src/HOL/Algebra/Sylow.thy
author ballarin
Thu Aug 03 14:57:26 2006 +0200 (2006-08-03)
changeset 20318 0e0ea63fe768
parent 16663 13e9c402308b
child 25134 3d4953e88449
permissions -rw-r--r--
Restructured algebra library, added ideals and quotient rings.
wenzelm@14706
     1
(*  Title:      HOL/Algebra/Sylow.thy
paulson@13870
     2
    ID:         $Id$
paulson@13870
     3
    Author:     Florian Kammueller, with new proofs by L C Paulson
paulson@13870
     4
*)
paulson@13870
     5
ballarin@20318
     6
theory Sylow imports Coset begin
paulson@13870
     7
ballarin@20318
     8
ballarin@20318
     9
section {* Sylow's Theorem *}
paulson@13870
    10
wenzelm@14706
    11
text {*
wenzelm@14706
    12
  See also \cite{Kammueller-Paulson:1999}.
wenzelm@14706
    13
*}
wenzelm@14706
    14
paulson@13870
    15
text{*The combinatorial argument is in theory Exponent*}
paulson@13870
    16
paulson@14747
    17
locale sylow = group +
paulson@13870
    18
  fixes p and a and m and calM and RelM
nipkow@16663
    19
  assumes prime_p:   "prime p"
paulson@13870
    20
      and order_G:   "order(G) = (p^a) * m"
paulson@13870
    21
      and finite_G [iff]:  "finite (carrier G)"
paulson@14747
    22
  defines "calM == {s. s \<subseteq> carrier(G) & card(s) = p^a}"
paulson@13870
    23
      and "RelM == {(N1,N2). N1 \<in> calM & N2 \<in> calM &
wenzelm@14666
    24
                             (\<exists>g \<in> carrier(G). N1 = (N2 #> g) )}"
paulson@13870
    25
paulson@13870
    26
lemma (in sylow) RelM_refl: "refl calM RelM"
wenzelm@14666
    27
apply (auto simp add: refl_def RelM_def calM_def)
wenzelm@14666
    28
apply (blast intro!: coset_mult_one [symmetric])
paulson@13870
    29
done
paulson@13870
    30
paulson@13870
    31
lemma (in sylow) RelM_sym: "sym RelM"
paulson@13870
    32
proof (unfold sym_def RelM_def, clarify)
paulson@13870
    33
  fix y g
paulson@13870
    34
  assume   "y \<in> calM"
paulson@13870
    35
    and g: "g \<in> carrier G"
paulson@13870
    36
  hence "y = y #> g #> (inv g)" by (simp add: coset_mult_assoc calM_def)
paulson@13870
    37
  thus "\<exists>g'\<in>carrier G. y = y #> g #> g'"
paulson@13870
    38
   by (blast intro: g inv_closed)
paulson@13870
    39
qed
paulson@13870
    40
paulson@13870
    41
lemma (in sylow) RelM_trans: "trans RelM"
wenzelm@14666
    42
by (auto simp add: trans_def RelM_def calM_def coset_mult_assoc)
paulson@13870
    43
paulson@13870
    44
lemma (in sylow) RelM_equiv: "equiv calM RelM"
paulson@13870
    45
apply (unfold equiv_def)
paulson@13870
    46
apply (blast intro: RelM_refl RelM_sym RelM_trans)
paulson@13870
    47
done
paulson@13870
    48
paulson@14747
    49
lemma (in sylow) M_subset_calM_prep: "M' \<in> calM // RelM  ==> M' \<subseteq> calM"
paulson@13870
    50
apply (unfold RelM_def)
paulson@13870
    51
apply (blast elim!: quotientE)
paulson@13870
    52
done
paulson@13870
    53
ballarin@20318
    54
paulson@13870
    55
subsection{*Main Part of the Proof*}
paulson@13870
    56
paulson@13870
    57
locale sylow_central = sylow +
paulson@13870
    58
  fixes H and M1 and M
paulson@13870
    59
  assumes M_in_quot:  "M \<in> calM // RelM"
paulson@13870
    60
      and not_dvd_M:  "~(p ^ Suc(exponent p m) dvd card(M))"
paulson@13870
    61
      and M1_in_M:    "M1 \<in> M"
paulson@13870
    62
  defines "H == {g. g\<in>carrier G & M1 #> g = M1}"
paulson@13870
    63
paulson@14747
    64
