src/HOL/Algebra/Bij.thy
author ballarin
Thu Aug 03 14:57:26 2006 +0200 (2006-08-03)
changeset 20318 0e0ea63fe768
parent 16417 9bc16273c2d4
child 27717 21bbd410ba04
permissions -rw-r--r--
Restructured algebra library, added ideals and quotient rings.
wenzelm@14706
     1
(*  Title:      HOL/Algebra/Bij.thy
paulson@13945
     2
    ID:         $Id$
paulson@13945
     3
    Author:     Florian Kammueller, with new proofs by L C Paulson
paulson@13945
     4
*)
paulson@13945
     5
ballarin@20318
     6
theory Bij imports Group begin
paulson@13945
     7
ballarin@20318
     8
ballarin@20318
     9
section {* Bijections of a Set, Permutation Groups and Automorphism Groups *}
paulson@13945
    10
paulson@13945
    11
constdefs
paulson@14963
    12
  Bij :: "'a set \<Rightarrow> ('a \<Rightarrow> 'a) set"
paulson@13945
    13
    --{*Only extensional functions, since otherwise we get too many.*}
paulson@14963
    14
  "Bij S \<equiv> extensional S \<inter> {f. bij_betw f S S}"
paulson@13945
    15
paulson@14963
    16
  BijGroup :: "'a set \<Rightarrow> ('a \<Rightarrow> 'a) monoid"
paulson@14963
    17
  "BijGroup S \<equiv>
paulson@14963
    18
    \<lparr>carrier = Bij S,
paulson@14963
    19
     mult = \<lambda>g \<in> Bij S. \<lambda>f \<in> Bij S. compose S g f,
paulson@14963
    20
     one = \<lambda>x \<in> S. x\<rparr>"
paulson@13945
    21
paulson@13945
    22
paulson@13945
    23
declare Id_compose [simp] compose_Id [simp]
paulson@13945
    24
paulson@14963
    25
lemma Bij_imp_extensional: "f \<in> Bij S \<Longrightarrow> f \<in> extensional S"
wenzelm@14666
    26
  by (simp add: Bij_def)
paulson@13945
    27
paulson@14963
    28
lemma Bij_imp_funcset: "f \<in> Bij S \<Longrightarrow> f \<in> S \<rightarrow> S"
paulson@14853
    29
  by (auto simp add: Bij_def bij_betw_imp_funcset)
paulson@13945
    30
paulson@13945
    31
wenzelm@14666
    32
subsection {*Bijections Form a Group *}
paulson@13945
    33
paulson@14963
    34
lemma restrict_Inv_Bij: "f \<in> Bij S \<Longrightarrow> (\<lambda>x \<in> S. (Inv S f) x) \<in> Bij S"
paulson@14853
    35
  by (simp add: Bij_def bij_betw_Inv)
paulson@13945
    36
paulson@13945
    37
lemma id_Bij: "(\<lambda>x\<in>S. x) \<in> Bij S "
paulson@14853
    38
  by (auto simp add: Bij_def bij_betw_def inj_on_def)
paulson@13945
    39
paulson@14963
    40
lemma compose_Bij: "\<lbrakk>x \<in> Bij S; y \<in> Bij S\<rbrakk> \<Longrightarrow> compose S x y \<in> Bij S"
paulson@14853
    41
  by (auto simp add: Bij_def bij_betw_compose) 
paulson@13945
    42
paulson@13945
    43
lemma Bij_compose_restrict_eq:
paulson@14963
    44
     "f \<in> Bij S \<Longrightarrow> compose S (restrict (Inv S f) S) f = (\<lambda>x\<in>S. x)"
paulson@14853
    45
  by (simp add: Bij_def compose_Inv_id)
paulson@13945
    46
paulson@13945
    47
theorem group_BijGroup: "group (BijGroup S)"
wenzelm@14666
    48
apply (simp add: BijGroup_def)
paulson@13945
    49
apply (rule groupI)
paulson@13945
    50
    apply (simp add: compose_Bij)
paulson@13945
    51
   apply (simp add: id_Bij)
paulson@13945
    52
  apply (simp add: compose_Bij)
paulson@13945
    53
  apply (blast intro: compose_assoc [symmetric] Bij_imp_funcset)
paulson@13945
    54
 apply (simp add: id_Bij Bij_imp_funcset Bij_imp_extensional, simp)
wenzelm@14666
    55
apply (blast intro: Bij_compose_restrict_eq restrict_Inv_Bij)
paulson@13945
    56
done
paulson@13945
    57
paulson@13945
    58
paulson@13945
    59
subsection{*Automorphisms Form a Group*}
paulson@13945
    60
paulson@14963
    61
lemma Bij_Inv_mem: "\<lbrakk> f \<in> Bij S;  x \<in> S\<rbrakk> \<Longrightarrow> Inv S f x \<in> S"
paulson@14853
    62
by (simp add: Bij_def bij_betw_def Inv_mem)
paulson@13945
    63
paulson@13945
    64
lemma Bij_Inv_lemma:
paulson@14963
    65
