@28010
   824
lemma Rats_of_nat [simp]: "of_nat n \<in> Rats"
huffman@28010
   825
by (subst of_rat_of_nat_eq [symmetric], rule Rats_of_rat)
huffman@28010
   826
huffman@47108
   827
lemma Rats_number_of [simp]: "numeral w \<in> Rats"
huffman@47108
   828
by (subst of_rat_numeral_eq [symmetric], rule Rats_of_rat)
huffman@47108
   829
huffman@28010
   830
lemma Rats_0 [simp]: "0 \<in> Rats"
huffman@28010
   831
apply (unfold Rats_def)
huffman@28010
   832
apply (rule range_eqI)
huffman@28010
   833
apply (rule of_rat_0 [symmetric])
huffman@28010
   834
done
huffman@28010
   835
huffman@28010
   836
lemma Rats_1 [simp]: "1 \<in> Rats"
huffman@28010
   837
apply (unfold Rats_def)
huffman@28010
   838
apply (rule range_eqI)
huffman@28010
   839
apply (rule of_rat_1 [symmetric])
huffman@28010
   840
done
huffman@28010
   841
huffman@28010
   842
lemma Rats_add [simp]: "\<lbrakk>a \<in> Rats; b \<in> Rats\<rbrakk> \<Longrightarrow> a + b \<in> Rats"
huffman@28010
   843
apply (auto simp add: Rats_def)
huffman@28010
   844
apply (rule range_eqI)
huffman@28010
   845
apply (rule of_rat_add [symmetric])
huffman@28010
   846
done
huffman@28010
   847
huffman@28010
   848
lemma Rats_minus [simp]: "a \<in> Rats \<Longrightarrow> - a \<in> Rats"
huffman@28010
   849
apply (auto simp add: Rats_def)
huffman@28010
   850
apply (rule range_eqI)
huffman@28010
   851
apply (rule of_rat_minus [symmetric])
huffman@28010
   852
done
huffman@28010
   853
huffman@28010
   854
lemma Rats_diff [simp]: "\<lbrakk>a \<in> Rats; b \<in> Rats\<rbrakk> \<Longrightarrow> a - b \<in> Rats"
huffman@28010
   855
apply (auto simp add: Rats_def)
huffman@28010
   856
apply (rule range_eqI)
huffman@28010
   857
apply (rule of_rat_diff [symmetric])
huffman@28010
   858
done
huffman@28010
   859
huffman@28010
   860
lemma Rats_mult [simp]: "\<lbrakk>a \<in> Rats; b \<in> Rats\<rbrakk> \<Longrightarrow> a * b \<in> Rats"
huffman@28010
   861
apply (auto simp add: Rats_def)
huffman@28010
   862
apply (rule range_eqI)
huffman@28010
   863
apply (rule of_rat_mult [symmetric])
huffman@28010
   864
done
huffman@28010
   865
huffman@28010
   866
lemma nonzero_Rats_inverse:
huffman@28010
   867
  fixes a :: "'a::field_char_0"
huffman@28010
   868
  shows "\<lbrakk>a \<in> Rats; a \<noteq> 0\<rbrakk> \<Longrightarrow> inverse a \<in> Rats"
huffman@28010
   869
apply (auto simp add: Rats_def)
huffman@28010
   870
apply (rule range_eqI)
huffman@28010
   871
apply (erule nonzero_of_rat_inverse [symmetric])
huffman@28010
   872
done
huffman@28010
   873
huffman@28010
   874
lemma Rats_inverse [simp]:
haftmann@36409
   875
  fixes a :: "'a::{field_char_0, field_inverse_zero}"
huffman@28010
   876
  shows "a \<in> Rats \<Longrightarrow> inverse a \<in> Rats"
huffman@28010
   877
apply (auto simp add: Rats_def)
huffman@28010
   878
apply (rule range_eqI)
huffman@28010
   879
apply (rule of_rat_inverse [symmetric])
huffman@28010
   880
done
huffman@28010
   881
huffman@28010
   882