lemma (in sylow_central) M_subset_calM: "M \<subseteq> calM"
paulson@13870
    65
by (rule M_in_quot [THEN M_subset_calM_prep])
paulson@13870
    66
paulson@13870
    67
lemma (in sylow_central) card_M1: "card(M1) = p^a"
paulson@13870
    68
apply (cut_tac M_subset_calM M1_in_M)
paulson@13870
    69
apply (simp add: calM_def, blast)
paulson@13870
    70
done
paulson@13870
    71
paulson@13870
    72
lemma card_nonempty: "0 < card(S) ==> S \<noteq> {}"
paulson@13870
    73
by force
paulson@13870
    74
wenzelm@14666
    75
lemma (in sylow_central) exists_x_in_M1: "\<exists>x. x\<in>M1"
wenzelm@14666
    76
apply (subgoal_tac "0 < card M1")
wenzelm@14666
    77
 apply (blast dest: card_nonempty)
paulson@13870
    78
apply (cut_tac prime_p [THEN prime_imp_one_less])
paulson@13870
    79
apply (simp (no_asm_simp) add: card_M1)
paulson@13870
    80
done
paulson@13870
    81
paulson@14747
    82
lemma (in sylow_central) M1_subset_G [simp]: "M1 \<subseteq> carrier G"
paulson@13870
    83
apply (rule subsetD [THEN PowD])
paulson@13870
    84
apply (rule_tac [2] M1_in_M)
paulson@13870
    85
apply (rule M_subset_calM [THEN subset_trans])
paulson@13870
    86
apply (auto simp add: calM_def)
paulson@13870
    87
done
paulson@13870
    88
paulson@13870
    89
lemma (in sylow_central) M1_inj_H: "\<exists>f \<in> H\<rightarrow>M1. inj_on f H"
paulson@13870
    90
  proof -
paulson@13870
    91
    from exists_x_in_M1 obtain m1 where m1M: "m1 \<in> M1"..
paulson@13870
    92
    have m1G: "m1 \<in> carrier G" by (simp add: m1M M1_subset_G [THEN subsetD])
paulson@13870
    93
    show ?thesis
paulson@13870
    94
    proof
paulson@13870
    95
      show "inj_on (\<lambda>z\<in>H. m1 \<otimes> z) H"
wenzelm@14666
    96
        by (simp add: inj_on_def l_cancel [of m1 x y, THEN iffD1] H_def m1G)
paulson@13870
    97
      show "restrict (op \<otimes> m1) H \<in> H \<rightarrow> M1"
paulson@13870
    98
      proof (rule restrictI)
wenzelm@14666
    99
        fix z assume zH: "z \<in> H"
wenzelm@14666
   100
        show "m1 \<otimes> z \<in> M1"
wenzelm@14666
   101
        proof -
wenzelm@14666
   102
          from zH
wenzelm@14666
   103
          have zG: "z \<in> carrier G" and M1zeq: "M1 #> z = M1"
wenzelm@14666
   104
            by (auto simp add: H_def)
wenzelm@14666
   105
          show ?thesis
wenzelm@14666
   106
            by (rule subst [OF M1zeq], simp add: m1M zG rcosI)
wenzelm@14666
   107
        qed
paulson@13870
   108
      qed
paulson@13870
   109
    qed
paulson@13870
   110
  qed
paulson@13870
   111
paulson@13870
   112
paulson@13870
   113
subsection{*Discharging the Assumptions of @{text sylow_central}*}
paulson@13870
   114
paulson@13870
   115
lemma (in sylow) EmptyNotInEquivSet: "{} \<notin> calM // RelM"
paulson@13870
   116
by (blast elim!: quotientE dest: RelM_equiv [THEN equiv_class_self])
paulson@13870
   117
paulson@13870
   118
lemma (in sylow) existsM1inM: "M \<in> calM // RelM ==> \<exists>M1. M1 \<in> M"
wenzelm@14666
   119
apply (subgoal_tac "M \<noteq> {}")
wenzelm@14666
   120
 apply blast
paulson@13870
   121
apply (cut_tac EmptyNotInEquivSet, blast)
paulson@13870
   122
done
paulson@13870
   123
paulson@13870
   124
lemma (in sylow) zero_less_o_G: "0 < order(G)"
paulson@13870
   125
apply (unfold order_def)
paulson@13870
   126
apply (blast intro: one_closed zero_less_card_empty)
paulson@13870
   127
done
paulson@13870
