src/HOL/Library/FuncSet.thy
author paulson
Thu Sep 26 10:51:58 2002 +0200 (2002-09-26)
changeset 13586 0f339348df0e
child 13593 e39f0751e4bf
permissions -rw-r--r--
new theory for Pi-sets, restrict, etc.
paulson@13586
     1
(*  Title:      HOL/Library/FuncSet.thy
paulson@13586
     2
    ID:         $Id$
paulson@13586
     3
    Author:     Florian Kammueller and Lawrence C Paulson
paulson@13586
     4
*)
paulson@13586
     5
paulson@13586
     6
header {*
paulson@13586
     7
  \title{Pi and Function Sets}
paulson@13586
     8
  \author{Florian Kammueller and Lawrence C Paulson}
paulson@13586
     9
*}
paulson@13586
    10
paulson@13586
    11
theory FuncSet = Main:
paulson@13586
    12
paulson@13586
    13
constdefs
paulson@13586
    14
  Pi      :: "['a set, 'a => 'b set] => ('a => 'b) set"
paulson@13586
    15
    "Pi A B == {f. \<forall>x. x \<in> A --> f(x) \<in> B(x)}"
paulson@13586
    16
paulson@13586
    17
  extensional :: "'a set => ('a => 'b) set"
paulson@13586
    18
    "extensional A == {f. \<forall>x. x~:A --> f(x) = arbitrary}"
paulson@13586
    19
paulson@13586
    20
  restrict :: "['a => 'b, 'a set] => ('a => 'b)"
paulson@13586
    21
    "restrict f A == (%x. if x \<in> A then f x else arbitrary)"
paulson@13586
    22
paulson@13586
    23
syntax
paulson@13586
    24
  "@Pi"  :: "[pttrn, 'a set, 'b set] => ('a => 'b) set"  ("(3PI _:_./ _)" 10)
paulson@13586
    25
  funcset :: "['a set, 'b set] => ('a => 'b) set"      (infixr "->" 60)
paulson@13586
    26
  "@lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)"  ("(3%_:_./ _)" [0,0,3] 3)
paulson@13586
    27
paulson@13586
    28
syntax (xsymbols)
paulson@13586
    29
  "@Pi" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set"  ("(3\<Pi> _\<in>_./ _)"   10)
paulson@13586
    30
  funcset :: "['a set, 'b set] => ('a => 'b) set"  (infixr "\<rightarrow>" 60) 
paulson@13586
    31
  "@lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)"  ("(3\<lambda>_\<in>_./ _)" [0,0,3] 3)
paulson@13586
    32
paulson@13586
    33
translations
paulson@13586
    34
  "PI x:A. B" => "Pi A (%x. B)"
paulson@13586
    35
  "A -> B"    => "Pi A (_K B)"
paulson@13586
    36
  "%x:A. f"  == "restrict (%x. f) A"
paulson@13586
    37
paulson@13586
    38
constdefs
paulson@13586
    39
  compose :: "['a set, 'b => 'c, 'a => 'b] => ('a => 'c)"
paulson@13586
    40
  "compose A g f == \<lambda>x\<in>A. g (f x)"
paulson@13586
    41
paulson@13586
    42
paulson@13586
    43
paulson@13586
    44
subsection{*Basic Properties of @{term Pi}*}
paulson@13586
    45
paulson@13586
    46
lemma Pi_I: "(!!x. x \<in> A ==> f x \<in> B x) ==> f \<in> Pi A B"
paulson@13586
    47
by (simp add: Pi_def)
paulson@13586
    48
paulson@13586
    49
lemma funcsetI: "(!!x. x \<in> A ==> f x \<in> B) ==> f \<in> A -> B"
paulson@13586
    50
by (simp add: Pi_def)
paulson@13586
    51
paulson@13586
    52
lemma Pi_mem: "[|f: Pi A B; x \<in> A|] ==> f x \<in> B x"
paulson@13586
    53
apply (simp add: Pi_def)
paulson@13586
    54
done
paulson@13586
    55
paulson@13586
    56
lemma funcset_mem: "[|f \<in> A -> B; x \<in> A|] ==> f x \<in> B"
paulson@13586
    57