lemma nonzero_Rats_divide:
huffman@28010
   883
  fixes a b :: "'a::field_char_0"
huffman@28010
   884
  shows "\<lbrakk>a \<in> Rats; b \<in> Rats; b \<noteq> 0\<rbrakk> \<Longrightarrow> a / b \<in> Rats"
huffman@28010
   885
apply (auto simp add: Rats_def)
huffman@28010
   886
apply (rule range_eqI)
huffman@28010
   887
apply (erule nonzero_of_rat_divide [symmetric])
huffman@28010
   888
done
huffman@28010
   889
huffman@28010
   890
lemma Rats_divide [simp]:
haftmann@36409
   891
  fixes a b :: "'a::{field_char_0, field_inverse_zero}"
huffman@28010
   892
  shows "\<lbrakk>a \<in> Rats; b \<in> Rats\<rbrakk> \<Longrightarrow> a / b \<in> Rats"
huffman@28010
   893
apply (auto simp add: Rats_def)
huffman@28010
   894
apply (rule range_eqI)
huffman@28010
   895
apply (rule of_rat_divide [symmetric])
huffman@28010
   896
done
huffman@28010
   897
huffman@28010
   898
lemma Rats_power [simp]:
haftmann@31017
   899
  fixes a :: "'a::field_char_0"
huffman@28010
   900
  shows "a \<in> Rats \<Longrightarrow> a ^ n \<in> Rats"
huffman@28010
   901
apply (auto simp add: Rats_def)
huffman@28010
   902
apply (rule range_eqI)
huffman@28010
   903
apply (rule of_rat_power [symmetric])
huffman@28010
   904
done
huffman@28010
   905
huffman@28010
   906
lemma Rats_cases [cases set: Rats]:
huffman@28010
   907
  assumes "q \<in> \<rat>"
huffman@28010
   908
  obtains (of_rat) r where "q = of_rat r"
huffman@28010
   909
proof -
huffman@28010
   910
  from `q \<in> \<rat>` have "q \<in> range of_rat" unfolding Rats_def .
huffman@28010
   911
  then obtain r where "q = of_rat r" ..
huffman@28010
   912
  then show thesis ..
huffman@28010
   913
qed
huffman@28010
   914
huffman@28010
   915
lemma Rats_induct [case_names of_rat, induct set: Rats]:
huffman@28010
   916
  "q \<in> \<rat> \<Longrightarrow> (\<And>r. P (of_rat r)) \<Longrightarrow> P q"
huffman@28010
   917
  by (rule Rats_cases) auto
huffman@28010
   918
hoelzl@57275
   919
lemma Rats_infinite: "\<not> finite \<rat>"
hoelzl@57275
   920
  by (auto dest!: finite_imageD simp: inj_on_def infinite_UNIV_char_0 Rats_def)
nipkow@28001
   921
berghofe@24533
   922
subsection {* Implementation of rational numbers as pairs of integers *}
berghofe@24533
   923
huffman@47108
   924
text {* Formal constructor *}
huffman@47108
   925
haftmann@35369
   926
definition Frct :: "int \<times> int \<Rightarrow> rat" where
haftmann@35369
   927
  [simp]: "Frct p = Fract (fst p) (snd p)"
haftmann@35369
   928
haftmann@36112
   929
lemma [code abstype]:
haftmann@36112
   930
  "Frct (quotient_of q) = q"
haftmann@36112
   931
  by (cases q) (auto intro: quotient_of_eq)
haftmann@35369
   932
huffman@47108
   933
huffman@47108
   934
text {* Numerals *}
haftmann@35369
   935
haftmann@35369
   936
declare quotient_of_Fract [code abstract]
haftmann@35369
   937
huffman@47108
   938
definition of_int :: "int \<Rightarrow> rat"
huffman@47108
   939
where
huffman@47108
   940
  [code_abbrev]: "of_int = Int.of_int"