   128
paulson@13870
   129
lemma (in sylow) zero_less_m: "0 < m"
paulson@13870
   130
apply (cut_tac zero_less_o_G)
paulson@13870
   131
apply (simp add: order_G)
paulson@13870
   132
done
paulson@13870
   133
paulson@13870
   134
lemma (in sylow) card_calM: "card(calM) = (p^a) * m choose p^a"
paulson@13870
   135
by (simp add: calM_def n_subsets order_G [symmetric] order_def)
paulson@13870
   136
paulson@13870
   137
lemma (in sylow) zero_less_card_calM: "0 < card calM"
paulson@13870
   138
by (simp add: card_calM zero_less_binomial le_extend_mult zero_less_m)
paulson@13870
   139
paulson@13870
   140
lemma (in sylow) max_p_div_calM:
paulson@13870
   141
     "~ (p ^ Suc(exponent p m) dvd card(calM))"
paulson@13870
   142
apply (subgoal_tac "exponent p m = exponent p (card calM) ")
paulson@13870
   143
 apply (cut_tac zero_less_card_calM prime_p)
paulson@13870
   144
 apply (force dest: power_Suc_exponent_Not_dvd)
paulson@13870
   145
apply (simp add: card_calM zero_less_m [THEN const_p_fac])
paulson@13870
   146
done
paulson@13870
   147
paulson@13870
   148
lemma (in sylow) finite_calM: "finite calM"
paulson@13870
   149
apply (unfold calM_def)
paulson@13870
   150
apply (rule_tac B = "Pow (carrier G) " in finite_subset)
paulson@13870
   151
apply auto
paulson@13870
   152
done
paulson@13870
   153
paulson@13870
   154
lemma (in sylow) lemma_A1:
paulson@13870
   155
     "\<exists>M \<in> calM // RelM. ~ (p ^ Suc(exponent p m) dvd card(M))"
paulson@13870
   156
apply (rule max_p_div_calM [THEN contrapos_np])
paulson@13870
   157
apply (simp add: finite_calM equiv_imp_dvd_card [OF _ RelM_equiv])
paulson@13870
   158
done
paulson@13870
   159
paulson@13870
   160
paulson@13870
   161
subsubsection{*Introduction and Destruct Rules for @{term H}*}
paulson@13870
   162
paulson@13870
   163
lemma (in sylow_central) H_I: "[|g \<in> carrier G; M1 #> g = M1|] ==> g \<in> H"
paulson@13870
   164
by (simp add: H_def)
paulson@13870
   165
paulson@13870
   166
lemma (in sylow_central) H_into_carrier_G: "x \<in> H ==> x \<in> carrier G"
paulson@13870
   167
by (simp add: H_def)
paulson@13870
   168
paulson@13870
   169
lemma (in sylow_central) in_H_imp_eq: "g : H ==> M1 #> g = M1"
paulson@13870
   170
by (simp add: H_def)
paulson@13870
   171
paulson@13870
   172
lemma (in sylow_central) H_m_closed: "[| x\<in>H; y\<in>H|] ==> x \<otimes> y \<in> H"
paulson@13870
   173
apply (unfold H_def)
paulson@13870
   174
apply (simp add: coset_mult_assoc [symmetric] m_closed)
paulson@13870
   175
done
paulson@13870
   176
paulson@13870
   177
lemma (in sylow_central) H_not_empty: "H \<noteq> {}"
paulson@13870
   178
apply (simp add: H_def)
paulson@13870
   179
apply (rule exI [of _ \<one>], simp)
paulson@13870
   180
done
paulson@13870
   181
paulson@13870
   182
lemma (in sylow_central) H_is_subgroup: "subgroup H G"
paulson@13870
   183
apply (rule subgroupI)
paulson@13870
   184
apply (rule subsetI)
paulson@13870
   185
apply (erule H_into_carrier_G)
paulson@13870
   186
apply (rule H_not_empty)
paulson@13870
   187
apply (simp add: H_def, clarify)
paulson@13870
   188
apply (erule_tac P = "%z. ?lhs(z) = M1" in subst)
paulson@13870
   189
apply (simp add: coset_mult_assoc )
paulson@13870
   190
apply (blast intro: H_m_closed)
paulson@13870
   191
done
paulson@13870
   192
paulson@13870
   193
paulson@13870
   194
lemma (in sylow_central) rcosetGM1g_subset_G:
paulson@13870
   195