by (simp add: Pi_def)
paulson@13586
    58
paulson@13586
    59
lemma Pi_eq_empty: "((PI x: A. B x) = {}) = (\<exists>x\<in>A. B(x) = {})"
paulson@13586
    60
apply (simp add: Pi_def)
paulson@13586
    61
apply auto
paulson@13586
    62
txt{*Converse direction requires Axiom of Choice to exhibit a function
paulson@13586
    63
picking an element from each non-empty @{term "B x"}*}
paulson@13586
    64
apply (drule_tac x = "%u. SOME y. y \<in> B u" in spec) 
paulson@13586
    65
apply (auto );
paulson@13586
    66
apply (cut_tac P= "%y. y \<in> B x" in some_eq_ex)
paulson@13586
    67
apply (auto ); 
paulson@13586
    68
done
paulson@13586
    69
paulson@13586
    70
lemma Pi_empty: "Pi {} B = UNIV"
paulson@13586
    71
apply (simp add: Pi_def) 
paulson@13586
    72
done
paulson@13586
    73
paulson@13586
    74
text{*Covariance of Pi-sets in their second argument*}
paulson@13586
    75
lemma Pi_mono: "(!!x. x \<in> A ==> B x <= C x) ==> Pi A B <= Pi A C"
paulson@13586
    76
by (simp add: Pi_def, blast)
paulson@13586
    77
paulson@13586
    78
text{*Contravariance of Pi-sets in their first argument*}
paulson@13586
    79
lemma Pi_anti_mono: "A' <= A ==> Pi A B <= Pi A' B"
paulson@13586
    80
by (simp add: Pi_def, blast)
paulson@13586
    81
paulson@13586
    82
paulson@13586
    83
subsection{*Composition With a Restricted Domain: @{term compose}*}
paulson@13586
    84
paulson@13586
    85
lemma funcset_compose: 
paulson@13586
    86
     "[| f \<in> A -> B; g \<in> B -> C |]==> compose A g f \<in> A -> C"
paulson@13586
    87
by (simp add: Pi_def compose_def restrict_def)
paulson@13586
    88
paulson@13586
    89
lemma compose_assoc:
paulson@13586
    90
     "[| f \<in> A -> B; g \<in> B -> C; h \<in> C -> D |] 
paulson@13586
    91
      ==> compose A h (compose A g f) = compose A (compose B h g) f"
paulson@13586
    92
by (simp add: expand_fun_eq Pi_def compose_def restrict_def) 
paulson@13586
    93
paulson@13586
    94
lemma compose_eq: "x \<in> A ==> compose A g f x = g(f(x))"
paulson@13586
    95
apply (simp add: compose_def restrict_def)
paulson@13586
    96
done
paulson@13586
    97
paulson@13586
    98
lemma surj_compose: "[| f ` A = B; g ` B = C |] ==> compose A g f ` A = C"
paulson@13586
    99
apply (auto simp add: image_def compose_eq)
paulson@13586
   100
done
paulson@13586
   101
paulson@13586
   102
lemma inj_on_compose:
paulson@13586
   103
     "[| f ` A = B; inj_on f A; inj_on g B |] ==> inj_on (compose A g f) A"
paulson@13586
   104
by (auto simp add: inj_on_def compose_eq)
paulson@13586
   105
paulson@13586
   106
paulson@13586
   107
subsection{*Bounded Abstraction: @{term restrict}*}
paulson@13586
   108
paulson@13586
   109
lemma restrict_in_funcset: "(!!x. x \<in> A ==> f x \<in> B) ==> (\<lambda>x\<in>A. f x) \<in> A -> B"
paulson@13586
   110
by (simp add: Pi_def restrict_def)
paulson@13586
   111
paulson@13586
   112
paulson@13586
   113
lemma restrictI: "(!!x. x \<in> A ==> f x \<in> B x) ==> (\<lambda>x\<in>A. f x) \<in> Pi A B"
paulson@13586
   114
by (simp add: Pi_def restrict_def)
paulson@13586
   115
paulson@13586
   116
lemma restrict_apply [simp]:
paulson@13586