huffman@47108
   941
hide_const (open) of_int
huffman@47108
   942
huffman@47108
   943
lemma quotient_of_int [code abstract]:
huffman@47108
   944
  "quotient_of (Rat.of_int a) = (a, 1)"
huffman@47108
   945
  by (simp add: of_int_def of_int_rat quotient_of_Fract)
huffman@47108
   946
huffman@47108
   947
lemma [code_unfold]:
huffman@47108
   948
  "numeral k = Rat.of_int (numeral k)"
huffman@47108
   949
  by (simp add: Rat.of_int_def)
huffman@47108
   950
huffman@47108
   951
lemma [code_unfold]:
haftmann@54489
   952
  "- numeral k = Rat.of_int (- numeral k)"
huffman@47108
   953
  by (simp add: Rat.of_int_def)
huffman@47108
   954
huffman@47108
   955
lemma Frct_code_post [code_post]:
huffman@47108
   956
  "Frct (0, a) = 0"
huffman@47108
   957
  "Frct (a, 0) = 0"
huffman@47108
   958
  "Frct (1, 1) = 1"
huffman@47108
   959
  "Frct (numeral k, 1) = numeral k"
haftmann@54489
   960
  "Frct (- numeral k, 1) = - numeral k"
huffman@47108
   961
  "Frct (1, numeral k) = 1 / numeral k"
haftmann@54489
   962
  "Frct (1, - numeral k) = 1 / - numeral k"
huffman@47108
   963
  "Frct (numeral k, numeral l) = numeral k / numeral l"
haftmann@54489
   964
  "Frct (numeral k, - numeral l) = numeral k / - numeral l"
haftmann@54489
   965
  "Frct (- numeral k, numeral l) = - numeral k / numeral l"
haftmann@54489
   966
  "Frct (- numeral k, - numeral l) = - numeral k / - numeral l"
huffman@47108
   967
  by (simp_all add: Fract_of_int_quotient)
huffman@47108
   968
huffman@47108
   969
huffman@47108
   970
text {* Operations *}
huffman@47108
   971
haftmann@35369
   972
lemma rat_zero_code [code abstract]:
haftmann@35369
   973
  "quotient_of 0 = (0, 1)"
haftmann@35369
   974
  by (simp add: Zero_rat_def quotient_of_Fract normalize_def)
haftmann@35369
   975
haftmann@35369
   976
lemma rat_one_code [code abstract]:
haftmann@35369
   977
  "quotient_of 1 = (1, 1)"
haftmann@35369
   978
  by (simp add: One_rat_def quotient_of_Fract normalize_def)
haftmann@35369
   979
haftmann@35369
   980
lemma rat_plus_code [code abstract]:
haftmann@35369
   981
  "quotient_of (p + q) = (let (a, c) = quotient_of p; (b, d) = quotient_of q
haftmann@35369
   982
     in normalize (a * d + b * c, c * d))"
haftmann@35369
   983
  by (cases p, cases q) (simp add: quotient_of_Fract)
haftmann@27652
   984
haftmann@35369
   985
lemma rat_uminus_code [code abstract]:
haftmann@35369
   986
  "quotient_of (- p) = (let (a, b) = quotient_of p in (- a, b))"
haftmann@35369
   987
  by (cases p) (simp add: quotient_of_Fract)
haftmann@35369
   988
haftmann@35369
   989
lemma rat_minus_code [code abstract]:
haftmann@35369
   990
  "quotient_of (p - q) = (let (a, c) = quotient_of p; (b, d) = quotient_of q
haftmann@35369
   991
     in normalize (a * d - b * c, c * d))"
haftmann@35369
   992
  by (cases p, cases q) (simp add: quotient_of_Fract)
haftmann@35369
   993
haftmann@35369
   994
lemma rat_times_code [code abstract]:
haftmann@35369
   995