     "[| g \<in> carrier G; x \<in> M1 #>  g |] ==> x \<in> carrier G"
paulson@13870
   196
by (blast intro: M1_subset_G [THEN r_coset_subset_G, THEN subsetD])
paulson@13870
   197
paulson@13870
   198
lemma (in sylow_central) finite_M1: "finite M1"
paulson@13870
   199
by (rule finite_subset [OF M1_subset_G finite_G])
paulson@13870
   200
paulson@13870
   201
lemma (in sylow_central) finite_rcosetGM1g: "g\<in>carrier G ==> finite (M1 #> g)"
paulson@13870
   202
apply (rule finite_subset)
paulson@13870
   203
apply (rule subsetI)
paulson@13870
   204
apply (erule rcosetGM1g_subset_G, assumption)
paulson@13870
   205
apply (rule finite_G)
paulson@13870
   206
done
paulson@13870
   207
paulson@13870
   208
lemma (in sylow_central) M1_cardeq_rcosetGM1g:
paulson@13870
   209
     "g \<in> carrier G ==> card(M1 #> g) = card(M1)"
paulson@14963
   210
by (simp (no_asm_simp) add: M1_subset_G card_cosets_equal rcosetsI)
paulson@13870
   211
paulson@13870
   212
lemma (in sylow_central) M1_RelM_rcosetGM1g:
paulson@13870
   213
     "g \<in> carrier G ==> (M1, M1 #> g) \<in> RelM"
paulson@13870
   214
apply (simp (no_asm) add: RelM_def calM_def card_M1 M1_subset_G)
paulson@13870
   215
apply (rule conjI)
paulson@13870
   216
 apply (blast intro: rcosetGM1g_subset_G)
paulson@13870
   217
apply (simp (no_asm_simp) add: card_M1 M1_cardeq_rcosetGM1g)
paulson@13870
   218
apply (rule bexI [of _ "inv g"])
paulson@13870
   219
apply (simp_all add: coset_mult_assoc M1_subset_G)
paulson@13870
   220
done
paulson@13870
   221
paulson@13870
   222
paulson@14963
   223
subsection{*Equal Cardinalities of @{term M} and the Set of Cosets*}
paulson@13870
   224
paulson@14963
   225
text{*Injections between @{term M} and @{term "rcosets\<^bsub>G\<^esub> H"} show that
paulson@13870
   226
 their cardinalities are equal.*}
paulson@13870
   227
wenzelm@14666
   228
lemma ElemClassEquiv:
paulson@14963
   229
     "[| equiv A r; C \<in> A // r |] ==> \<forall>x \<in> C. \<forall>y \<in> C. (x,y)\<in>r"
paulson@14963
   230
by (unfold equiv_def quotient_def sym_def trans_def, blast)
paulson@13870
   231
paulson@13870
   232
lemma (in sylow_central) M_elem_map:
paulson@13870
   233
     "M2 \<in> M ==> \<exists>g. g \<in> carrier G & M1 #> g = M2"
paulson@13870
   234
apply (cut_tac M1_in_M M_in_quot [THEN RelM_equiv [THEN ElemClassEquiv]])
paulson@13870
   235
apply (simp add: RelM_def)
paulson@13870
   236
apply (blast dest!: bspec)
paulson@13870
   237
done
paulson@13870
   238
wenzelm@14666
   239
lemmas (in sylow_central) M_elem_map_carrier =
wenzelm@14666
   240
        M_elem_map [THEN someI_ex, THEN conjunct1]
paulson@13870
   241
paulson@13870
   242
lemmas (in sylow_central) M_elem_map_eq =
wenzelm@14666
   243
        M_elem_map [THEN someI_ex, THEN conjunct2]
paulson@13870
   244
paulson@14963
   245
lemma (in sylow_central) M_funcset_rcosets_H:
paulson@14963
   246
     "(%x:M. H #> (SOME g. g \<in> carrier G & M1 #> g = x)) \<in> M \<rightarrow> rcosets H"
paulson@14963
   247
apply (rule rcosetsI [THEN restrictI])
paulson@13870
   248
apply (rule H_is_subgroup [THEN subgroup.subset])
paulson@13870
   249
apply (erule M_elem_map_carrier)
paulson@13870
   250
done
paulson@13870
   251
paulson@14963
   252
lemma (in sylow_central) inj_M_GmodH: "\<exists>f \<in> M\<rightarrow>rcosets H. inj_on f M"
paulson@13870
   253
apply (rule bexI)
paulson@14963
   254