   117
     "(\<lambda>y\<in>A. f y) x = (if x \<in> A then f x else arbitrary)"
paulson@13586
   118
by (simp add: restrict_def)
paulson@13586
   119
paulson@13586
   120
lemma restrict_ext: 
paulson@13586
   121
    "(!!x. x \<in> A ==> f x = g x) ==> (\<lambda>x\<in>A. f x) = (\<lambda>x\<in>A. g x)"
paulson@13586
   122
by (simp add: expand_fun_eq Pi_def Pi_def restrict_def)
paulson@13586
   123
paulson@13586
   124
lemma inj_on_restrict_eq: "inj_on (restrict f A) A = inj_on f A"
paulson@13586
   125
apply (simp add: inj_on_def restrict_def)
paulson@13586
   126
done
paulson@13586
   127
paulson@13586
   128
paulson@13586
   129
lemma Id_compose:
paulson@13586
   130
     "[|f \<in> A -> B;  f \<in> extensional A|] ==> compose A (\<lambda>y\<in>B. y) f = f"
paulson@13586
   131
by (auto simp add: expand_fun_eq compose_def extensional_def Pi_def)
paulson@13586
   132
paulson@13586
   133
lemma compose_Id:
paulson@13586
   134
     "[|g \<in> A -> B;  g \<in> extensional A|] ==> compose A g (\<lambda>x\<in>A. x) = g"
paulson@13586
   135
by (auto simp add: expand_fun_eq compose_def extensional_def Pi_def)
paulson@13586
   136
paulson@13586
   137
paulson@13586
   138
subsection{*Extensionality*}
paulson@13586
   139
paulson@13586
   140
lemma extensional_arb: "[|f \<in> extensional A; x\<notin> A|] ==> f x = arbitrary"
paulson@13586
   141
apply (simp add: extensional_def)
paulson@13586
   142
done
paulson@13586
   143
paulson@13586
   144
lemma restrict_extensional [simp]: "restrict f A \<in> extensional A"
paulson@13586
   145
by (simp add: restrict_def extensional_def)
paulson@13586
   146
paulson@13586
   147
lemma compose_extensional [simp]: "compose A f g \<in> extensional A"
paulson@13586
   148
by (simp add: compose_def)
paulson@13586
   149
paulson@13586
   150
lemma extensionalityI:
paulson@13586
   151
     "[| f \<in> extensional A; g \<in> extensional A; 
paulson@13586
   152
         !!x. x\<in>A ==> f x = g x |] ==> f = g"
paulson@13586
   153
by (force simp add: expand_fun_eq extensional_def)
paulson@13586
   154
paulson@13586
   155
lemma Inv_funcset: "f ` A = B ==> (\<lambda>x\<in>B. Inv A f x) : B -> A"
paulson@13586
   156
apply (unfold Inv_def)
paulson@13586
   157
apply (fast intro: restrict_in_funcset someI2)
paulson@13586
   158
done
paulson@13586
   159
paulson@13586
   160
lemma compose_Inv_id:
paulson@13586
   161
     "[| inj_on f A;  f ` A = B |]  
paulson@13586
   162
      ==> compose A (\<lambda>y\<in>B. Inv A f y) f = (\<lambda>x\<in>A. x)"
paulson@13586
   163
apply (simp add: compose_def)
paulson@13586
   164
apply (rule restrict_ext)
paulson@13586
   165
apply auto
paulson@13586
   166
apply (erule subst)
paulson@13586
   167
apply (simp add: Inv_f_f)
paulson@13586
   168
done
paulson@13586
   169
paulson@13586
   170
lemma compose_id_Inv:
paulson@13586
   171
     "f ` A = B ==> compose B f (\<lambda>y\<in>B. Inv A f y) = (\<lambda>x\<in>B. x)"
paulson@13586
   172
apply (simp add: compose_def)
paulson@13586
   173
apply (rule restrict_ext)
paulson@13586
   174
apply (simp add: f_Inv_f)
paulson@13586
   175
done
paulson@13586
   176
paulson@13586
   177
end