  "quotient_of (p * q) = (let (a, c) = quotient_of p; (b, d) = quotient_of q
haftmann@35369
   996
     in normalize (a * b, c * d))"
haftmann@35369
   997
  by (cases p, cases q) (simp add: quotient_of_Fract)
berghofe@24533
   998
haftmann@35369
   999
lemma rat_inverse_code [code abstract]:
haftmann@35369
  1000
  "quotient_of (inverse p) = (let (a, b) = quotient_of p
haftmann@35369
  1001
    in if a = 0 then (0, 1) else (sgn a * b, \<bar>a\<bar>))"
haftmann@35369
  1002
proof (cases p)
haftmann@35369
  1003
  case (Fract a b) then show ?thesis
haftmann@35369
  1004
    by (cases "0::int" a rule: linorder_cases) (simp_all add: quotient_of_Fract gcd_int.commute)
haftmann@35369
  1005
qed
haftmann@35369
  1006
haftmann@35369
  1007
lemma rat_divide_code [code abstract]:
haftmann@35369
  1008
  "quotient_of (p / q) = (let (a, c) = quotient_of p; (b, d) = quotient_of q
haftmann@35369
  1009
     in normalize (a * d, c * b))"
haftmann@35369
  1010
  by (cases p, cases q) (simp add: quotient_of_Fract)
haftmann@35369
  1011
haftmann@35369
  1012
lemma rat_abs_code [code abstract]:
haftmann@35369
  1013
  "quotient_of \<bar>p\<bar> = (let (a, b) = quotient_of p in (\<bar>a\<bar>, b))"
haftmann@35369
  1014
  by (cases p) (simp add: quotient_of_Fract)
haftmann@35369
  1015
haftmann@35369
  1016
lemma rat_sgn_code [code abstract]:
haftmann@35369
  1017
  "quotient_of (sgn p) = (sgn (fst (quotient_of p)), 1)"
haftmann@35369
  1018
proof (cases p)
haftmann@35369
  1019
  case (Fract a b) then show ?thesis
haftmann@35369
  1020
  by (cases "0::int" a rule: linorder_cases) (simp_all add: quotient_of_Fract)
haftmann@35369
  1021
qed
berghofe@24533
  1022
bulwahn@43733
  1023
lemma rat_floor_code [code]:
bulwahn@43733
  1024
  "floor p = (let (a, b) = quotient_of p in a div b)"
bulwahn@43733
  1025
by (cases p) (simp add: quotient_of_Fract floor_Fract)
bulwahn@43733
  1026
haftmann@38857
  1027
instantiation rat :: equal
haftmann@26513
  1028
begin
haftmann@26513
  1029
haftmann@35369
  1030
definition [code]:
haftmann@38857
  1031
  "HOL.equal a b \<longleftrightarrow> quotient_of a = quotient_of b"
haftmann@26513
  1032
haftmann@35369
  1033
instance proof
haftmann@38857
  1034
qed (simp add: equal_rat_def quotient_of_inject_eq)
haftmann@26513
  1035
haftmann@28351
  1036
lemma rat_eq_refl [code nbe]:
haftmann@38857
  1037
  "HOL.equal (r::rat) r \<longleftrightarrow> True"
haftmann@38857
  1038
  by (rule equal_refl)
haftmann@28351
  1039
haftmann@26513
  1040
end
berghofe@24533
  1041
haftmann@35369
  1042
lemma rat_less_eq_code [code]:
haftmann@35369
  1043
  "p \<le> q \<longleftrightarrow> (let (a, c) = quotient_of p; (b, d) = quotient_of q in a * d \<le> c * b)"
haftmann@35726
  1044
  by (cases p, cases q) (simp add: quotient_of_Fract mult.commute)
berghofe@24533
  1045
haftmann@35369
  1046
lemma rat_less_code [code]:
haftmann@35369
  1047
  "p < q \<longleftrightarrow> (let (a, c) = quotient_of p; (b, d) = quotient_of q in a * d < c * b)"