apply (rule_tac [2] M_funcset_rcosets_H)
paulson@13870
   255
apply (rule inj_onI, simp)
paulson@13870
   256
apply (rule trans [OF _ M_elem_map_eq])
paulson@13870
   257
prefer 2 apply assumption
paulson@13870
   258
apply (rule M_elem_map_eq [symmetric, THEN trans], assumption)
paulson@13870
   259
apply (rule coset_mult_inv1)
paulson@13870
   260
apply (erule_tac [2] M_elem_map_carrier)+
paulson@13870
   261
apply (rule_tac [2] M1_subset_G)
paulson@13870
   262
apply (rule coset_join1 [THEN in_H_imp_eq])
paulson@13870
   263
apply (rule_tac [3] H_is_subgroup)
paulson@13870
   264
prefer 2 apply (blast intro: m_closed M_elem_map_carrier inv_closed)
paulson@13870
   265
apply (simp add: coset_mult_inv2 H_def M_elem_map_carrier subset_def)
paulson@13870
   266
done
paulson@13870
   267
paulson@13870
   268
ballarin@20318
   269
subsubsection{*The Opposite Injection*}
paulson@13870
   270
paulson@13870
   271
lemma (in sylow_central) H_elem_map:
paulson@14963
   272
     "H1 \<in> rcosets H ==> \<exists>g. g \<in> carrier G & H #> g = H1"
paulson@14963
   273
by (auto simp add: RCOSETS_def)
paulson@13870
   274
wenzelm@14666
   275
lemmas (in sylow_central) H_elem_map_carrier =
wenzelm@14666
   276
        H_elem_map [THEN someI_ex, THEN conjunct1]
paulson@13870
   277
paulson@13870
   278
lemmas (in sylow_central) H_elem_map_eq =
wenzelm@14666
   279
        H_elem_map [THEN someI_ex, THEN conjunct2]
paulson@13870
   280
paulson@13870
   281
wenzelm@14666
   282
lemma EquivElemClass:
paulson@14963
   283
     "[|equiv A r; M \<in> A//r; M1\<in>M; (M1,M2) \<in> r |] ==> M2 \<in> M"
paulson@14963
   284
by (unfold equiv_def quotient_def sym_def trans_def, blast)
paulson@14963
   285
paulson@13870
   286
paulson@14963
   287
lemma (in sylow_central) rcosets_H_funcset_M:
paulson@14963
   288
  "(\<lambda>C \<in> rcosets H. M1 #> (@g. g \<in> carrier G \<and> H #> g = C)) \<in> rcosets H \<rightarrow> M"
paulson@14963
   289
apply (simp add: RCOSETS_def)
paulson@13870
   290
apply (fast intro: someI2
paulson@13870
   291
            intro!: restrictI M1_in_M
paulson@13870
   292
              EquivElemClass [OF RelM_equiv M_in_quot _  M1_RelM_rcosetGM1g])
paulson@13870
   293
done
paulson@13870
   294
paulson@13870
   295
text{*close to a duplicate of @{text inj_M_GmodH}*}
paulson@13870
   296
lemma (in sylow_central) inj_GmodH_M:
paulson@14963
   297
     "\<exists>g \<in> rcosets H\<rightarrow>M. inj_on g (rcosets H)"
paulson@13870
   298
apply (rule bexI)
paulson@14963
   299
apply (rule_tac [2] rcosets_H_funcset_M)
paulson@13870
   300
apply (rule inj_onI)
paulson@13870
   301
apply (simp)
paulson@13870
   302
apply (rule trans [OF _ H_elem_map_eq])
paulson@13870
   303
prefer 2 apply assumption
paulson@13870
   304
apply (rule H_elem_map_eq [symmetric, THEN trans], assumption)
paulson@13870
   305
apply (rule coset_mult_inv1)
paulson@13870
   306
apply (erule_tac [2] H_elem_map_carrier)+
paulson@13870
   307
apply (rule_tac [2] H_is_subgroup [THEN subgroup.subset])
paulson@13870
   308
apply (rule coset_join2)
paulson@13870
   309
apply (blast intro: m_closed inv_closed H_elem_map_carrier)
wenzelm@14666
   310
apply (rule H_is_subgroup)
paulson@13870
   311
apply (simp add: H_I coset_mult_inv2 M1_subset_G H_elem_map_carrier)
paulson@13870
   312
done
paulson@13870
   313
paulson@14747
   314
lemma (in sylow_central) calM_subset_PowG: "calM \<subseteq> Pow(carrier G)"