 assumes eq: "\<And>x y. \<lbrakk>x \<in> S; y \<in> S\<rbrakk> \<Longrightarrow> h(g x y) = g (h x) (h y)"
paulson@14963
    66
 shows "\<lbrakk>h \<in> Bij S;  g \<in> S \<rightarrow> S \<rightarrow> S;  x \<in> S;  y \<in> S\<rbrakk>
paulson@14963
    67
        \<Longrightarrow> Inv S h (g x y) = g (Inv S h x) (Inv S h y)"
paulson@14853
    68
apply (simp add: Bij_def bij_betw_def)
paulson@14853
    69
apply (subgoal_tac "\<exists>x'\<in>S. \<exists>y'\<in>S. x = h x' & y = h y'", clarify)
paulson@14963
    70
 apply (simp add: eq [symmetric] Inv_f_f funcset_mem [THEN funcset_mem], blast)
paulson@13945
    71
done
paulson@13945
    72
paulson@14963
    73
paulson@13945
    74
constdefs
paulson@14963
    75
  auto :: "('a, 'b) monoid_scheme \<Rightarrow> ('a \<Rightarrow> 'a) set"
paulson@14963
    76
  "auto G \<equiv> hom G G \<inter> Bij (carrier G)"
paulson@13945
    77
paulson@14963
    78
  AutoGroup :: "('a, 'c) monoid_scheme \<Rightarrow> ('a \<Rightarrow> 'a) monoid"
paulson@14963
    79
  "AutoGroup G \<equiv> BijGroup (carrier G) \<lparr>carrier := auto G\<rparr>"
paulson@13945
    80
paulson@14963
    81
lemma (in group) id_in_auto: "(\<lambda>x \<in> carrier G. x) \<in> auto G"
wenzelm@14666
    82
  by (simp add: auto_def hom_def restrictI group.axioms id_Bij)
paulson@13945
    83
paulson@14963
    84
lemma (in group) mult_funcset: "mult G \<in> carrier G \<rightarrow> carrier G \<rightarrow> carrier G"
paulson@13945
    85
  by (simp add:  Pi_I group.axioms)
paulson@13945
    86
paulson@14963
    87
lemma (in group) restrict_Inv_hom:
paulson@14963
    88
      "\<lbrakk>h \<in> hom G G; h \<in> Bij (carrier G)\<rbrakk>
paulson@14963
    89
       \<Longrightarrow> restrict (Inv (carrier G) h) (carrier G) \<in> hom G G"
paulson@13945
    90
  by (simp add: hom_def Bij_Inv_mem restrictI mult_funcset
paulson@13945
    91
                group.axioms Bij_Inv_lemma)
paulson@13945
    92
paulson@13945
    93
lemma inv_BijGroup:
paulson@14963
    94
     "f \<in> Bij S \<Longrightarrow> m_inv (BijGroup S) f = (\<lambda>x \<in> S. (Inv S f) x)"
paulson@13945
    95
apply (rule group.inv_equality)
paulson@13945
    96
apply (rule group_BijGroup)
wenzelm@14666
    97
apply (simp_all add: BijGroup_def restrict_Inv_Bij Bij_compose_restrict_eq)
paulson@13945
    98
done
paulson@13945
    99
paulson@14963
   100
lemma (in group) subgroup_auto:
paulson@14963
   101
      "subgroup (auto G) (BijGroup (carrier G))"
paulson@14963
   102
proof (rule subgroup.intro)
paulson@14963
   103
  show "auto G \<subseteq> carrier (BijGroup (carrier G))"
paulson@14963
   104
    by (force simp add: auto_def BijGroup_def)
paulson@14963
   105
next
paulson@14963
   106
  fix x y
paulson@14963
   107
  assume "x \<in> auto G" "y \<in> auto G" 
paulson@14963
   108
  thus "x \<otimes>\<^bsub>BijGroup (carrier G)\<^esub> y \<in> auto G"
paulson@14963
   109
    by (force simp add: BijGroup_def is_group auto_def Bij_imp_funcset 
paulson@14963
   110
                        group.hom_compose compose_Bij)
paulson@14963
   111
next
paulson@14963
   112
  show "\<one>\<^bsub>BijGroup (carrier G)\<^esub> \<in> auto G" by (simp add:  BijGroup_def id_in_auto)
paulson@14963
   113
next
paulson@14963
   114
  fix x 
paulson@14963
   115
  assume "x \<in> auto G" 
paulson@14963
   116
  thus "inv\<^bsub>BijGroup (carrier G)\<^esub> x \<in> auto G"
paulson@14963
   117
    by (simp del: restrict_apply
wenzelm@14666
   118
             add: inv_BijGroup auto_def restrict_Inv_Bij restrict_Inv_hom)
paulson@14963
   119
qed
paulson@13945
   120
paulson@14963
   121
theorem (in group) AutoGroup: "group (AutoGroup G)"
paulson@14963
   122
by (simp add: AutoGroup_def subgroup.subgroup_is_group subgroup_auto 
paulson@14963
   123
              group_BijGroup)
paulson@13945
   124
paulson@13945
   125
end