haftmann@35726
  1048
  by (cases p, cases q) (simp add: quotient_of_Fract mult.commute)
berghofe@24533
  1049
haftmann@35369
  1050
lemma [code]:
haftmann@35369
  1051
  "of_rat p = (let (a, b) = quotient_of p in of_int a / of_int b)"
haftmann@35369
  1052
  by (cases p) (simp add: quotient_of_Fract of_rat_rat)
haftmann@27652
  1053
huffman@47108
  1054
huffman@47108
  1055
text {* Quickcheck *}
huffman@47108
  1056
haftmann@31203
  1057
definition (in term_syntax)
haftmann@32657
  1058
  valterm_fract :: "int \<times> (unit \<Rightarrow> Code_Evaluation.term) \<Rightarrow> int \<times> (unit \<Rightarrow> Code_Evaluation.term) \<Rightarrow> rat \<times> (unit \<Rightarrow> Code_Evaluation.term)" where
haftmann@32657
  1059
  [code_unfold]: "valterm_fract k l = Code_Evaluation.valtermify Fract {\<cdot>} k {\<cdot>} l"
haftmann@31203
  1060
haftmann@37751
  1061
notation fcomp (infixl "\<circ>>" 60)
haftmann@37751
  1062
notation scomp (infixl "\<circ>\<rightarrow>" 60)
haftmann@31203
  1063
haftmann@31203
  1064
instantiation rat :: random
haftmann@31203
  1065
begin
haftmann@31203
  1066
haftmann@31203
  1067
definition
haftmann@51126
  1068
  "Quickcheck_Random.random i = Quickcheck_Random.random i \<circ>\<rightarrow> (\<lambda>num. Random.range i \<circ>\<rightarrow> (\<lambda>denom. Pair (
haftmann@51143
  1069
     let j = int_of_integer (integer_of_natural (denom + 1))
haftmann@32657
  1070
     in valterm_fract num (j, \<lambda>u. Code_Evaluation.term_of j))))"
haftmann@31203
  1071
haftmann@31203
  1072
instance ..
haftmann@31203
  1073
haftmann@31203
  1074
end
haftmann@31203
  1075
haftmann@37751
  1076
no_notation fcomp (infixl "\<circ>>" 60)
haftmann@37751
  1077
no_notation scomp (infixl "\<circ>\<rightarrow>" 60)
haftmann@31203
  1078
bulwahn@41920
  1079
instantiation rat :: exhaustive
bulwahn@41231
  1080
begin
bulwahn@41231
  1081
bulwahn@41231
  1082
definition
haftmann@51143
  1083
  "exhaustive_rat f d = Quickcheck_Exhaustive.exhaustive
haftmann@51143
  1084
    (\<lambda>l. Quickcheck_Exhaustive.exhaustive (\<lambda>k. f (Fract k (int_of_integer (integer_of_natural l) + 1))) d) d"
bulwahn@42311
  1085
bulwahn@42311
  1086
instance ..
bulwahn@42311
  1087
bulwahn@42311
  1088
end
bulwahn@42311
  1089
bulwahn@42311
  1090
instantiation rat :: full_exhaustive
bulwahn@42311
  1091
begin
bulwahn@42311
  1092
bulwahn@42311
  1093
definition
bulwahn@45818
  1094
  "full_exhaustive_rat f d = Quickcheck_Exhaustive.full_exhaustive (%(l, _). Quickcheck_Exhaustive.full_exhaustive (%k.
haftmann@51143
  1095
     f (let j = int_of_integer (integer_of_natural l) + 1
bulwahn@45507
  1096
        in valterm_fract k (j, %_. Code_Evaluation.term_of j))) d) d"
bulwahn@41231
  1097
bulwahn@41231
  1098
instance ..
bulwahn@41231
  1099
bulwahn@41231
  1100
end
bulwahn@41231
  1101
bulwahn@43889
  1102
instantiation rat :: partial_term_of
bulwahn@43889
  1103
begin
bulwahn@43889
  1104
bulwahn@43889
  1105
instance ..