paulson@13870
   315
by (auto simp add: calM_def)
paulson@13870
   316
paulson@13870
   317
paulson@13870
   318
lemma (in sylow_central) finite_M: "finite M"
paulson@13870
   319
apply (rule finite_subset)
paulson@13870
   320
apply (rule M_subset_calM [THEN subset_trans])
paulson@13870
   321
apply (rule calM_subset_PowG, blast)
paulson@13870
   322
done
paulson@13870
   323
paulson@14963
   324
lemma (in sylow_central) cardMeqIndexH: "card(M) = card(rcosets H)"
wenzelm@14666
   325
apply (insert inj_M_GmodH inj_GmodH_M)
wenzelm@14666
   326
apply (blast intro: card_bij finite_M H_is_subgroup
paulson@14963
   327
             rcosets_subset_PowG [THEN finite_subset]
paulson@13870
   328
             finite_Pow_iff [THEN iffD2])
paulson@13870
   329
done
paulson@13870
   330
paulson@13870
   331
lemma (in sylow_central) index_lem: "card(M) * card(H) = order(G)"
paulson@13870
   332
by (simp add: cardMeqIndexH lagrange H_is_subgroup)
paulson@13870
   333
paulson@14747
   334
lemma (in sylow_central) lemma_leq1: "p^a \<le> card(H)"
paulson@13870
   335
apply (rule dvd_imp_le)
paulson@13870
   336
 apply (rule div_combine [OF prime_p not_dvd_M])
paulson@13870
   337
 prefer 2 apply (blast intro: subgroup.finite_imp_card_positive H_is_subgroup)
paulson@13870
   338
apply (simp add: index_lem order_G power_add mult_dvd_mono power_exponent_dvd
paulson@13870
   339
                 zero_less_m)
paulson@13870
   340
done
paulson@13870
   341
paulson@14747
   342
lemma (in sylow_central) lemma_leq2: "card(H) \<le> p^a"
paulson@13870
   343
apply (subst card_M1 [symmetric])
paulson@13870
   344
apply (cut_tac M1_inj_H)
wenzelm@14666
   345
apply (blast intro!: M1_subset_G intro:
paulson@13870
   346
             card_inj H_into_carrier_G finite_subset [OF _ finite_G])
paulson@13870
   347
done
paulson@13870
   348
paulson@13870
   349
lemma (in sylow_central) card_H_eq: "card(H) = p^a"
paulson@13870
   350
by (blast intro: le_anti_sym lemma_leq1 lemma_leq2)
paulson@13870
   351
paulson@13870
   352
lemma (in sylow) sylow_thm: "\<exists>H. subgroup H G & card(H) = p^a"
wenzelm@14666
   353
apply (cut_tac lemma_A1, clarify)
wenzelm@14666
   354
apply (frule existsM1inM, clarify)
paulson@13870
   355
apply (subgoal_tac "sylow_central G p a m M1 M")
paulson@13870
   356
 apply (blast dest:  sylow_central.H_is_subgroup sylow_central.card_H_eq)
wenzelm@14666
   357
apply (simp add: sylow_central_def sylow_central_axioms_def prems)
paulson@13870
   358
done
paulson@13870
   359
paulson@13870
   360
text{*Needed because the locale's automatic definition refers to
wenzelm@14666
   361
   @{term "semigroup G"} and @{term "group_axioms G"} rather than
paulson@13870
   362
  simply to @{term "group G"}.*}
paulson@13870
   363
lemma sylow_eq: "sylow G p a m = (group G & sylow_axioms G p a m)"
paulson@13870
   364
by (simp add: sylow_def group_def)
paulson@13870
   365
ballarin@20318
   366
ballarin@20318
   367
subsection {* Sylow's Theorem *}
ballarin@20318
   368
paulson@13870
   369
theorem sylow_thm:
nipkow@16663
   370
     "[| prime p;  group(G);  order(G) = (p^a) * m; finite (carrier G)|]
paulson@13870
   371
      ==> \<exists>H. subgroup H G & card(H) = p^a"
paulson@13870
   372
apply (rule sylow.sylow_thm [of G p a m])
wenzelm@14666
   373
apply (simp add: sylow_eq sylow_axioms_def)
paulson@13870
   374
done
paulson@13870
   375
paulson@13870
   376
end
paulson@14963
   377