bulwahn@43889
  1106
bulwahn@43889
  1107
end
bulwahn@43889
  1108
bulwahn@43889
  1109
lemma [code]:
bulwahn@46758
  1110
  "partial_term_of (ty :: rat itself) (Quickcheck_Narrowing.Narrowing_variable p tt) == Code_Evaluation.Free (STR ''_'') (Typerep.Typerep (STR ''Rat.rat'') [])"
bulwahn@46758
  1111
  "partial_term_of (ty :: rat itself) (Quickcheck_Narrowing.Narrowing_constructor 0 [l, k]) ==
bulwahn@45507
  1112
     Code_Evaluation.App (Code_Evaluation.Const (STR ''Rat.Frct'')
bulwahn@45507
  1113
     (Typerep.Typerep (STR ''fun'') [Typerep.Typerep (STR ''Product_Type.prod'') [Typerep.Typerep (STR ''Int.int'') [], Typerep.Typerep (STR ''Int.int'') []],
bulwahn@45507
  1114
        Typerep.Typerep (STR ''Rat.rat'') []])) (Code_Evaluation.App (Code_Evaluation.App (Code_Evaluation.Const (STR ''Product_Type.Pair'') (Typerep.Typerep (STR ''fun'') [Typerep.Typerep (STR ''Int.int'') [], Typerep.Typerep (STR ''fun'') [Typerep.Typerep (STR ''Int.int'') [], Typerep.Typerep (STR ''Product_Type.prod'') [Typerep.Typerep (STR ''Int.int'') [], Typerep.Typerep (STR ''Int.int'') []]]])) (partial_term_of (TYPE(int)) l)) (partial_term_of (TYPE(int)) k))"
bulwahn@43889
  1115
by (rule partial_term_of_anything)+
bulwahn@43889
  1116
bulwahn@43887
  1117
instantiation rat :: narrowing
bulwahn@43887
  1118
begin
bulwahn@43887
  1119
bulwahn@43887
  1120
definition
bulwahn@45507
  1121
  "narrowing = Quickcheck_Narrowing.apply (Quickcheck_Narrowing.apply
bulwahn@45507
  1122
    (Quickcheck_Narrowing.cons (%nom denom. Fract nom denom)) narrowing) narrowing"
bulwahn@43887
  1123
bulwahn@43887
  1124
instance ..
bulwahn@43887
  1125
bulwahn@43887
  1126
end
bulwahn@43887
  1127
bulwahn@43887
  1128
bulwahn@45183
  1129
subsection {* Setup for Nitpick *}
berghofe@24533
  1130
blanchet@38287
  1131
declaration {*
blanchet@38287
  1132
  Nitpick_HOL.register_frac_type @{type_name rat}
wenzelm@33209
  1133
   [(@{const_name zero_rat_inst.zero_rat}, @{const_name Nitpick.zero_frac}),
wenzelm@33209
  1134
    (@{const_name one_rat_inst.one_rat}, @{const_name Nitpick.one_frac}),
wenzelm@33209
  1135
    (@{const_name plus_rat_inst.plus_rat}, @{const_name Nitpick.plus_frac}),
wenzelm@33209
  1136
    (@{const_name times_rat_inst.times_rat}, @{const_name Nitpick.times_frac}),
wenzelm@33209
  1137
    (@{const_name uminus_rat_inst.uminus_rat}, @{const_name Nitpick.uminus_frac}),
wenzelm@33209
  1138
    (@{const_name inverse_rat_inst.inverse_rat}, @{const_name Nitpick.inverse_frac}),
blanchet@37397
  1139
    (@{const_name ord_rat_inst.less_rat}, @{const_name Nitpick.less_frac}),
wenzelm@33209
  1140
    (@{const_name ord_rat_inst.less_eq_rat}, @{const_name Nitpick.less_eq_frac}),
blanchet@45478
  1141
    (@{const_name field_char_0_class.of_rat}, @{const_name Nitpick.of_frac})]
blanchet@33197
  1142
*}
blanchet@33197
  1143
blanchet@41792
  1144
lemmas [nitpick_unfold] = inverse_rat_inst.inverse_rat
huffman@47108
  1145
  one_rat_inst.one_rat ord_rat_inst.less_rat
blanchet@37397
  1146
  ord_rat_inst.less_eq_rat plus_rat_inst.plus_rat times_rat_inst.times_rat
blanchet@37397
  1147
  uminus_rat_inst.uminus_rat zero_rat_inst.zero_rat
blanchet@33197
  1148
wenzelm@52146
  1149
wenzelm@52146
  1150
subsection {* Float syntax *}
huffman@35343
  1151
huffman@35343
  1152
syntax "_Float" :: "float_const \<Rightarrow> 'a"    ("_")
huffman@35343
  1153
wenzelm@52146
  1154
parse_translation {*
wenzelm@52146
  1155
  let
wenzelm@52146
  1156
    fun mk_number i =
wenzelm@52146
  1157
      let
wenzelm@52146
  1158
        fun mk 1 = Syntax.const @{const_syntax Num.One}
wenzelm@52146
  1159
          | mk i =
wenzelm@55974
  1160
              let
wenzelm@55974
  1161
                val (q, r) = Integer.div_mod i 2;
wenzelm@55974
  1162
                val bit = if r = 0 then @{const_syntax Num.Bit0} else @{const_syntax Num.Bit1};
wenzelm@55974
  1163
              in Syntax.const bit $ (mk q) end;
wenzelm@52146
  1164
      in
wenzelm@52146
  1165
        if i = 0 then Syntax.const @{const_syntax Groups.zero}
wenzelm@52146
  1166
        else if i > 0 then Syntax.const @{const_syntax Num.numeral} $ mk i
wenzelm@55974
  1167
        else
wenzelm@55974
  1168
          Syntax.const @{const_syntax Groups.uminus} $
wenzelm@55974
  1169
            (Syntax.const @{const_syntax Num.numeral} $ mk (~ i))
wenzelm@52146
  1170
      end;
wenzelm@52146
  1171
wenzelm@52146
  1172
    fun mk_frac str =
wenzelm@52146
  1173
      let
wenzelm@52146
  1174
        val {mant = i, exp = n} = Lexicon.read_float str;
wenzelm@52146
  1175
        val exp = Syntax.const @{const_syntax Power.power};
wenzelm@52146
  1176
        val ten = mk_number 10;
wenzelm@52146
  1177
        val exp10 = if n = 1 then ten else exp $ ten $ mk_number n;
wenzelm@52146
  1178
      in Syntax.const @{const_syntax divide} $ mk_number i $ exp10 end;
wenzelm@52146
  1179
wenzelm@52146
  1180
    fun float_tr [(c as Const (@{syntax_const "_constrain"}, _)) $ t $ u] = c $ float_tr [t] $ u
wenzelm@52146
  1181
      | float_tr [t as Const (str, _)] = mk_frac str
wenzelm@52146
  1182
      | float_tr ts = raise TERM ("float_tr", ts);
wenzelm@52146
  1183
  in [(@{syntax_const "_Float"}, K float_tr)] end
wenzelm@52146
  1184
*}
huffman@35343
  1185
huffman@35343
  1186
text{* Test: *}
huffman@35343
  1187
lemma "123.456 = -111.111 + 200 + 30 + 4 + 5/10 + 6/100 + (7/1000::rat)"
wenzelm@52146
  1188
  by simp
huffman@35343
  1189
wenzelm@55974
  1190
kuncar@53652
  1191
subsection {* Hiding implementation details *}
wenzelm@37143
  1192
huffman@47907
  1193
hide_const (open) normalize positive
wenzelm@37143
  1194
kuncar@53652
  1195
lifting_update rat.lifting
kuncar@53652
  1196
lifting_forget rat.lifting
huffman@47906
  1197
huffman@29880
  1198
end
haftmann@51143
  1199